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Abstract
This paper describes the design and implementaifoa
static real-time data distribution mechanism thaes a
real-time event service and a real-time schedu$ieryice
to ensure the on-time, and temporally valid delvef
data. The mechanism implements an algorithm, dadhe
Just-In-Time Data Distribution algorithm to determei
scheduling parameters that will ensure that datatth
arrives at a requesting target is valid. The papees a
Navy weapons alignment application to demonstrage t
necessity and usefulness of the
implementation. The paper also presents resultests
that demonstrate that our implementation fulfillset
guarantees predicted by the theoretical results.
Keywords: real-time, data distribution, real-time events,
data temporal consistency

1 Introduction

In many distributed embedded
applications, like military command and controlmé-

real-time (DRE)

Navigation

solution where suppliers of data do not communicate
directly with consumers of data is more efficiemda
flexible. Such a solution would allow the supmdief data

to produce the data at a rate that is consistehtthwe data
production, and would allow consumers of the data t
receive the data at a rate that consistent witm#esls of
the application. The challenge in this type ofiioh is to
synthesize the provisions of the suppliers withrteeds of
the consumers so that data arrives at each consoimer
time, and temporally valid.

algorithm and This paper presents a solution to the data didtobu

problem in static real-time systems. The solutiarudes
an algorithm that determines scheduling parameters
ensure that data that is delivered will be validewfit is
used and an implementation using a real-time es&mwice
to deliver the data, and a real-time schedulingiserto
ensure that data is delivered on time.
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critical planning collaboration, and wireless emtbed
sensor networks, data produced in one componetiieof
system needs to be shared with other componentseof
system. Such applications may have stringent dessdby
which the data must be delivered in order to predesn
time to make critical decisions. Further, the déuat is
distributed must be valid when it arrives at itg&. That
is, if the data is too old when it is delivered,ciuld
produce invalid results when used in computations.
simple solution would be to provide point-to-poiot
client-server communication to deliver data wittme
real-time system.

However, this communication canll
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Figure 1 — Navy Weapons Alignment Application

Navy-Weapons Alignment Application

become extremely complex when multiple components Tq jjlustrate the utility of our static real-timeath

require the same data at differing rates. Furtbeenthe
communication infrastructure is inflexible. A degqded

* This work is partially supported by the U.S. OffizieNavall
Research grant NO0014-03-C-0080.

distribution solution we use a Navy weapons aligmme
system, depicted in Figure 1. In this system, @ode
navigation subsystems produces navigation data.s Th
data must be distributed along a chain of compansat
that it can eventually be used by the weapon stdasigsto



align the weapons according to the latest locatibthe
ship. The data is also processed along the ch&or
example, theNav Data Interchangesomponent receives
the raw data and processes it so thaPtleeess Nav Data
component can use it.

Presently, this type of application uses point-oinp
communication to send the data along the chainis iEh
very inflexible when new components are insertdebr
example, if more than one weapon subsystem reqthiees
navigation data (i.e. missiles and torpedoes),etivesuld
need to be point-to-point communication from Brecess
Nav Data component to each of thd&ackground
Processing components.
distribution mechanism, depicted in Figure 1 asBOS,
allows for more flexibility in terms of where theatd is
sent.
components to specify the data that they can pep\add
the data that they require, and the delivery of dla¢a
would be handled by the data distribution.

The application as depicted in Figure 1 is statidhie
sense that all of the components have well-knowd an
stable parameters, such as execution time, perimtd a
deadline. Also, the number of components in thetesy
remains the same. That is, it is known a priokvmoany,
and which weapons subsystems will require the @aig
data, and when.

System Characteristics Data Characteristics

small and medium scale
static applications

static infrastructure
unconstrained resources
hard real-time

periodic request timing

temporally constrained data
homogenous data model
asynchronous data production
precise data

fine or course grained data
single source for each data item

Table 1 - Problem Space for this Work
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To define the problem that the work in this paper
addresses, we refer to Real-Time Data Distribution
Problem Space Taxonorfil]. Table 1 shows the specific
problem in the space that our work addresses. Nawy
weapons alignment application is an example ofodlpm
in this space. For more details on the problencepa
characteristics, see [1].

2 Reated Work

Real-time data distribution has recently emergedras
important area of research.

