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Abstract 

This paper describes the design and implementation of a 
static real-time data distribution mechanism that uses a 
real-time event service and a real-time scheduling service 
to ensure the on-time, and temporally valid delivery of 
data.  The mechanism implements an algorithm, called the 
Just-In-Time Data Distribution algorithm to determine 
scheduling parameters that will ensure that data that 
arrives at a requesting target is valid.  The paper uses a 
Navy weapons alignment application to demonstrate the 
necessity and usefulness of the algorithm and 
implementation.  The paper also presents results of tests 
that demonstrate that our implementation fulfills the 
guarantees predicted by the theoretical results. 
Keywords:  real-time, data distribution, real-time events, 
data temporal consistency   
 
 
 

1 Introduction 

In many distributed embedded real-time (DRE) 
applications, like military command and control, time-
critical planning collaboration, and wireless embedded 
sensor networks, data produced in one component of the 
system needs to be shared with other components of the 
system.  Such applications may have stringent deadlines by 
which the data must be delivered in order to process it on 
time to make critical decisions.  Further, the data that is 
distributed must be valid when it arrives at its target.  That 
is, if the data is too old when it is delivered, it could 
produce invalid results when used in computations.  A 
simple solution would be to provide point-to-point or 
client-server communication to deliver data within the 
real-time system.  However, this communication can 
become extremely complex when multiple components 
require the same data at differing rates.  Furthermore the 
communication infrastructure is inflexible.  A decoupled 
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solution where suppliers of data do not communicate 
directly with consumers of data is more efficient and 
flexible.  Such a solution would allow the suppliers of data 
to produce the data at a rate that is consistent with the data 
production, and would allow consumers of the data to 
receive the data at a rate that consistent with the needs of 
the application.  The challenge in this type of solution is to 
synthesize the provisions of the suppliers with the needs of 
the consumers so that data arrives at each consumer on 
time, and temporally valid. 

This paper presents a solution to the data distribution 
problem in static real-time systems.  The solution includes 
an algorithm that determines scheduling parameters to 
ensure that data that is delivered will be valid when it is 
used and an implementation using a real-time event service 
to deliver the data, and a real-time scheduling service to 
ensure that data is delivered on time. 

 

1.1 Navy-Weapons Alignment Application 

To illustrate the utility of our static real-time data 
distribution solution we use a Navy weapons alignment 
system, depicted in Figure 1.  In this system, a set of 
navigation subsystems produces navigation data.  This 
data must be distributed along a chain of components so 
that it can eventually be used by the weapon subsystems to 
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align the weapons according to the latest location of the 
ship.  The data is also processed along the chain.  For 
example, the Nav Data Interchanges component receives 
the raw data and processes it so that the Process Nav Data 
component can use it. 

Presently, this type of application uses point-to-point 
communication to send the data along the chain.  This is 
very inflexible when new components are inserted.  For 
example, if more than one weapon subsystem requires the 
navigation data (i.e. missiles and torpedoes), there would 
need to be point-to-point communication from the Process 
Nav Data component to each of the Background 
Processing components.  Using a decoupled data 
distribution mechanism, depicted in Figure 1 as RT-DDS, 
allows for more flexibility in terms of where the data is 
sent.  The data distribution mechanism would allow 
components to specify the data that they can provide, and 
the data that they require, and the delivery of the data 
would be handled by the data distribution. 

The application as depicted in Figure 1 is static in the 
sense that all of the components have well-known and 
stable parameters, such as execution time, period and 
deadline.  Also, the number of components in the system 
remains the same.  That is, it is known a priori how many, 
and which weapons subsystems will require the navigation 
data, and when. 

1.2 Problem Space 

To define the problem that the work in this paper 
addresses, we refer to a Real-Time Data Distribution 
Problem Space Taxonomy [1].  Table 1 shows the specific 
problem in the space that our work addresses.  The Navy 
weapons alignment application is an example of a problem 
in this space.  For more details on the problem space 
characteristics, see [1]. 

2 Related Work 

Real-time data distribution has recently emerged as an 
important area of research.  There was a workshop 
dedicated to the topic (The First Workshop on Data 
Distribution for Real-Time Systems [3]) in May of 2003.  
There is also an effort in the Object Management Group 
(OMG) to standardize data distribution in a middleware 

service [4].  In [5], the problem of scheduling the 
broadcast of real-time data is considered.  It provides an 
approximate version of the Longest Wait First heuristic 
that reduces overhead.  Similar work [6] describes a 
Broadcast on Demand technique that schedules the 
broadcast using earliest deadline first, periodic or hybrid 
scheduling algorithms.  The work described in [7] is a 
speculative data dissemination service that uses 
geographic and temporal locality of reference to determine 
which data to be disseminated.  These techniques take into 
account the deadline timing constraints of the clients, but 
do not consider the data temporal consistency. 

