
Static Real-Time Data Distribution*

Angela Uvarov, Lisa DiPippo, Victor Fay-Wolfe, Kevin Bryan,
Patrick Gadrow, Timothy Henry, Matthew Murphy

University of Rhode Island
Department of Computer Science

Kingston, RI 02881 USA
{ uvarovaa, dipippo, wolfe, bryank, gadrowp, henry, murphym}@cs.uri.edu

Paul R. Work, Louis P. DiPalma
Raytheon Company

Portsmouth, RI USA 02871
{ paul_r_work,

louis_p_dipalma}@raytheon.com

Abstract

This paper describes the design and implementation of a
static real-time data distribution mechanism that uses a
real-time event service and a real-time scheduling service
to ensure the on-time, and temporally valid delivery of
data. The mechanism implements an algorithm, called the
Just-In-Time Data Distribution algorithm to determine
scheduling parameters that will ensure that data that
arrives at a requesting target is valid. The paper uses a
Navy weapons alignment application to demonstrate the
necessity and usefulness of the algorithm and
implementation. The paper also presents results of tests
that demonstrate that our implementation fulfills the
guarantees predicted by the theoretical results.
Keywords: real-time, data distribution, real-time events,
data temporal consistency

1 Introduction

In many distributed embedded real-time (DRE)
applications, like military command and control, time-
critical planning collaboration, and wireless embedded
sensor networks, data produced in one component of the
system needs to be shared with other components of the
system. Such applications may have stringent deadlines by
which the data must be delivered in order to process it on
time to make critical decisions. Further, the data that is
distributed must be valid when it arrives at its target. That
is, if the data is too old when it is delivered, it could
produce invalid results when used in computations. A
simple solution would be to provide point-to-point or
client-server communication to deliver data within the
real-time system. However, this communication can
become extremely complex when multiple components
require the same data at differing rates. Furthermore the
communication infrastructure is inflexible. A decoupled

 * This work is partially supported by the U.S. Office of Naval
Research grant N00014-03-C-0080.

solution where suppliers of data do not communicate
directly with consumers of data is more efficient and
flexible. Such a solution would allow the suppliers of data
to produce the data at a rate that is consistent with the data
production, and would allow consumers of the data to
receive the data at a rate that consistent with the needs of
the application. The challenge in this type of solution is to
synthesize the provisions of the suppliers with the needs of
the consumers so that data arrives at each consumer on
time, and temporally valid.

This paper presents a solution to the data distribution
problem in static real-time systems. The solution includes
an algorithm that determines scheduling parameters to
ensure that data that is delivered will be valid when it is
used and an implementation using a real-time event service
to deliver the data, and a real-time scheduling service to
ensure that data is delivered on time.

1.1 Navy-Weapons Alignment Application

To illustrate the utility of our static real-time data
distribution solution we use a Navy weapons alignment
system, depicted in Figure 1. In this system, a set of
navigation subsystems produces navigation data. This
data must be distributed along a chain of components so
that it can eventually be used by the weapon subsystems to

Nav
Objects

Shared Data Space

KeyCOTS NDI

Interface Objects

Simulators

Functions

Resource Manager Elements

Interface Clients & Services

KeyCOTS NDI

Interface Objects

Simulators

Functions

Resource Manager Elements

Interface Clients & Services

Navigation
Subsystems
Navigation

Subsystems

Open Service Environment (OSE)

QoS Mgr
XML/DAML
Operational

String
Spec Policy

QoS Agent

Weapon
Objects
Weapon
Objects

Nav Data
Interchanges

Nav Data
Interchanges

Weapons
Data

Conversion

Weapons
Data

Conversion

Weapon
Interchanges

Missiles
Background
Processing

Missiles
Background
Processing

Weapon
Subsystems

Weapon
Subsystems

Process
Nav Data

(Service environment with QoS agents
deployed across multiple computing

resources)

Node 1

DB

Database
Access

Services

Node 2 Node n-2 Node n-1

QoS Agent
QoS Agent QoS Agent

QoS Agent

RT-DDS Middleware-based Data Distribution + diffserv on all nodesRT-DDS Middleware-based Data Distribution + diffserv on all nodes

Node n

Figure 1 – Navy Weapons Alignment Application

Nav
Objects

Shared Data Space

KeyCOTS NDI

Interface Objects

Simulators

Functions

Resource Manager Elements

Interface Clients & Services

KeyCOTS NDI

Interface Objects

Simulators

Functions

Resource Manager Elements

Interface Clients & Services

Navigation
Subsystems
Navigation

Subsystems

Open Service Environment (OSE)

QoS Mgr
XML/DAML
Operational

String
Spec Policy

QoS Agent

Weapon
Objects
Weapon
Objects

Nav Data
Interchanges

Nav Data
Interchanges

Weapons
Data

Conversion

Weapons
Data

Conversion

Weapon
Interchanges

Missiles
Background
Processing

Missiles
Background
Processing

Weapon
Subsystems

Weapon
Subsystems

Process
Nav Data

(Service environment with QoS agents
deployed across multiple computing

resources)

Node 1

DB

Database
Access

Services

Node 2 Node n-2 Node n-1

QoS Agent
QoS Agent QoS Agent

QoS Agent

RT-DDS Middleware-based Data Distribution + diffserv on all nodesRT-DDS Middleware-based Data Distribution + diffserv on all nodes

Node n

Figure 1 – Navy Weapons Alignment Application

align the weapons according to the latest location of the
ship. The data is also processed along the chain. For
example, the Nav Data Interchanges component receives
the raw data and processes it so that the Process Nav Data
component can use it.