Problem Space

service [4]. In [5], the problem of scheduling the
broadcast of real-time data is considered. It joles an
approximate version of the Longest Wait First h&tigi
that reduces overhead. Similar work [6] descrilaes
Broadcast on Demand technique that schedules the
broadcast using earliest deadline first, periodidybrid
scheduling algorithms. The work described in [F]ai
speculative data dissemination service that
geographic and temporal locality of reference tiedsine
which data to be disseminated. These technigkesinéo
account the deadline timing constraints of thentdigbut
do not consider the data temporal consistency.

uses

Using a decoupled data An application area that has provided various netea

efforts towards data distribution is embedded senso
networks [8,9,10,11,12]. While all of the work debed

The data distribution mechanism would allow here provides valuable insights into solving thetpem of

data distribution in sensor networks, none consideal-
time characteristics of the data or of the applicet That

is, neither deadlines on data delivery nor temporal
consistency of the data is supported.

A large amount of real-time data distribution resha
has been done at the University of Virginia (UVa)the
context of wireless sensor networks [13,14,15,16 his
work does address the deadlines of requests. Also,
temporal validity is considered in the sense thatad
values are reported before they expire, but with
corresponding confidence values. However, it doeats
provide assurance that the data is temporally waltien it
arrives at the requestor.

There are several commercial products that prodate
distribution solutions — most of which are workirmg
becoming compliant with the OMG’s Data Distribution
Service specification [4]. Real-Time Innovatiod8] has
a product called NDDS that provides a publish-stibsc
architecture for time-critical delivery of data. hdles
Naval Nederland [19] has a product called SPLICH] [2
that provides a data-centric architecture for roissi
critical applications. SPLICE agents act as infation
brokers to decouple the real-time delivery of d&Bath of
these products provide valuable real-time featimedata
distribution, but neither guarantees data temporal
consistency or deadlines.

Real-Time Data Distribution M odd

In this section we describe the model on whichweoirk
is based. Figure 2 depicts the elements of theeinothe
DataObject represents the data that is being distributed.
OID is a unique identifier of the data object withhet
system. Value is the value of the data object. This can be

3

There was a workshopy simple atomic value, or a structured value dejpend

dedicated to the topic (The First Workshop on Dataypon the granularity of the data. For exampleheNavy

Distribution for Real-Time Systems [3]) in May 00@3.
There is also an effort in the Object Managemerdu@r
(OMG) to standardize data distribution in a middcesv

weapon alignment application, the data deliveredh®
weapons subsystem is a complex weapon objESts the
time (timestamp) at which the object was last updaOV



is the object validity, a time interval within whi¢he data
object is considered to be valid after its updatéhen the
OV expires, the data is considered temporally invalid

DataObject =< OID, Value, TS, OV >
Source = <SID, Node, OID, SP>
Target = <TID, Node, OID, SP>

Dist =<DID, OID, SID, TID, SP>
SP=<P,D, R, E>

Figure 2 - Real-Time Data Distribution Model

The Source is the entity that produces the data that is to
be distributed. SID is a unique identifier for the source.
TheTarget is the entity that requests that data be sent to i

TID is a unique identifier for a target.Node is the

computing element on which the source/target exscut

SP is a set of scheduling parametePsis the period of the
task. Recall that our solution addresses the prolspace
of periodic data distribution.D is a deadline within the

period. R is the release time within the period after which

the task may start to executeE is the worst-case
execution time of the task. Note that the soume the
target may have different scheduling parameters.

Digt is a distribution of data from Source to aTarget.
A distribution has its own unique identifi@I D. It also
has its own scheduling parameters that can berdieted
by the data distribution algorithm described in tec4.

These algorithms consider the scheduling parametirs

the Source, the scheduling parameters of fharget, and
the data object validity interval
scheduling parameters of the distribution.

4  Just-in-Time Data Distribution
Algorithm

This section describes thelust In Time Data

Distribution (JITDD) algorithm. The main goal of this

algorithm is to examine the specified system, aydpute
the scheduling parameters for the
distributions. The algorithm considers the periofishe
sources and the periods and deadlines of the satget
determine a deadline for the distribution that weilisure
that all targets receive their requested data witthie
specified deadlines, and that all targets read teatly
valid data.

