Patterns in Distributed Real-Time Scheduling

Lisa Cingiser DiPippo, Victor Fay-Wolfe,
Jiangyin Zhang, Matthew Murphy,
Priyanka Gupta
The University of Rhode Island
Kingston, RI USA 02881
{di pi ppo, wolfe, zhang, murphym
gupt ap} @s. uri . edu
Abstract

This paper describes patterns in distributed iiga-scheduling. It begins with an overview of ffegterns in the
paper, and a view of the pattern language madé tife @atterns described. The paper goes on witlesach of the
patterns in Alexandrian form.

1 Introduction
Many real-time distributed applications such a®ais, on-line stock trading, and military commaamai

control systems require that scheduling be perfdramoss the system to ensure that the qualitgrefce
(QoS) requirements specified by the applicationnaee Middleware in a distributed real-time system
(DRTS) can provide the infrastructure and mechasigaquired to perform the necessary scheduling. In
such a distributed system, each endsystem mayde dtg own local scheduling mechanisms. However,
the middleware across the system must take intousxtdhe entire system, and provide coordinated
scheduling information to the individual endsystemsich will enforce the globally determined
scheduling decisions. The global scheduling decssthat are made in a DRTS include where to aloca
service requests, how to provide scheduling infdionao local endsystems, and how to handle ovdrloa
that can cause QoS failures in the system. Fanpbe in a command and control application in which
sensor information must reach a decision-maker tlae possibly a shooter, global end-to-end QoS

requirements must be coordinated by the middleveare enforced on the endsystems involved.

From this type of application, distributed real¢ischeduling patterns have emerged. While mangrpat
may be applied in performing scheduling at therithisted level, this paper concentrates on thoske est
that specifically involve global decision-makingtltonsiders the entire distributed system. s biction
of the paper we give a brief overview of the disited real-time scheduling patterns. We also pwai
view of the relationships among these patternautjiiaa pattern language. Sections 2-4 describe the
pattern details in Alexandrian [1] form. Sectiondncludes by summarizing and by placing the padter

described here into a larger context with othetgpas in distributed real-time systems.

1.1 Patterns Overview

The distributed real-time scheduling patterns desdrhere areService Request Bindinigocal
Enforcementand a group of overload management patteBesvice Request Bindirglows middleware

to match a request for service by an applicatiah wiprovider of the service using an analysi©ief@oS

specifications of the requestor, and the QoS céipebiof the provider.Local Enforcemenprovides a way
for globally determined scheduling decisions taeh#rced on local endsystems with varying

implementation mechanisms.

Overload Management

Overload Overload Handler
Detector

| | |
Up-front Resource Failure PR
Analysis Monitoring Detection Task plggeétlon Resource
Scheduling Reallocation
Adjustmen

Adjustment

Deny Cancellation
Request

Figure 1 - Overload Management Pattern Hierarchy

The overload management patterns discussed hesegaoelp of related patterns, as depicted in Figure
Overload is defined to be a situation in which Qio8ng specifications cannot be met. For examiplan
endsystem has been scheduled to execute a seksfftat which it cannot meet the deadlines of the
tasks, overload has occurred. Further, in an erehtl application overload on one endsystem can
propagate to other endsystems involved in the egpdin if a task on one endsystem is dependent upon
another task on an overloaded node. The overl@athgement patterns described here are divided into
two types. Figure 1 depicts the categorizatiothefoverload management patterns. Overload detecti
involves determining when and where overload hasight occur. There are three specific patterrthim
category: Up Front AnalysisResource MonitoringandFailure Detection Up Front Analysigletects
overload before it occurs by performing a prioralysis whenever a new request for resources ethiters
system. AlternativelyiResource Monitoringletects overload by analyzing system conditiortheys are

occurring. Failure Detectiondetects overload after a QoS failure has occurred.

Overload handling involves determining how to regpto the detection of overload. This paper dbesr
three ways in which overload can be handl@dsk Scheduling AdjustmeApplication QoS Adjustment
andResource ReallocationTask Scheduling Adjustmdmndles overload by adjusting the task scheduling
parameters, such as priority, deadline and impoetar his can be implemented bgny Requestvhich

does not allow execution of a request that coutemt@lly cause overload. Task scheduling adjustme

can alternatively be implemented Ggncellation in which one or more tasks has its scheduling

parameters adjusted in order to relieve the ovdrldgplication QoS Adjustmentlows the application to

specify how to handle the overloaResource Reallocatiomandles overload by moving execution of a

task on an overloaded node to another, less loao@e.

1.2 Pattern Language

The pattern language that illustrates the relakigmssamong the distributed real-time schedulinggpas
described in this paper is depicted in Figure Besk relationships are further explored in the full

descriptions of the patterns (Sections 2-4).