Presently, this type of application uses point-to-point
communication to send the data along the chain. This is
very inflexible when new components are inserted. For
example, if more than one weapon subsystem requires the
navigation data (i.e. missiles and torpedoes), there would
need to be point-to-point communication from the Process
Nav Data component to each of the Background
Processing components. Using a decoupled data
distribution mechanism, depicted in Figure 1 as RT-DDS,
allows for more flexibility in terms of where the data is
sent. The data distribution mechanism would allow
components to specify the data that they can provide, and
the data that they require, and the delivery of the data
would be handled by the data distribution.

The application as depicted in Figure 1 is static in the
sense that all of the components have well-known and
stable parameters, such as execution time, period and
deadline. Also, the number of components in the system
remains the same. That is, it is known a priori how many,
and which weapons subsystems will require the navigation
data, and when.

1.2 Problem Space

To define the problem that the work in this paper
addresses, we refer to a Real-Time Data Distribution
Problem Space Taxonomy [1]. Table 1 shows the specific
problem in the space that our work addresses. The Navy
weapons alignment application is an example of a problem
in this space. For more details on the problem space
characteristics, see [1].

2 Related Work

Real-time data distribution has recently emerged as an
important area of research. There was a workshop
dedicated to the topic (The First Workshop on Data
Distribution for Real-Time Systems [3]) in May of 2003.
There is also an effort in the Object Management Group
(OMG) to standardize data distribution in a middleware

service [4]. In [5], the problem of scheduling the
broadcast of real-time data is considered. It provides an
approximate version of the Longest Wait First heuristic
that reduces overhead. Similar work [6] describes a
Broadcast on Demand technique that schedules the
broadcast using earliest deadline first, periodic or hybrid
scheduling algorithms. The work described in [7] is a
speculative data dissemination service that uses
geographic and temporal locality of reference to determine
which data to be disseminated. These techniques take into
account the deadline timing constraints of the clients, but
do not consider the data temporal consistency.

An application area that has provided various research
efforts towards data distribution is embedded sensor
networks [8,9,10,11,12]. While all of the work described
here provides valuable insights into solving the problem of
data distribution in sensor networks, none considers real-
time characteristics of the data or of the applications. That
is, neither deadlines on data delivery nor temporal
consistency of the data is supported.

A large amount of real-time data distribution research
has been done at the University of Virginia (UVa) in the
context of wireless sensor networks [13,14,15,16,]. This
work does address the deadlines of requests. Also,
temporal validity is considered in the sense that data
values are reported before they expire, but with
corresponding confidence values. However, it does not
provide assurance that the data is temporally valid when it
arrives at the requestor.

There are several commercial products that provide data
distribution solutions – most of which are working on
becoming compliant with the OMG’s Data Distribution
Service specification [4]. Real-Time Innovations [18] has
a product called NDDS that provides a publish-subscribe
architecture for time-critical delivery of data. Thales
Naval Nederland [19] has a product called SPLICE [20]
that provides a data-centric architecture for mission-
critical applications. SPLICE agents act as information
brokers to decouple the real-time delivery of data. Both of
these products provide valuable real-time features in data
distribution, but neither guarantees data temporal
consistency or deadlines.

3 Real-Time Data Distribution Model

In this section we describe the model on which our work
is based. Figure 2 depicts the elements of the model. The
DataObject represents the data that is being distributed.
OID is a unique identifier of the data object within the
system. Value is the value of the data object. This can be
a simple atomic value, or a structured value depending
upon the granularity of the data. For example, in the Navy
weapon alignment application, the data delivered to the
weapons subsystem is a complex weapon object. TS is the
time (timestamp) at which the object was last updated. OV

System Characteristics

small and medium scale
static applications
static infrastructure
unconstrained resources
hard real-time
periodic request timing

Data Characteristics

temporally constrained data
homogenous data model
asynchronous data production
precise data
fine or course grained data;
single source for each data item

Table 1 - Problem Space for this Work

System Characteristics

small and medium scale
static applications
static infrastructure
unconstrained resources
hard real-time
periodic request timing

Data Characteristics

temporally constrained data
homogenous data model
asynchronous data production
precise data
fine or course grained data;
single source for each data item

Table 1 - Problem Space for this Work

System Characteristics

small and medium scale
static applications
static infrastructure
unconstrained resources
hard real-time
periodic request timing

Data Characteristics

temporally constrained data
homogenous data model
asynchronous data production
precise data
fine or course grained data;
single source for each data item

Table 1 - Problem Space for this Work

is the object validity, a time interval within which the data
object is considered to be valid after its update. When the
OV expires, the data is considered temporally invalid.