An application area that has provided various research 
efforts towards data distribution is embedded sensor 
networks [8,9,10,11,12].  While all of the work described 
here provides valuable insights into solving the problem of 
data distribution in sensor networks, none considers real-
time characteristics of the data or of the applications.  That 
is, neither deadlines on data delivery nor temporal 
consistency of the data is supported. 

A large amount of real-time data distribution research 
has been done at the University of Virginia (UVa) in the 
context of wireless sensor networks [13,14,15,16,].  This 
work does address the deadlines of requests.  Also, 
temporal validity is considered in the sense that data 
values are reported before they expire, but with 
corresponding confidence values.  However, it does not 
provide assurance that the data is temporally valid when it 
arrives at the requestor. 

There are several commercial products that provide data 
distribution solutions – most of which are working on 
becoming compliant with the OMG’s Data Distribution 
Service specification [4].  Real-Time Innovations [18] has 
a product called NDDS that provides a publish-subscribe 
architecture for time-critical delivery of data.  Thales 
Naval Nederland [19] has a product called SPLICE [20] 
that provides a data-centric architecture for mission-
critical applications.  SPLICE agents act as information 
brokers to decouple the real-time delivery of data.  Both of 
these products provide valuable real-time features in data 
distribution, but neither guarantees data temporal 
consistency or deadlines. 

 

3 Real-Time Data Distribution Model 

In this section we describe the model on which our work 
is based.  Figure 2 depicts the elements of the model.  The 
DataObject represents the data that is being distributed.  
OID is a unique identifier of the data object within the 
system.  Value is the value of the data object.  This can be 
a simple atomic value, or a structured value depending 
upon the granularity of the data.  For example, in the Navy 
weapon alignment application, the data delivered to the 
weapons subsystem is a complex weapon object.  TS is the 
time (timestamp) at which the object was last updated.  OV 
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is the object validity, a time interval within which the data 
object is considered to be valid after its update.  When the 
OV expires, the data is considered temporally invalid. 

 

The Source is the entity that produces the data that is to 
be distributed.  SID is a unique identifier for the source.  
The Target is the entity that requests that data be sent to it.  
TID is a unique identifier for a target.  Node is the 
computing element on which the source/target executes.  
SP is a set of scheduling parameters.  P is the period of the 
task.  Recall that our solution addresses the problem space 
of periodic data distribution.  D is a deadline within the 
period.  R is the release time within the period after which 
the task may start to execute.  E is the worst-case 
execution time of the task.  Note that the source and the 
target may have different scheduling parameters. 

Dist is a distribution of data from a Source to a Target.  
A distribution has its own unique identifier DID.  It also 
has its own scheduling parameters that can be determined 
by the data distribution algorithm described in Section 4.  
These algorithms consider the scheduling parameters of 
the Source, the scheduling parameters of the Target, and 
the data object validity interval to determine the 
scheduling parameters of the distribution.   

4 Just-in-Time Data Distribution 
Algorithm 

This section describes the Just In Time Data 
Distribution (JITDD) algorithm.  The main goal of this 
algorithm is to examine the specified system, and compute 
the scheduling parameters for the required data 
distributions.  The algorithm considers the periods of the 
sources and the periods and deadlines of the targets to 
determine a deadline for the distribution that will ensure 
that all targets receive their requested data within the 
specified deadlines, and that all targets read temporally 
valid data. 

4.1 Assumptions 

This JITDD algorithm provides a solution to the problem 
space described in Section 1.  Therefore, the following 
assumptions are made about the environment in which the 
algorithm works: 
1) The system is static.  All nodes, data objects, and 

scheduling parameters are known a priori. 
2) For each object there is one source.   
3) Each object has a local node, where it originates. 

4) The period of an object’s source is always less than 
the temporal validity of the object that it supplies.   