4.1 Assumptions

This JITDD algorithm provides a solution to the lplem
space described in Section 1. Therefore, the Vit
assumptions are made about the environment in vthigh
algorithm works:

1) The system is static. All nodes, data objeats]
scheduling parameters are known a priori.

2) For each object there is one source.

3) Each object has a local node, where it origimate

to determine the

required datatemporarily inconsistent.

4) The period of an object’'s source is always kbss
the temporal validity of the object that it supplie

4.2

In order for targets to receive valid data, theesithing
parameters of the data distribution must be suah tthe
distribution will finish delivering the data befotlee target
uses it. Further, there can be more than one ttaingée
requires the delivery of the same data object, iblysat
different rates, with different deadlines. For mde, in
the Navy weapon alignment application, each weapon
system may require alignment data at different sime
because different weapons require varying amottrime
to be realigned. Thus, the computation of the dalireg
parameters for the distribution should be abledosaer
the deadlines of all targets that require the date have
proven in previous work [2] that the period of the
distribution must be the same as the period ofthece of
the data. The release time of the distributiorughbe at
the start of its period. Thus, the crucial compatathat
must be done is that of the deadline of the distigin
within its period.

Let d be the deadline that is computed for a distrilyutio
Dist from sourceS to a set ofm targetsTy,..., T, for a
request of data obje@lID. The period ofs (and therefore
of Dist) is p. LetN be the least common multiple of the
periods of all targets dDID and the period of the source.
Let n be the number of periods that should be considered
for the analysis, wheneis computed as

n=N/p

We callN the superperiodof the distribution because it
represents a complete cycle of all targets fordida. We
define OV; to be the point in time in th&' period of the
distribution that the object (from the most recaptiate)
becomes temporally invalid. An invalid interval &
interval of time during which the object does navé a
valid value associated with it, that is, the objast
Figure 3 depicts an liova
interval. QV, is the time within period; that the data that
was updated during peridel; becomes invalid. The in
the figure represents the deadline of the distidimutvithin
its period. The invalid interval is the time betmeOQV,
and this deadline because after the deadline, avaave
of the data will have been delivered.

Deadline Computation

Invalid interval

i-1 Pi OV|
| | | | |
| 1 ! ! 1

«—d— «—d—

>ii Pi+1
|

Figure 3 — Deadline Computation

In the algorithm when computing the deadline of the
distribution, initially we set it to be equal tcsiperiod



(d=p). For each of the& periods in the superperiod, the
key to computing the deadline of the distributiantd
determine if any of the targets will be executimgthe
invalid interval. If so, it is possible that it @wld use
invalid data. For each target, there is a windoalled the
data access windgwvithin its period when it could access
the data. The data access window falls betweerethase
time of the target and its deadline. There aredluases to
consider when calculating the deadline:

1. If no target’'s data access window overlaps it
invalid interval, the deadline is unchanged because
targets will be using invalid data.

If some target’s data access window beginga Xj,
after QV, i.e. OV, < x; < P; +d, then the deadline is
changed tog-P;. The target must complete before this
data access window begins.

If any target’s data access window has stareddre
or atOV; and continues to execute in the invalid interval,
then the deadline is changed@¥, - P.. This deadline
assignment ensures that the target completes its da

2.

3.

51 Off-line Analysis

Figure 4 depicts the process that is followed & oiff-
line analysis of our implementation. The implenagion
begins with a specification of the system, in tberat of
our model described in Section 3. An ASCII file
containing descriptions of all of the sources, ¢tsgdata
and nodes is created and stored. The C++ implextiemnt
of the JITDD algorithm reads in the system speaffan
and computes the scheduling parameters for eactheof
data distributions required. The output of the DIDT
algorithm is another ASCII file containing the st
specification augmented with the computed distrdout
scheduling parameters.

The augmented system specification is fed intoak re
time analysis tool to determine if the system is
schedulable. We are currently using the RapidRM&! t
by TriPacific Corporation [21]. This requires maiiy
translating the specification into the visual mocdeguired
by RapidRMA. In ongoing work we are developingltoo

access before the data becomes invalid, and ths thSUPPOrt to ease this manual translation work (semich

target will use valid data.