The Source is the entity that produces the data that is to
be distributed. SID is a unique identifier for the source.
The Target is the entity that requests that data be sent to it.
TID is a unique identifier for a target. Node is the
computing element on which the source/target executes.
SP is a set of scheduling parameters. P is the period of the
task. Recall that our solution addresses the problem space
of periodic data distribution. D is a deadline within the
period. R is the release time within the period after which
the task may start to execute. E is the worst-case
execution time of the task. Note that the source and the
target may have different scheduling parameters.

Dist is a distribution of data from a Source to a Target.
A distribution has its own unique identifier DID. It also
has its own scheduling parameters that can be determined
by the data distribution algorithm described in Section 4.
These algorithms consider the scheduling parameters of
the Source, the scheduling parameters of the Target, and
the data object validity interval to determine the
scheduling parameters of the distribution.

4 Just-in-Time Data Distribution
Algorithm

This section describes the Just In Time Data
Distribution (JITDD) algorithm. The main goal of this
algorithm is to examine the specified system, and compute
the scheduling parameters for the required data
distributions. The algorithm considers the periods of the
sources and the periods and deadlines of the targets to
determine a deadline for the distribution that will ensure
that all targets receive their requested data within the
specified deadlines, and that all targets read temporally
valid data.

4.1 Assumptions

This JITDD algorithm provides a solution to the problem
space described in Section 1. Therefore, the following
assumptions are made about the environment in which the
algorithm works:
1) The system is static. All nodes, data objects, and

scheduling parameters are known a priori.
2) For each object there is one source.
3) Each object has a local node, where it originates.

4) The period of an object’s source is always less than
the temporal validity of the object that it supplies.

4.2 Deadline Computation

In order for targets to receive valid data, the scheduling
parameters of the data distribution must be such that the
distribution will finish delivering the data before the target
uses it. Further, there can be more than one target that
requires the delivery of the same data object, possibly at
different rates, with different deadlines. For example, in
the Navy weapon alignment application, each weapon
system may require alignment data at different times
because different weapons require varying amounts of time
to be realigned. Thus, the computation of the scheduling
parameters for the distribution should be able to consider
the deadlines of all targets that require the data. We have
proven in previous work [2] that the period of the
distribution must be the same as the period of the source of
the data. The release time of the distribution should be at
the start of its period. Thus, the crucial computation that
must be done is that of the deadline of the distribution
within its period.

Let d be the deadline that is computed for a distribution
Dist from source S to a set of m targets T1,…,Tm for a
request of data object OID. The period of S (and therefore
of Dist) is p. Let N be the least common multiple of the
periods of all targets of OID and the period of the source.
Let n be the number of periods that should be considered
for the analysis, where n is computed as

n = N/p
We call N the superperiod of the distribution because it

represents a complete cycle of all targets for the data. We
define OVi to be the point in time in the i th period of the
distribution that the object (from the most recent update)
becomes temporally invalid. An invalid interval is an
interval of time during which the object does not have a
valid value associated with it, that is, the object is
temporarily inconsistent. Figure 3 depicts an invalid
interval. OVi is the time within period Pi that the data that
was updated during period Pi-1 becomes invalid. The d in
the figure represents the deadline of the distribution within
its period. The invalid interval is the time between OVi
and this deadline because after the deadline, a new value
of the data will have been delivered.

In the algorithm when computing the deadline of the
distribution, initially we set it to be equal to its period

 DataObject = < OID, Value, TS, OV >
Source = <SID, Node, OID, SP>
Target = <TID, Node, OID, SP>
Dist = <DID, OID, SID, TID, SP>
SP = <P, D, R, E>

Figure 2 - Real-Time Data Distribution Model

d d

Pi-1 Pi OVi Xi
Pi+1

Invalid interval{

d d

Pi-1 Pi OVi Xi
Pi+1

Invalid interval{

Figure 3 – Deadline Computation

(d=p). For each of the n periods in the superperiod, the
key to computing the deadline of the distribution is to
determine if any of the targets will be executing in the
invalid interval. If so, it is possible that it could use
invalid data. For each target, there is a window, called the
data access window, within its period when it could access
the data. The data access window falls between the release
time of the target and its deadline. There are three cases to
consider when calculating the deadline:
1. If no target’s data access window overlaps with the

invalid interval, the deadline is unchanged because no
targets will be using invalid data.

2. If some target’s data access window begins at time xi,
after OVi, i.e. OVi < xi < Pi +d, then the deadline is
changed to xi-Pi. The target must complete before this
data access window begins.

3. If any target’s data access window has started before
or at OVi and continues to execute in the invalid interval,
then the deadline is changed to OVi - Pi. This deadline
assignment ensures that the target completes its data
access before the data becomes invalid, and thus the
target will use valid data.
Note that if the deadline is changed to OVi - Pi at any

point, the computation of deadline is complete, as we have
reached the minimum possible deadline. Otherwise we
consider these three cases for each of the n target periods
in the superperiod. It can also be noted that a simple way
to compute this deadline would be to always use OVi - Pi.
This would provide the required temporal validity, but it
could be an overly pessimistic choice, and might cause the
system to be nonschedulable. Because in our current
implementation this algorithm is computed off-line, the
extra work that is required to compute the more flexible
deadline is acceptable.