4.2 Deadline Computation 

In order for targets to receive valid data, the scheduling 
parameters of the data distribution must be such that the 
distribution will finish delivering the data before the target 
uses it.  Further, there can be more than one target that 
requires the delivery of the same data object, possibly at 
different rates, with different deadlines.  For example, in 
the Navy weapon alignment application, each weapon 
system may require alignment data at different times 
because different weapons require varying amounts of time 
to be realigned.  Thus, the computation of the scheduling 
parameters for the distribution should be able to consider 
the deadlines of all targets that require the data.  We have 
proven in previous work [2] that the period of the 
distribution must be the same as the period of the source of 
the data.  The release time of the distribution should be at 
the start of its period.  Thus, the crucial computation that 
must be done is that of the deadline of the distribution 
within its period. 

Let d be the deadline that is computed for a distribution 
Dist from source S to a set of m targets T1,…,Tm for a 
request of data object OID.  The period of S (and therefore 
of Dist) is p.  Let N be the least common multiple of the 
periods of all targets of OID and the period of the source.  
Let n be the number of periods that should be considered 
for the analysis, where n is computed as 

n = N/p 
We call N the superperiod of the distribution because it 

represents a complete cycle of all targets for the data.  We 
define OVi to be the point in time in the i th period of the 
distribution that the object (from the most recent update) 
becomes temporally invalid.  An invalid interval is an 
interval of time during which the object does not have a 
valid value associated with it, that is, the object is 
temporarily inconsistent.  Figure 3 depicts an invalid 
interval.  OVi is the time within period Pi that the data that 
was updated during period Pi-1 becomes invalid.  The d in 
the figure represents the deadline of the distribution within 
its period.  The invalid interval is the time between OVi 
and this deadline because after the deadline, a new value 
of the data will have been delivered. 

In the algorithm when computing the deadline of the 
distribution, initially we set it to be equal to its period 

 DataObject = < OID, Value, TS, OV > 
Source = <SID, Node, OID, SP> 
Target = <TID, Node, OID, SP> 
Dist = <DID, OID, SID, TID, SP> 
SP = <P, D, R, E> 

 
Figure 2 - Real-Time Data Distribution Model 
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Figure 3 – Deadline Computation  



(d=p).  For each of the n periods in the superperiod, the 
key to computing the deadline of the distribution is to 
determine if any of the targets will be executing in the 
invalid interval.  If so, it is possible that it could use 
invalid data.  For each target, there is a window, called the 
data access window, within its period when it could access 
the data.  The data access window falls between the release 
time of the target and its deadline.  There are three cases to 
consider when calculating the deadline: 
1. If no target’s data access window overlaps with the 

invalid interval, the deadline is unchanged because no 
targets will be using invalid data. 

2. If some target’s data access window begins at time xi, 
after OVi, i.e. OVi < xi  < Pi +d, then the deadline is 
changed to xi-Pi.  The target must complete before this 
data access window begins. 

3. If any target’s data access window has started before 
or at OVi and continues to execute in the invalid interval, 
then the deadline is changed to OVi - Pi.  This deadline 
assignment ensures that the target completes its data 
access before the data becomes invalid, and thus the 
target will use valid data. 
Note that if the deadline is changed to OVi - Pi at any 

point, the computation of deadline is complete, as we have 
reached the minimum possible deadline.  Otherwise we 
consider these three cases for each of the n target periods 
in the superperiod.  It can also be noted that a simple way 
to compute this deadline would be to always use OVi - Pi.  
This would provide the required temporal validity, but it 
could be an overly pessimistic choice, and might cause the 
system to be nonschedulable.  Because in our current 
implementation this algorithm is computed off-line, the 
extra work that is required to compute the more flexible 
deadline is acceptable. 

In [2] we proved that the JITDD algorithm always 
provides valid data to requesting targets.  We also proved 
that the JITDD algorithm is necessary and sufficient for 
computing the distribution deadline. 

 

5 Implementation and Evaluation 

The implementation of our real-time data distribution is 
made up of two parts:  an off-line analysis and an on-line 
event-based delivery of data.  In this section we describe 
these two parts of the implementation, as well as a series 
of tests that we have performed to demonstrate that the 
implementation correctly represents the theory behind the 
JITDD algorithm. 

5.1 Off-line Analysis 

Figure 4 depicts the process that is followed in the off-
line analysis of our implementation.  The implementation 
begins with a specification of the system, in the format of 
our model described in Section 3.  An ASCII file 
containing descriptions of all of the sources, targets, data 
and nodes is created and stored.  The C++ implementation 
of the JITDD algorithm reads in the system specification 
and computes the scheduling parameters for each of the 
data distributions required.  The output of the JITDD 
algorithm is another ASCII file containing the system 
specification augmented with the computed distribution 
scheduling parameters. 