Note that if the deadline is changed@¥, - P, at any
point, the computation of deadline is completewashave
reached the minimum possible deadline. Otherwise w
consider these three cases for each of the n tpegitds
in the superperiod. It can also be noted thatgplsl way
to compute this deadline would be to always 0% - P.
This would provide the required temporal validibyt it
could be an overly pessimistic choice, and mightseahe
system to be nonschedulable. Because in our durre
implementation this algorithm is computed off-lintae
extra work that is required to compute the moreilflie
deadline is acceptable.

In [2] we proved that the JITDD algorithm always
provides valid data to requesting targets. We ptsved
that the JITDD algorithm is necessary and sufficikem
computing the distribution deadline.

Real-Time Configuration
» Analysis » File

Figure 4 — Off-line Analysis Process
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5 Implementation and Evaluation

The implementation of our real-time data distribatis
made up of two parts: an off-line analysis andasline
event-based delivery of data. In this section wscdbe
these two parts of the implementation, as well agrées
of tests that we have performed to demonstrate ttieat
implementation correctly represents the theory khine
JITDD algorithm.

6). RapidRMA performs a schedulability analysistba
specified model using deadline monotonic, end-tb-en
analysis [22]. If the system is found to be non-
schedulable, then the system specification must be
reworked, perhaps adding more nodes or more polwerfu
nodes to the system. Once the system is deemed
schedulable, RapidRMA produces a configuration tfilt
provides scheduling priorities for each of the saskthe
system. This configuration file is used in the lioe-

(Configuration
File

r{'mplementation described next.

Real -Time
Static

Scheduling

Service

Figure 5 — Runtime Implementation

52  On-linemplementation

The runtime component of our implementation exexute
the model specified in the off-line component disa
above. The implementation is programmed in C++ and
runs on Linux Kernel 2.4.21, with TAO v1.3.5 CORBA
software [23] to provide real-time middleware sugipo
The implementation also uses two of TAO’s common
object services: the Real-Time Event Service (RTES
[24], and the Real-Time Static Scheduling Service



(RTSSS) [25].
distributing data asynchronously, and the RTSSSiges
priority-based scheduling to ensure that deadlaresmet.
Figure 5 illustrates the implementation using thése
services.

Event-based Data Distribution. TAO's RTES
provides asynchronous, decoupled

communicationcontext.

The RTES is used as a mechanism for The first three of the test scenarios examinedsyiséem

under “normal” conditions, under network-constraine
conditions, and under workload-constrained condgioln
the fourth set of tests, we emulated the Navy weapo
alignment application described in Section 1.1. Ndge
developed a system model based on the real appficat
Below we describe the various test calsew,

between sources and targets of data. The RTESausesthey were modeled and implemented, and the resitte

supplier/consumer model to deliver events. Thepkaip

sends data from a specific source to the RTES,thad
consumer receives data from the RTES.
implementation, we create a supplier to distrililaea that

is produced at each source, and we create a congame

receive data for each target.

The RTES provides an interface for a supplier gister
events (data) that it will supply. It also prowdan
interface for a consumer to register for events ithaould
like to receive. The RTES matches these requédtidive
supplied events, and sends the event data to cemsum
when they are supplied by the suppliers. As shawn
Figure 5, in our implementation the RTES periodical
receives event data from the supplier. The RHE&y
Consumer (PC) receives the event data, and then
iteratively passes it along to tiroxy SupplierqPS) for
each consumer that has registered to receive Yant.e
The Proxy Suppliers finally deliver the event deadathe
corresponding consumers, which make the data &aila
for the targets to use. From our formal model edti®n 3,

a dataDist is represented by the delivery of event data
from the supplier to each consumer.

Scheduling Real-Time Data Distribution. In previous
work, we developed the RTSSS that is in the TAOecod
base [25]. It is implemented as a set of librasgtecthat is
compiled into the programs that use it. The liprende
creates a mapping of task to priority, using tHerimation
in the configuration file produced by the RapidRNtol.
When the system starts up, each of the executititiesn
(sources, suppliers, consumers, targets, RTEShbdyi
requesting a priority from the RTSSS. The RTSSskdo
the priorities up in the task/priority mapping &band sets
the priorities accordingly. Each of these taskenth
executes at its specified priority. Thus, the diead
computation that is performed in the off-line as&yhas
provided the deadline for the consumers to deligethe
targets.