In [2] we proved that the JITDD algorithm always
provides valid data to requesting targets. We also proved
that the JITDD algorithm is necessary and sufficient for
computing the distribution deadline.

5 Implementation and Evaluation

The implementation of our real-time data distribution is
made up of two parts: an off-line analysis and an on-line
event-based delivery of data. In this section we describe
these two parts of the implementation, as well as a series
of tests that we have performed to demonstrate that the
implementation correctly represents the theory behind the
JITDD algorithm.

5.1 Off-line Analysis

Figure 4 depicts the process that is followed in the off-
line analysis of our implementation. The implementation
begins with a specification of the system, in the format of
our model described in Section 3. An ASCII file
containing descriptions of all of the sources, targets, data
and nodes is created and stored. The C++ implementation
of the JITDD algorithm reads in the system specification
and computes the scheduling parameters for each of the
data distributions required. The output of the JITDD
algorithm is another ASCII file containing the system
specification augmented with the computed distribution
scheduling parameters.

The augmented system specification is fed into a real-
time analysis tool to determine if the system is
schedulable. We are currently using the RapidRMA tool
by TriPacific Corporation [21]. This requires manually
translating the specification into the visual model required
by RapidRMA. In ongoing work we are developing tool
support to ease this manual translation work (see Section
6). RapidRMA performs a schedulability analysis on the
specified model using deadline monotonic, end-to-end
analysis [22]. If the system is found to be non-
schedulable, then the system specification must be
reworked, perhaps adding more nodes or more powerful
nodes to the system. Once the system is deemed
schedulable, RapidRMA produces a configuration file that
provides scheduling priorities for each of the tasks in the
system. This configuration file is used in the on-line
implementation described next.

5.2 On-line Implementation

The runtime component of our implementation executes
the model specified in the off-line component described
above. The implementation is programmed in C++ and
runs on Linux Kernel 2.4.21, with TAO v1.3.5 CORBA
software [23] to provide real-time middleware support.
The implementation also uses two of TAO’s common
object services: the Real-Time Event Service (RTES)
[24], and the Real-Time Static Scheduling Service

Supplier

Consumer
1

PC

Consumer
3

Consumer
2

RT Event

Service

Real -Time

Static

Scheduling

Service

Configuration
File

PS 2PS 1 PS 3

Source

Dest 1 Dest 3Dest 2

Supplier

Consumer
1

PC

Consumer
3

Consumer
2

RT Event

Service

Real -Time

Static

Scheduling

Service

Configuration
File

PS 2PS 1 PS 3PS 2PS 1 PS 3

Source

Target1 Target3Target2

Figure 5 – Runtime Implementation

Supplier

Consumer
1

PC

Consumer
3

Consumer
2

RT Event

Service

Real -Time

Static

Scheduling

Service

Configuration
File

PS 2PS 1 PS 3PS 2PS 1 PS 3

Source

Dest 1 Dest 3Dest 2

Supplier

Consumer
1

PC

Consumer
3

Consumer
2

RT Event

Service

Real -Time

Static

Scheduling

Service

Configuration
File

PS 2PS 1 PS 3PS 2PS 1 PS 3

Source

Target1 Target3Target2

Figure 5 – Runtime Implementation

PS 2PS 1 PS 3PS 2PS 1 PS 3

Source

Target1 Target3Target2

PS 2PS 1 PS 3PS 2PS 1 PS 3

Source

Target1 Target3Target2

PS 2PS 1 PS 3PS 2PS 1 PS 3

Source

Target1 Target3Target2

Figure 5 – Runtime Implementation

 System
Specif ication

System
Spec w ith
Sched
Param s

Con figu ration
F ile

JITDD
A lgorithm

Rea l-T im e
Ana lys is

Figure 4 – Off-line Analysis Process

(RTSSS) [25]. The RTES is used as a mechanism for
distributing data asynchronously, and the RTSSS provides
priority-based scheduling to ensure that deadlines are met.
Figure 5 illustrates the implementation using these two
services.

Event-based Data Distribution. TAO’s RTES
provides asynchronous, decoupled communication
between sources and targets of data. The RTES uses a
supplier/consumer model to deliver events. The supplier
sends data from a specific source to the RTES, and the
consumer receives data from the RTES. In our
implementation, we create a supplier to distribute data that
is produced at each source, and we create a consumer to
receive data for each target.

The RTES provides an interface for a supplier to register
events (data) that it will supply. It also provides an
interface for a consumer to register for events that it would
like to receive. The RTES matches these requests with the
supplied events, and sends the event data to consumers
when they are supplied by the suppliers. As shown in
Figure 5, in our implementation the RTES periodically
receives event data from the supplier. The RTES Proxy
Consumer (PC) receives the event data, and then
iteratively passes it along to the Proxy Suppliers (PS) for
each consumer that has registered to receive this event.
The Proxy Suppliers finally deliver the event data to the
corresponding consumers, which make the data available
for the targets to use. From our formal model of Section 3,
a data Dist is represented by the delivery of event data
from the supplier to each consumer.