Service
Request A = alternatives C = complements |=implements
Binding
Up Front |, ,| Resource |, ,| Failure
Analysis Monitoring Detection
No>
Application
. Resource
Deny Request®=® Cancellation [+ > 0S g .
yReq Adsztment Reallocation
[Local
Enforcement

Figure 2 - Distributed Real-Time Scheduling Pattern_anguage

2 Service Request Binding Pattern
. In a DRTS, it is possible that several specifiwmes may be offered by more

than one provider. An application that requireshsa service must have some
way of finding the location of the provider thatiiest meet itQuality of
Service (QoS) needs. TBervice Request Bindimmattern provides a solution
that allows applications to “findthe appropriate service provider to which to
bind.

0090

When more than one provider offers a requested sere#, a choice must be made as to which provider

will best meet the requirements of the requestingplication.

One of the challenges of large-scale distributadtiene systems involves the need for entitiestor
about each other. In client/server systems, tleatanust find a server from which it can requesvise.
Further, the client may impose timing QoS requiret®m®n the response from the server. Similarlg in
real-time multi-agent system, certain agents pmwaervices that other agents may require, withifipec
QoS requirements. Consider a simple example iclwhiclient wishes to print a document within a
specified amount of time in a network with morertlwae printer. Instead of the client having toleity
be aware of all printers and their current captidi (e.g. pages per minute, color/no color, curgeieue
length), the client should be able to inform theldféware of its service requirements, includingrin
requirements, and then allow the middleware to shdbe appropriate printer. This both simplifies t

client development and enhances system flexibility.

In general, an application in a DRTS may requiet Home service be performed on its behalf andresp
within a specified deadline. If there is more tlwane provider that can offer the required sendicen the
application should make the request to the prowvidatrcan best meet the deadline of this applioatio
while considering other execution in the systerwel. This does not necessarily mean that the
application should request the “fastest” servicé@m the provider with the lightest load. Thiscton
should be made in the context of the entire systgiconsidering the QoS requirements of all appbcest
and the QoS capabilities of all nodes in the system

Provide a middleware mechanism where service provéts register their QoS capabilities, and
applications use the mechanism to request their rered QoS. The middleware analyzes the
requests in the context of the entire distributedstem and then binds each application request to &

provider that it determines to best meets the ovetbQoS requirements of the system.

Figure 3 — Service Request Binding Pattern

000

Figure 3 illustrates the Service Request Bindingpa where a Trader service is used to providdibgs
between clients that have requests with QoS remeinés and servers that provide services. Some
instances of this pattern include [2], [3], and [4]heService Request Bindirmattern uses thdp Front
Analysispattern to make decisions about good bindingds.Front Analysisan determine whether or not a
particular binding choice will cause a node in $lgstem to become overloaded. Se¥vice Request
Binding pattern is also related to tResource Reallocatigpattern in that initial bindings may meet
requirements as they are known at the time ofemtd request. However, as requirements changeagor

system changes, reallocation may be necessary.

3 Local Enforcement Pattern
Optimal distributed scheduling often requires the af global scheduling

information and coordinated scheduling enforcentemtughout the distributed
system. Final scheduling enforcement is usuallgleriay endsystems using
techniques that are local to each endsystem. tmfately, given the
heterogeneity of possible endsystems in a disgthsystem, there is usually no
single notion of local enforcement. For instamoany endsystems use a form
of priority-based local enforcement, but even thexsgsystems often have different valid priorityges
and cardinality. Thé&ocal Enforcemenpattern allows the middleware to transform glopditermined
scheduling information for a task into schedulinfprmation that is appropriate for the local entisyson

which it executes.
000

Global scheduling decisions in a real time distribted system must be enforced on local endsystems

that may have heterogeneous local scheduling enfanent techniques.

Endsystems use scheduling information to orderéaskution, but the implementation details vary agno
endsystems. Many systems assign all tasks a giwerity within some valid priority range. For exals,
RT CORBA 1.0 allows for 32,767 different prioritjgsut the real-time operating systems that liehen t
individual endsystems may allow far fewer priosti¢5]. This problem is not constrained to endsyste
but extends to other local scheduling enforcemeirttp as well. For example, Differentiated Sersice
(diffserv) routing in IP networks allows packetsmaintain priority across the network, but onlhyoals up
to 64 possible priority values, and usually le6% [Furthermore, certain systems may order pyidnit

ascending order, while others order priority inade®ling order.

Given a global set of scheduling parameters sudeadline, period, and importance, different entdsys
may enforce the global scheduling decisions diffdye For example, consider a distributed systdmne
it is determined to be optimal to globally enfoMest Urgent First (MUF [7]) scheduling across the

system. One endsystem may provide an operatirigrsylsvel priority assignment based only on the

deadlines of the tasks scheduled on that endsystkite, another endsystem, given the same set of
parameters, may locally implement the MUF schedutin setting up thread queues and dispatch the task
to threads without the use of OS-level prioritiés.either case, the distributed system must hawgesvay

to provide the right information to the endsystemtsat the scheduling policy can be enforced asebegl.