The augmented system specification is fed into a real-
time analysis tool to determine if the system is 
schedulable.  We are currently using the RapidRMA tool 
by TriPacific Corporation [21].  This requires manually 
translating the specification into the visual model required 
by RapidRMA.  In ongoing work we are developing tool 
support to ease this manual translation work (see Section 
6).  RapidRMA performs a schedulability analysis on the 
specified model using deadline monotonic, end-to-end 
analysis [22].  If the system is found to be non-
schedulable, then the system specification must be 
reworked, perhaps adding more nodes or more powerful 
nodes to the system.  Once the system is deemed 
schedulable, RapidRMA produces a configuration file that 
provides scheduling priorities for each of the tasks in the 
system.  This configuration file is used in the on-line 
implementation described next. 

 

5.2 On-line Implementation 

The runtime component of our implementation executes 
the model specified in the off-line component described 
above.  The implementation is programmed in C++ and 
runs on Linux Kernel 2.4.21, with TAO v1.3.5 CORBA 
software [23] to provide real-time middleware support.  
The implementation also uses two of TAO’s common 
object services:  the Real-Time Event Service (RTES) 
[24], and the Real-Time Static Scheduling Service 
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(RTSSS) [25].  The RTES is used as a mechanism for 
distributing data asynchronously, and the RTSSS provides 
priority-based scheduling to ensure that deadlines are met. 
Figure 5 illustrates the implementation using these two 
services. 

Event-based Data Distribution.  TAO’s RTES 
provides asynchronous, decoupled communication 
between sources and targets of data.  The RTES uses a 
supplier/consumer model to deliver events.  The supplier 
sends data from a specific source to the RTES, and the 
consumer receives data from the RTES.  In our 
implementation, we create a supplier to distribute data that 
is produced at each source, and we create a consumer to 
receive data for each target.   

The RTES provides an interface for a supplier to register 
events (data) that it will supply.  It also provides an 
interface for a consumer to register for events that it would 
like to receive.  The RTES matches these requests with the 
supplied events, and sends the event data to consumers 
when they are supplied by the suppliers.  As shown in 
Figure 5, in our implementation the RTES periodically 
receives event data from the supplier.  The RTES Proxy 
Consumer (PC) receives the event data, and then 
iteratively passes it along to the Proxy Suppliers (PS) for 
each consumer that has registered to receive this event.  
The Proxy Suppliers finally deliver the event data to the 
corresponding consumers, which make the data available 
for the targets to use.  From our formal model of Section 3, 
a data Dist is represented by the delivery of event data 
from the supplier to each consumer. 

Scheduling Real-Time Data Distribution.  In previous 
work, we developed the RTSSS that is in the TAO code 
base [25].  It is implemented as a set of library code that is 
compiled into the programs that use it.  The library code 
creates a mapping of task to priority, using the information 
in the configuration file produced by the RapidRMA tool.  
When the system starts up, each of the executing entities 
(sources, suppliers, consumers, targets, RTES) begins by 
requesting a priority from the RTSSS.  The RTSSS looks 
the priorities up in the task/priority mapping table, and sets 
the priorities accordingly.  Each of these tasks then 
executes at its specified priority.  Thus, the deadline 
computation that is performed in the off-line analysis has 
provided the deadline for the consumers to deliver to the 
targets. 

5.3 Test Cases 

In order to demonstrate the effectiveness of our 
implementation, we have developed several test scenarios.  
In each of these scenarios, the main metrics for success are 
temporal consistency of delivered data, and deadline of 
data delivery.  That is, we tested to make sure that our 
claim of ensuring temporal validity and deadline of the 
distribution holds in our implementation. 

The first three of the test scenarios examined the system 
under “normal” conditions, under network-constrained 
conditions, and under workload-constrained conditions.  In 
the fourth set of tests, we emulated the Navy weapon 
alignment application described in Section 1.1.  We have 
developed a system model based on the real application 
context.  Below we describe the various test cases, how 
they were modeled and implemented, and the results of the 
tests that we performed. 

Test Scenarios.  We have tested four scenarios, each of 
which is described here.  In each scenario, we have used 
two nodes, with executing entities distributed across these 
nodes.  Recall that in each case, the system is modeled and 
analyzed up front, so we have chosen systems that are 
schedulable, but in some cases, may be close to being non-
schedulable.   Figure 6 illustrates the system layout for the 
first three test scenarios.  Below we describe the specific 
parameters for these scenarios.  For each of the first three 
test scenarios, we ran the system over 100 periods of the 
data source and collected deadline and temporal 
consistency data.  We ran each test 10 times and graphed 
the maximum completion time/data age values over these 
10 tests. 