Scheduling Real-Time Data Distribution. In previous
work, we developed the RTSSS that is in the TAO code
base [25]. It is implemented as a set of library code that is
compiled into the programs that use it. The library code
creates a mapping of task to priority, using the information
in the configuration file produced by the RapidRMA tool.
When the system starts up, each of the executing entities
(sources, suppliers, consumers, targets, RTES) begins by
requesting a priority from the RTSSS. The RTSSS looks
the priorities up in the task/priority mapping table, and sets
the priorities accordingly. Each of these tasks then
executes at its specified priority. Thus, the deadline
computation that is performed in the off-line analysis has
provided the deadline for the consumers to deliver to the
targets.

5.3 Test Cases

In order to demonstrate the effectiveness of our
implementation, we have developed several test scenarios.
In each of these scenarios, the main metrics for success are
temporal consistency of delivered data, and deadline of
data delivery. That is, we tested to make sure that our
claim of ensuring temporal validity and deadline of the
distribution holds in our implementation.

The first three of the test scenarios examined the system
under “normal” conditions, under network-constrained
conditions, and under workload-constrained conditions. In
the fourth set of tests, we emulated the Navy weapon
alignment application described in Section 1.1. We have
developed a system model based on the real application
context. Below we describe the various test cases, how
they were modeled and implemented, and the results of the
tests that we performed.

Test Scenarios. We have tested four scenarios, each of
which is described here. In each scenario, we have used
two nodes, with executing entities distributed across these
nodes. Recall that in each case, the system is modeled and
analyzed up front, so we have chosen systems that are
schedulable, but in some cases, may be close to being non-
schedulable. Figure 6 illustrates the system layout for the
first three test scenarios. Below we describe the specific
parameters for these scenarios. For each of the first three
test scenarios, we ran the system over 100 periods of the
data source and collected deadline and temporal
consistency data. We ran each test 10 times and graphed
the maximum completion time/data age values over these
10 tests.

Scenario 1 – Normal Conditions: On node 1 in Figure
6, there are two data sources, two suppliers and an event
channel for each supplier. Node 2 has the consumers and
the targets that will use the data. Table 2 gives the specific
parameters for each of these entities. The table has two
rows for the event channel (EC1 and EC2). Each of these
represents the distribution from one of the data sources to
the set of targets that have requested the data.
Additionally, we specified a network delay of 150 � sec for
each transmission between node 1 and node 2. The object
validity for Data Source 1 is 150,000 � sec, and for Data
Source 2 is 140,000 � sec. Note that in Table 2, the

 Node 1

D ata Sourse1 D ata Sourse2

Supplier1 Supplier2

EC

Node 2
Consum er1.3Consumer1.2Consumer1.1

Consum er2.4Consum er2.3Consum er2.2Consum er2.1

Destination1.3Destination1.2Destination1.1

D estination2.4D estination2.3D estination2.2Destination2.1

Node 1

D ata Source1 D ata Source2

Supplier1 Supplier2

EC1

Node 2
Consum er1.3Consumer1.2Consumer1.1

Consum er2.4Consum er2.3Consum er2.2Consum er2.1

Destination1.3Destination1.2Destination1.1

D estination2.4D estination2.3D estination2.2Destination2.1

EC2

Node 1

D ata Sourse1 D ata Sourse2

Supplier1 Supplier2

EC

Node 2
Consum er1.3Consumer1.2Consumer1.1

Consum er2.4Consum er2.3Consum er2.2Consum er2.1

Destination1.3Destination1.2Destination1.1

D estination2.4D estination2.3D estination2.2Destination2.1

Node 1

D ata Source1 D ata Source2

Supplier1 Supplier2

EC1

Node 2
Consum er1.3Consumer1.2Consumer1.1

Consum er2.4Consum er2.3Consum er2.2Consum er2.1

Target1.3Target1.2Target1.1

Target2.4Target2.3Target2.2Target2.1

EC2

Figure 6 – Test Scenario Set Up

deadline listed for each consumer represents the computed
deadline for the distribution for the associated data source.
These consumer deadlines were computed using the
JITDD algorithm, synthesizing the deadlines for each
target that requested data from the data source. The entire
system model was analyzed in RapidRMA, and found to
be schedulable.

Figures 8 and 9 display the deadline results for this
scenario, one figure for each of the data sources. The
horizontal line in each graph indicates the deadline for the
distribution of the particular data source. The other points
in the scatter graph represent the completion times of the
data distributions over the 100 periods. As the figure
indicates, except for a few statistical anomalies in the first
few periods, all of the data distributions complete before
the specified deadline, as the theoretical results had
predicted. In the first few periods, there was set up
execution that caused the tasks to complete after the
deadline.

Figures 10 and 11 show the temporal consistency results
for scenario 1. The horizontal line in each graph
represents the object validity of the data object being
distributed. The other points represent the ages of the data
objects at the time they were read by the targets. It is clear
to see that all of the targets, in each of the periods, read
temporally consistent data.