53 Test Cases

In ourwhich is described here.

tests that we performed.

Test Scenarios. We have tested four scenarios, each of
In each scenario, we hiaed
two nodes, with executing entities distributed asrthese
nodes. Recall that in each case, the system igleand
analyzed up front, so we have chosen systems teat a
schedulable, but in some cases, may be close g ben-
schedulable. Figure 6 illustrates the systemuajar the
first three test scenarios. Below we describesihecific
parameters for these scenarios. For each of riietliree
test scenarios, we ran the system over 100 pedbtise
data source and collected deadline and temporal
consistency data. We ran each test 10 times aaphgd
the maximum completion time/data age values ovesgh
10 tests.

Figure 6 — Test Scenario Set Up

Scenario 1 — Normal ConditionsOn node 1 in Figure
6, there are two data sources, two suppliers anevant
channel for each supplier. Node 2 has the consuaret
the targets that will use the data. Table 2 gitilesspecific

In order to demonstrate the effectiveness of ourparameters for each of these entities. The taatetivo

implementation, we have developed several testasiten

In each of these scenarios, the main metrics foress are
temporal consistency of delivered datnd deadline of
data delivery That is, we tested to make sure that our
claim of ensuring temporal validity and deadline tbé
distribution holds in our implementation.

rows for the event channel (EC1 and EC2). Eadhede
represents the distribution from one of the dataraes to

the set of targets that have requested the data.
Additionally, we specified a network delay of 1pfec for
each transmission between node 1 and node 2. ofjbet
validity for Data Source 1 is 150,0QGec, and for Data
Source 2 is 140,00@sec. Note that in Table 2, the



deadline listed for each consumer represents thgpoted
deadline for the distribution for the associatethdmurce.

Scenario 3 — Network Constrainedscenario 3, is also
similar to Scenario 1, except that we assumed tiinat

These consumer deadlines were computed using theetwork was more constrained. That is, we assuaed

JITDD algorithm, synthesizing the deadlines for heac
target that requested data from the data sourbe. eftire

network delay of 56@isec. This increased the utilization
of the network from 12% to 44.8%. Our intent witis

system model was analyzed in RapidRMA, and found toscenario was to show that our implementation still

be schedulable.

Figures 8 and 9 display the deadline results fas th
scenario, one figure for each of the data sourc&he
horizontal line in each graph indicates the deadior the
distribution of the particular data source. Thieeotpoints
in the scatter graph represent the completion tiofebe
data distributions over the 100 periods. As thgure
indicates, except for a few statistical anomalietghe first
few periods, all of the data distributions complbtfore
the specified deadline, as the theoretical reshhs
predicted. In the first few periods, there was spt
execution that caused the tasks to complete after t
deadline.

Name Period, Release, psec Deadline, Exectime,
JLSEC JSEC JLSEC
DataSourcel 100000 0 10000 1500
DataSource2 80000 0 10000 2000
Targetl.1l 100000 80000 30000 1500
Targetl.2 200000 180000 40000 1500
Targetl.3 300000 280000 50000 1500
Target2.1 100000 80000 40000 2000
Target2.2 120000 13030000 S5EIN00 20000
Target2.3 180000 130000 100000 2000
Target2.4 200000 160000 80000 2000
Supplierl 100000 10000 70000 1000
Supplier2 80000 10000 60000 1000
EC1 100000 10000 70000 400
EC2 80000 10000 60000 400
Consumer1.* 100000 10000 70000 1000
Consumer2.** 80000 10000 60000 1000
* All consumers of DataSourcel (** and of DataSource?2) lheesame parameters

Table 2 — Test Scenario Parameters

Figures 10 and 11 show the temporal consistenaytses
for scenario 1.
represents the object validity of the data objeeind
distributed. The other points represent the afj#isecdata
objects at the time they were read by the targéts. clear
to see that all of the targets, in each of theqoksi read
temporally consistent data.

Scenario 2 — Workload ConstrainedThis scenario is
almost identical to Scenario 1, except that extoakivad
was inserted onto Node 2. This workload increabed
utilization on that node from 16.53% to 72.15%. i&h

maintains the temporal consistency of both the dathof
the execution (deadlines). Test results for tlaisnario
also look very much like Figures 8-11, so we do stwiw
them here.