 
 

Scenario 1 – Normal Conditions:  On node 1 in Figure 
6, there are two data sources, two suppliers and an event 
channel for each supplier.  Node 2 has the consumers and 
the targets that will use the data.  Table 2 gives the specific 
parameters for each of these entities.  The table has two 
rows for the event channel (EC1 and EC2).  Each of these 
represents the distribution from one of the data sources to 
the set of targets that have requested the data.  
Additionally, we specified a network delay of 150 � sec for 
each transmission between node 1 and node 2.   The object 
validity for Data Source 1 is 150,000 � sec, and for Data 
Source 2 is 140,000 � sec.  Note that in Table 2, the 
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deadline listed for each consumer represents the computed 
deadline for the distribution for the associated data source.  
These consumer deadlines were computed using the 
JITDD algorithm, synthesizing the deadlines for each 
target that requested data from the data source.  The entire 
system model was analyzed in RapidRMA, and found to 
be schedulable. 

Figures 8 and 9 display the deadline results for this 
scenario, one figure for each of the data sources.  The 
horizontal line in each graph indicates the deadline for the 
distribution of the particular data source.  The other points 
in the scatter graph represent the completion times of the 
data distributions over the 100 periods.  As the figure 
indicates, except for a few statistical anomalies in the first 
few periods, all of the data distributions complete before 
the specified deadline, as the theoretical results had 
predicted.  In the first few periods, there was set up 
execution that caused the tasks to complete after the 
deadline. 

Figures 10 and 11 show the temporal consistency results 
for scenario 1.  The horizontal line in each graph 
represents the object validity of the data object being 
distributed.  The other points represent the ages of the data 
objects at the time they were read by the targets.  It is clear 
to see that all of the targets, in each of the periods, read 
temporally consistent data. 

Scenario 2 – Workload Constrained:  This scenario is 
almost identical to Scenario 1, except that extra workload 
was inserted onto Node 2.  This workload increased the 
utilization on that node from 16.53% to 72.15%.  While 
the extra workload on Node 2 caused the system to be 
more constrained, it was still schedulable.  We chose to 
perform this test to show that under tight workload 
conditions, when the system is found to be schedulable, 
our implementation meets all deadlines and temporal 
consistency constraints.  Test results indicate this to be the 
case.  The graphs for this scenario look very similar to 
those for scenario 1.  Due to space limitations, we do not 
show these results here. 

Scenario 3 – Network Constrained:  Scenario 3, is also 
similar to Scenario 1, except that we assumed that the 
network was more constrained.  That is, we assumed a 
network delay of 560 � sec.  This increased the utilization 
of the network from 12% to 44.8%.  Our intent with this 
scenario was to show that our implementation still 
maintains the temporal consistency of both the data and of 
the execution (deadlines).  Test results for this scenario 
also look very much like Figures 8-11, so we do not show 
them here. 

Scenario 4 – Navy Weapon Alignment Application:  We 
have developed a simulation of the Navy weapon 
alignment system to demonstrate how our algorithm and 
implementation work with a real application.  Figure 7 
illustrates how we have implemented the system.  We use 
two nodes, with the shared navigational components and 
the event channel on Node 1 and the specific weapons 
components on Node 2.  In this implementation we have 
implemented two different weapons systems, each with its 
own final deadline.  Table 3 shows the parameters that we 
used to simulate this application.  The object validity of 
the navigation data being distributed is 800,000 � sec.  The 
values in the table are representative of the numbers for 
the real application. 

The JITDD algorithm was applied to determine the 
deadline for the delivery of the navigational data to each 
weapon subsystem.  Because the original data flows from 
the same source, there must be a single deadline placed on 
the receipt of the data at the Process Nav Data component.  
This deadline was computed by taking the shorter of the 
two computed deadlines for the Weapon Subsystems. 