Scenario 2 – Workload Constrained: This scenario is
almost identical to Scenario 1, except that extra workload
was inserted onto Node 2. This workload increased the
utilization on that node from 16.53% to 72.15%. While
the extra workload on Node 2 caused the system to be
more constrained, it was still schedulable. We chose to
perform this test to show that under tight workload
conditions, when the system is found to be schedulable,
our implementation meets all deadlines and temporal
consistency constraints. Test results indicate this to be the
case. The graphs for this scenario look very similar to
those for scenario 1. Due to space limitations, we do not
show these results here.

Scenario 3 – Network Constrained: Scenario 3, is also
similar to Scenario 1, except that we assumed that the
network was more constrained. That is, we assumed a
network delay of 560 � sec. This increased the utilization
of the network from 12% to 44.8%. Our intent with this
scenario was to show that our implementation still
maintains the temporal consistency of both the data and of
the execution (deadlines). Test results for this scenario
also look very much like Figures 8-11, so we do not show
them here.

Scenario 4 – Navy Weapon Alignment Application: We
have developed a simulation of the Navy weapon
alignment system to demonstrate how our algorithm and
implementation work with a real application. Figure 7
illustrates how we have implemented the system. We use
two nodes, with the shared navigational components and
the event channel on Node 1 and the specific weapons
components on Node 2. In this implementation we have
implemented two different weapons systems, each with its
own final deadline. Table 3 shows the parameters that we
used to simulate this application. The object validity of
the navigation data being distributed is 800,000 � sec. The
values in the table are representative of the numbers for
the real application.

The JITDD algorithm was applied to determine the
deadline for the delivery of the navigational data to each
weapon subsystem. Because the original data flows from
the same source, there must be a single deadline placed on
the receipt of the data at the Process Nav Data component.
This deadline was computed by taking the shorter of the
two computed deadlines for the Weapon Subsystems.

For scenario 4, we have run the system over 100 periods
of the Nav Subsystem component, 10 times. We graphed
the maximum values for the completion times of the two
Weapon Subsystems, and for the object validity of the data
arriving at the two Weapon Subsystems components.
Figures 20 and 21 show the results of these tests. The

Name Period, � sec
Release, � sec Deadline, � sec

Exec time, � sec
DataSource1 100000 0 10000 1500
DataSource2 80000 0 10000 2000
Target1.1 100000 80000 30000 1500
Target1.2 200000 180000 40000 1500
Target1.3 300000 280000 50000 1500
Target2.1 100000 80000 40000 2000
Target2.2 120000 130000 50000 2000
Target2.3 180000 130000 100000 2000
Target2.4 200000 160000 80000 2000
Supplier1 100000 10000 70000 1000
Supplier2 80000 10000 60000 1000
EC1 100000 10000 70000 400
EC2 80000 10000 60000 400
Consumer1.* 100000 10000 70000 1000
Consumer2.** 80000 10000 60000 1000
* All consumers of DataSource1 (** and of DataSource2) have the same parameters

Table 2 – Test Scenario Parameters

Name Period, � sec
Release, � sec Deadline, � sec

Exec time, � sec
DataSource1 100000 0 10000 1500
DataSource2 80000 0 10000 2000
Target1.1 100000 80000 30000 1500
Target1.2 200000 180000 40000 1500
Target1.3 300000 280000 50000 1500
Target2.1 100000 80000 40000 2000
Target2.2 120000

Name Period, � sec
Release, � sec Deadline, � sec

Exec time, � sec
DataSource1 100000 0 10000 1500
DataSource2 80000 0 10000 2000
Target1.1 100000 80000 30000 1500
Target1.2 200000 180000 40000 1500
Target1.3 300000 280000 50000 1500
Target2.1 100000 80000 40000 2000
Target2.2 120000 130000 50000 2000
Target2.3 180000 130000 100000 2000
Target2.4 200000 160000 80000 2000
Supplier1 100000 10000 70000 1000
Supplier2 80000 10000 60000 1000
EC1 100000 10000 70000 400
EC2 80000 10000 60000 400
Consumer1.* 100000 10000 70000 1000

130000 50000 2000
Target2.3 180000 130000 100000 2000
Target2.4 200000 160000 80000 2000
Supplier1 100000 10000 70000 1000
Supplier2 80000 10000 60000 1000
EC1 100000 10000 70000 400
EC2 80000 10000 60000 400
Consumer1.* 100000 10000 70000 1000
Consumer2.** 80000 10000 60000 1000
* All consumers of DataSource1 (** and of DataSource2) have the same parameters

Table 2 – Test Scenario Parameters

 Navigation
Subsystem

Nav Data
Interchanges

Process
Nav Data

EC

Missiles Background
Processing1

Missiles Background
Processing2

Weapon Data
Conversion1

Weapon Interchanges1

Weapon Subsystem1
Weapon Data
Conversion2

Weapon Interchanges2

Weapon Subsystem2

Figure 7 – Navy Weapon Alignment Application
Simulation

figures indicate that the deadlines are met each time, and
the temporal validity of the data is preserved as well.

6 Conclusions and Future Work

This paper has presented a model for real-time data
distribution, and an algorithm that determines distribution
deadlines such that all data that arrives at specified targets
is temporally valid. The paper also describes an
implementation that provides the data distribution and
enforces the temporal constraints specified by the
algorithm. The results of a set of tests indicates that our
implementation upholds the theoretical expectations that
data be temporally consistent when received, and that
deadlines will be made.