Figure 7 — Navy Weapon Alignment Application
Simulation

Scenario 4 — Navy Weapon Alignment Applicatidhie
have developed a simulation of the Navy weapon
alignment system to demonstrate how our algoritmth a
implementation work with a real application. Figu¥
illustrates how we have implemented the system. udée
two nodes, with the shared navigational componants
the event channel on Node 1 and the specific weapon
components on Node 2. In this implementation wesha

The horizontal line in each graphimplemented two different weapons systems, eadh gt

own final deadline. Table 3 shows the parametatwe
used to simulate this application. The objectdigfi of
the navigation data being distributed is 800,068c. The
values in the table are representative of the nusnfue
the real application.

The JITDD algorithm was applied to determine the
deadline for the delivery of the navigational dedaeach
weapon subsystem. Because the original data fiowns
the same source, there must be a single deadkicegln

the extra workload on Node 2 caused the systemeto bthe receipt of the data at tReocess Nav Dataomponent.

more constrained, it was still schedulable. Weseht

This deadline was computed by taking the shortethef

perform this test to show that under tight workload two computed deadlines for the Weapon Subsystems.

conditions, when the system is found to be schédila

For scenario 4, we have run the system over 100gser

our implementation meets all deadlines and temporalof the Nav Subsysternomponent, 10 times. We graphed

consistency constraints. Test results indicagtthbe the
case. The graphs for this scenario look very aimib
those for scenario 1. Due to space limitationsdeenot
show these results here.

the maximum values for the completion times of tihe
Weapon Subsysterend for the object validity of the data
arriving at the twoWeapon Subsystemsomponents.
Figures 20 and 21 show the results of these teStse



figures indicate that the deadlines are met eank,tand  distribution deadline be computed online. We waulokst

the temporal validity of the data is preserved al.w likely have to rely on a quicker calculation, remg in a
possibly more pessimistic deadline.
Paiod | Rass | Deadime, Exec _We are aware that other mlddl_ewa_re solutions _td} rea
Name usec usec usec 32;5 time data distribution are emerging in standarddids
NavigationSubsystem 500,00 b 300040 100.doo We are closely following the OMG's development bé t
NavDatalnterchanges 500,00D 300,000 350,400 5,00 H H 5 5 : H
= 50,0001 30000 0.0 - Data D|_str|but|on Serv_lce. It is our intent _to emlly
ProcessNavData 500,00 300,040 350,000 5900 work with a mature implementation of this serviae t
EC2 500,000 300,000 350,00 400 H H H
WeaponBackaround 500000 | 300,000 35000 5o0b provide the scheduling and_ data_ temporal consigtenc
Processing1 support that we have provided in our current Event
EC3 1 500,000 300,004 350,00p 4do . . .
WeaponData 500,000 | 300,000 350,001 5,00p Serwce-ba:_sed |mp_Iementa_t|on. _
Conversionl As mentioned in Section 5.1, the current off-line
EC4 1 500,000 300,004 350,00p 4do . . . e - .
Weaponinterchanges1 500,000 300,0p0 350,400 5 b00 implementation involves specifying the system in a
oo oround 500,000 300,000 450,00 5.00p somewhat ad hoc way, and then creating a model in
EC3 2 500,000 300,000 450,00p 4do RapidRMA to do the analysis. We are currently virgk
Yeaponbata 500,000 300,000 49000 500 on developing tool support for automating the entip-
EC4 2 500,000} 300,00 450,000 4do front modeling and analysis phase of the implemnigmta
WeaponlInterchanges2 500,000 300,0P0 450,000 1,p00 .. . . . .
WeaponSubsystemsL 500,040 650,000 150,900 10j000 We are examining model-integrating computing tdie
| WeaponSubsystems2 1,000040 750,000 300,500 10foco GME [26] that will allow us to model the system eneand
Table 3 — Navy Weapon Alignment Application then insert our own code to perform the JITDD atbon
Simulation Parameters as well as the real-time analysis.
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Figures 8 and 9 — Scenario 1 Distribution Completion Time vs. Deadline
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Figures 12 and 13 — Navy Weapon Alignment Simulation Results