For scenario 4, we have run the system over 100 periods 
of the Nav Subsystem component, 10 times.  We graphed 
the maximum values for the completion times of the two 
Weapon Subsystems, and for the object validity of the data 
arriving at the two Weapon Subsystems components.  
Figures 20 and 21 show the results of these tests.  The 

Name Period, � sec
Release, � sec Deadline, � sec

Exec time, � sec
DataSource1 100000 0 10000 1500
DataSource2 80000 0 10000 2000
Target1.1 100000 80000 30000 1500
Target1.2 200000 180000 40000 1500
Target1.3 300000 280000 50000 1500
Target2.1 100000 80000 40000 2000
Target2.2 120000 130000 50000 2000
Target2.3 180000 130000 100000 2000
Target2.4 200000 160000 80000 2000
Supplier1 100000 10000 70000 1000
Supplier2 80000 10000 60000 1000
EC1 100000 10000 70000 400
EC2 80000 10000 60000 400
Consumer1.* 100000 10000 70000 1000
Consumer2.** 80000 10000 60000 1000
* All consumers of DataSource1 (** and of DataSource2) have the same parameters 

Table 2 – Test Scenario Parameters

Name Period, � sec
Release, � sec Deadline, � sec

Exec time, � sec
DataSource1 100000 0 10000 1500
DataSource2 80000 0 10000 2000
Target1.1 100000 80000 30000 1500
Target1.2 200000 180000 40000 1500
Target1.3 300000 280000 50000 1500
Target2.1 100000 80000 40000 2000
Target2.2 120000
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Release, � sec Deadline, � sec

Exec time, � sec
DataSource1 100000 0 10000 1500
DataSource2 80000 0 10000 2000
Target1.1 100000 80000 30000 1500
Target1.2 200000 180000 40000 1500
Target1.3 300000 280000 50000 1500
Target2.1 100000 80000 40000 2000
Target2.2 120000 130000 50000 2000
Target2.3 180000 130000 100000 2000
Target2.4 200000 160000 80000 2000
Supplier1 100000 10000 70000 1000
Supplier2 80000 10000 60000 1000
EC1 100000 10000 70000 400
EC2 80000 10000 60000 400
Consumer1.* 100000 10000 70000 1000

130000 50000 2000
Target2.3 180000 130000 100000 2000
Target2.4 200000 160000 80000 2000
Supplier1 100000 10000 70000 1000
Supplier2 80000 10000 60000 1000
EC1 100000 10000 70000 400
EC2 80000 10000 60000 400
Consumer1.* 100000 10000 70000 1000
Consumer2.** 80000 10000 60000 1000
* All consumers of DataSource1 (** and of DataSource2) have the same parameters 
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figures indicate that the deadlines are met each time, and 
the temporal validity of the data is preserved as well. 

6 Conclusions and Future Work 

This paper has presented a model for real-time data 
distribution, and an algorithm that determines distribution 
deadlines such that all data that arrives at specified targets 
is temporally valid.  The paper also describes an 
implementation that provides the data distribution and 
enforces the temporal constraints specified by the 
algorithm.  The results of a set of tests indicates that our 
implementation upholds the theoretical expectations that 
data be temporally consistent when received, and that 
deadlines will be made. 

As described in Section 1.2, the work in this paper 
solves a relatively simple problem in the overall real-time 
data distribution problem space.  This work will serve as a 
foundation for future work in more complex areas in the 
problem space.  For example, in order to support a more 
dynamic application, our implementation could be 
extended to provide scenario-based dynamics.  This would 
be a relatively simple change to the current model and 
implementation.  It would require that various scenarios 
are known and modeled a priori.  Then, when the 
application changes from one known scenario to another, 
for example, adding another weapons system to the 
weapon alignment application, the system would be 
rescheduled based on the previously analyzed model.  The 
system would still be guaranteed to be schedulable, and 
the data consistency would be guaranteed as well. 

A more dynamic application in which data requests or 
data sources enter with parameters that are not known a 
priori, presents a more complex problem.  In this case, our 
implementation would require that the computation of 

distribution deadline be computed online.  We would most 
likely have to rely on a quicker calculation, resulting in a 
possibly more pessimistic deadline.   

We are aware that other middleware solutions to real-
time data distribution are emerging in standards bodies.  
We are closely following the OMG’s development of the 
Data Distribution Service.  It is our intent to eventually 
work with a mature implementation of this service to 
provide the scheduling and data temporal consistency 
support that we have provided in our current Event 
Service-based implementation. 

As mentioned in Section 5.1, the current off-line 
implementation involves specifying the system in a 
somewhat ad hoc way, and then creating a model in 
RapidRMA to do the analysis.  We are currently working 
on developing tool support for automating the entire up-
front modeling and analysis phase of the implementation.  
We are examining model-integrating computing tools like 
GME [26] that will allow us to model the system once, and 
then insert our own code to perform the JITDD algorithm 
as well as the real-time analysis. 
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