As described in Section 1.2, the work in this paper
solves a relatively simple problem in the overall real-time
data distribution problem space. This work will serve as a
foundation for future work in more complex areas in the
problem space. For example, in order to support a more
dynamic application, our implementation could be
extended to provide scenario-based dynamics. This would
be a relatively simple change to the current model and
implementation. It would require that various scenarios
are known and modeled a priori. Then, when the
application changes from one known scenario to another,
for example, adding another weapons system to the
weapon alignment application, the system would be
rescheduled based on the previously analyzed model. The
system would still be guaranteed to be schedulable, and
the data consistency would be guaranteed as well.

A more dynamic application in which data requests or
data sources enter with parameters that are not known a
priori, presents a more complex problem. In this case, our
implementation would require that the computation of

distribution deadline be computed online. We would most
likely have to rely on a quicker calculation, resulting in a
possibly more pessimistic deadline.

We are aware that other middleware solutions to real-
time data distribution are emerging in standards bodies.
We are closely following the OMG’s development of the
Data Distribution Service. It is our intent to eventually
work with a mature implementation of this service to
provide the scheduling and data temporal consistency
support that we have provided in our current Event
Service-based implementation.

As mentioned in Section 5.1, the current off-line
implementation involves specifying the system in a
somewhat ad hoc way, and then creating a model in
RapidRMA to do the analysis. We are currently working
on developing tool support for automating the entire up-
front modeling and analysis phase of the implementation.
We are examining model-integrating computing tools like
GME [26] that will allow us to model the system once, and
then insert our own code to perform the JITDD algorithm
as well as the real-time analysis.

7 References.
[1] A. Uvarov, V. Fay-Wolfe, Towards a Definition of the

Real-Time Data Distribution Problem Space, Proceedings of the
First International Workshop on Data Distribution for Real-
Time Systems (at ICDCS’03), May 2003.

[2] P. Peddi and L. DiPippo, A Replication Strategy for
Distributed Real-Time Object-Oriented Databases, Proceedings
of The 5th IEEE International Symposium on Object-oriented
Real-time distributed Computing, Washington, D.C., April 2002.

[3] First International Workshop on Data Distribution for
Real-Time Systems, In conjunction with International
Conference on Distributed Computing Systems, May 2003.

[4] OMG, Data Distribution Service for Real-Time Systems
Specification, OMG document ptc/03-07-07.

[5] M. Karakaya, O. Ulusoy, Evaluation of a Broadcast
Scheduling Algorithm, Lecture Notes in Computer Science,
Springer-Verlag, v. 2151, 2001.

[6] P. Xuan, S. Sen, O. Gonzalez, J. Fernandez, K.
Ramamritham, Broadcast on Demand: Efficient and Timely
Dissemination of Data in Mobile Environments, Proceedings of
the Fourth IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’97), 1997.

[7] A. Bestavros, Speculative Data Dissemination and Service
to Reduce Server Load, Network Traffic and Service Time in
Distributed Information Systems, Proceedings of the 1996
International Conference on Data Engineering, New Orleans,
LA, March 1996.

[8] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, D.
Estrin, Data-Centric Storage in Sensornets, First Workshop on
Hot Topics in Networks (HotNets-I) 2002.

[9] F. Ye, H. Luo, J. Cheng, S. Lu, L. Zhang, A Two-Tier Data
Dissemination Model for Large-Scale Wireless Sensor
Networks, MOBICOM’02, September 23-28, 2002, Atlanta, GA.

[10] Y. Yao, J. Gehrke, Query Processing for Sensor
Networks, Proceedings of the 2003 Conference on Innovative
Data Systems Research, Jan. 2003.

Name
Period, � sec

Release, � sec
Deadline, � sec

Exec
time, � sec

NavigationSubsystem 500,000 0 300,000 100,000
NavDataInterchanges 500,000 300,000 350,000 5,000
EC1 500,000 300,000 350,000 400
ProcessNavData 500,000 300,000 350,000 5,000
EC2 500,000 300,000 350,000 400
WeaponBackground
Processing1

500,000 300,000 350,000 5,000

EC3_1 500,000 300,000 350,000 400
WeaponData
Conversion1

500,000 300,000 350,000 5,000

EC4_1 500,000 300,000 350,000 400
WeaponInterchanges1 500,000 300,000 350,000 5,000
MissilesBackground
Processing2

500,000 300,000 450,000 5,000

EC3_2 500,000 300,000 450,000 400
WeaponData
Conversion2

500,000 300,000 450,000 5,000

EC4_2 500,000 300,000 450,000 400
WeaponInterchanges2 500,000 300,000 450,000 1,000
WeaponSubsystems1 500,000 650,000 150,000 10,000
WeaponSubsystems2 1,000,000 750,000 300,000 10,000

Table 3 – Navy Weapon Alignment Application
Simulation Parameters

Name
Period, � sec

Release, � sec
Deadline, � sec

Exec
time, � sec

NavigationSubsystem 500,000 0 300,000 100,000
NavDataInterchanges 500,000 300,000 350,000 5,000
EC1 500,000 300,000 350,000 400
ProcessNavData 500,000 300,000 350,000 5,000
EC2 500,000 300,000 350,000 400
WeaponBackground
Processing1

500,000 300,000 350,000 5,000

Name
Period, � sec

Release, � sec
Deadline, � sec

Exec
time, � sec

NavigationSubsystem 500,000 0 300,000 100,000
NavDataInterchanges 500,000 300,000 350,000 5,000
EC1 500,000 300,000 350,000 400
ProcessNavData 500,000 300,000 350,000 5,000
EC2 500,000 300,000 350,000 400
WeaponBackground
Processing1

500,000 300,000 350,000 5,000

EC3_1 500,000 300,000 350,000 400
WeaponData
Conversion1

500,000 300,000 350,000 5,000

EC4_1 500,000 300,000 350,000 400
WeaponInterchanges1 500,000 300,000 350,000 5,000
MissilesBackground
Processing2

500,000 300,000 450,000 5,000

EC3_2 500,000 300,000 450,000 400
WeaponData
Conversion2

500,000 300,000 450,000 5,000

EC4_2 500,000

EC3_1 500,000 300,000 350,000 400
WeaponData
Conversion1

500,000 300,000 350,000 5,000

EC4_1 500,000 300,000 350,000 400
WeaponInterchanges1 500,000 300,000 350,000 5,000
MissilesBackground
Processing2

500,000 300,000 450,000 5,000

EC3_2 500,000 300,000 450,000 400
WeaponData
Conversion2

500,000 300,000 450,000 5,000

EC4_2 500,000 300,000 450,000 400
WeaponInterchanges2 500,000 300,000 450,000 1,000
WeaponSubsystems1 500,000 650,000 150,000 10,000
WeaponSubsystems2 1,000,000 750,000 300,000 10,000

Table 3 – Navy Weapon Alignment Application
Simulation Parameters

[11] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor
database systems. In Proceedings of the Second International
Conference on Mobile Data Management, 2001.

[12] W. Heinzelman, A. Chandrakasan and H. Balakrishnan,
Energy-Efficient Communication Protocol for Wireless
Microsensor Networks, In HICSS '00, January 2000.

[13] B. C. Lu, B. M. Blum, T. Abdelzaher, J. A. Stankovic, T.
He, RAP: A Real-Time Communication Architecture for Large-
Scale Wireless Networks, Proceedings of the Eighth IEEE Real-
Time and Embedded Technology and Applications Symposium
(RTAS’02), 2002.

 [14] T. Abdelzaher, J. Stankovic, S. Son, B. Blum, T. He, A.
Wood, C. Lu, A Communication Architecture and Programming
Abstractions for Real-Time Embedded Sensor Networks,
Proceedings of the First International Workshop on Data
Distribution for Real-Time Systems, Providence, RI, May 2003.

[15] S. Kim, S. H. Son, J. A. Stankovic, S. Li, Y. Choi, SAFE:
A Data Dissemination Protocol for Periodic Updates in Sensor
Networks, Proceedings of the First International Workshop on
Data Distribution for Real-Time Systems, Providence, RI, May
2003.

 [16] S. Bhattacharya, H. Kim, S. Prabh, T. Abdelzaher,
Energy-Conserving Data Placement and Asynchronous Multicast
in Wireless Sensor Networks, Proceedings of the First
International Conference on Mobile Systems, Applications and
Services, San Francisco, CA, May 2003.

[17] S. Li, S. H. Son, J. A. Stankovic, Event Detection
Services Using Data Service Middleware in Distributed Sensor
Networks, Proceedings of the International Workshop on
Information Processing in Sensor Networks (IPSN’03), April
2003, Palo Alto, CA.

[18] Real-Time Innovations, www.rti.com.
[19] Thales Netherland, www.thales-nederland.nl/.
[20] J. H. van 't Hag Data-Centric to the Max - The SPLICE

Architecture Experience, Proceedings of the 23rd International
Conference on Distributed Computing Systems Workshops
(ICDCSW'03), May 19 - 22, 2003.

[21] TriPacific Software, Inc. www.tripac.com.
[22] J. Liu, Real-Time Systems, Prentice-Hall, June 2000.
[23] TAO, http://www.cs.wustl.edu/~schmidt/TAO.html
[24] Timothy H. Harrison, David L. Levine, and Douglas C.

Schmidt, The Design and Performance of a Real-time CORBA
Event Service, in Proceedings of OOPSLA '97, Atlanta, GA,
October 1997, ACM.

[25] M. Murphy, K. Bryan, Corba 1.0 Compliant Static
Scheduling Service for Periodic Tasks Technical
Documentation, URI Technical Report TR04-297, Jan. 2004.

[26] A Ledeczi, M Maroti, A Bakay, G Karsai, J Garrett, C
Thomason IV, G Nordstrom, J Sprinkle, P Volgyesi: The
Generic Modeling Environment, Workshop on Intelligent Signal
Processing, Budapest, Hungary, May 17, 2001.