Determine globally optimal scheduling parameters.This determination is based upon the global
scheduling decisions made for the system. For eaehdsystem, when possible, install a local
enforcement policy that is consistent with the assoptions of the global scheduling. When such an
installation it is not possible, have the global $eduler map the global scheduling parameters to the
local scheduling parameters, and have the globallseduling take the affect of the mapping into
account when making its global scheduling decisiondn the example described above, if it is possibl
to install an MUF scheduler that enforces globallydetermined urgency parameters on each
endsystem, do so. However, if a local endsystemiypnses deadline-based scheduling, map the global
urgency to an appropriate deadline for that local edsystem and have any analysis done in the global
scheduler comprehend that local enforcement on thisndsystem will be deadline-based, not MUF.

Service assigns

P
Global Scheduling]
global priority

Priority Mapping
Algorithm maps
global priority to local
RTOS priority

Local Endsystem
runs task at
mapped priority

Figure 4 - Local Enforcement Pattern

000

Figure 4 illustrates the Local Enforcement patighere a global priority is assigned, but mapped local
endsystem priority. Instances of thecal Enforcemenpattern can be found in [8], [9], and [5]. A prima
example is the priority mapping provided by RT CORBO. In these systems, a CORBA priority is
determined globally and then mapped to the lodakipy of the operating systems. Furthermore, RT

CORBA 1.0 provides an interface to install priomtapping algorithms that are consistient with thodbagl

scheduling assumptions.

ThelLocal Enforcemenpattern is related to the overload handling pastelescribed in Section 4 because

each of the handling decisions must be enforcetth@tocal endsystem.

4 Overload Management Patterns

In this section we describe the patterns for owetlmanagement. Recall from the hierarchy in Figure
that there are two main categories of overload gment patterns: Overload Detection and Overload
Handling patterns. Sections 4.1-4.3 discuss therldad Detection patternglf Front AnalysisResource
Monitoring, Failure Detectio. Sections 4.4-4.7 discuss the Overload Handliatterns Deny Request

Cancellation Application QoS AdjustmerResource Reallocation).

4.1 Up Front Analysis Pattern

Given a particular request for resources in a DROW8rload can occur if
there are not enough resources to fulfill the retju€urther, this overload
c—/_/\) can cause other failures across the system. Fon@e, if the execution of a
é& A new task on one node causes another task to mideatline, then any other

e,\,tv, -
\L’?Q tasks across the system that depend on the faiédray also fail. For this
reason, it is often necessary to avoid overloadrandet it occur. Th&p
\ Front Analysispattern allows a distributed real-time systemeatednine if an
l’ l‘ overload might occur by using analysis techniques.

0090

Up front detection of overload in a DRTS is necessaif the system requires that overload not occur.

In a DRTS with tight timing constraints across $iystem, missing one deadline can lead to a casgadin
effect of missing other deadlines across the systeon example, if the first task in an end-to-ehdin of
tasks misses its deadline, the rest of the tastteeichain are in danger of also failing. Someesys
provide mechanisms to detect these kinds of fal(gee Section 4.2) and then react to them. Hawthe
reaction to such failures must itself be schedaledl can cause further deadlines to be missed. tylffésof
unpredictable behavior is not tolerable in systeuitis tight timing constraints and mission-critidakks.

In systems where uncontrolled failure is not acakelgt, it is necessary to be able to predict wherload
will occur. Another class of systems in which d@ad cannot occur are systems where recovery from

overload-induced failures is not possible. Fotanse, in manufacturing applications, and in systérat

affect their environment in general, it may oftendither costly or impossible to achieve recovéry.

these systems it is often better not to startlattzen to allow the task to start and then fail.

Use existing knowledge of the system, including timg constraints, resource capabilities and
scheduling techniques, to analyze the system. Pretdwhen and where the overloads could happen
and provide results of the analysis to the systeno tallow it to determine how to handle the overload.
The goal is to determine dynamically if an incomingask can be scheduled in the existing system

without causing overload to occur, thus causing soertasks to possibly miss deadlines.

In a static, hard real-time system, a priori analyss is often used to determine the schedulability dhe
entire system. Analysis techniques such as rate matonic analysis [11] and earliest deadline first
scheduling analysis [11] are well-known ways of detmining system schedulability. In a dynamic
DRTS, similar analysis techniques can be used aslme “acceptance tests” when a new task requests
resources [11].

Up front analysis can provide a predictable meansfaetermining when and where overload can
occur. This kind of technique can be pessimistinithat often worst case execution times are used to
analyze the system. When the worst case does notwg resources are wasted. However, in
situations where it is better to be predictable tha to fully utilize all resources, up front analysisis

necessary.

Lcimission Controller ——Rejected —m Reject Queue
| B,
¥ :
Trained ANN :
%‘Q -Overload/Normal Accepted
2 k. —
Task flow - b’ Scheduler —Ready torun # Ready Queue
4.’
Information flow

‘ Possible palicy change

Figure 5 —A system usingUp Front Analysis in the Admission Controller module [10].

0090

This pattern provides analysis results forBreny Requesind theCancellationpatterns in order to
determine if it is necessary to deny the new relque® cancel an existing task. THe Front Analysis
pattern is also useful to the Service Request Bigattern to help determine whether a particuiadibg
of client to server is schedulable. Figure 5 tHates the Up Front Analysis pattern where an aslons
controller analyzes the system and a new requetgteymine if it is schedulable. Examples of gastern
appear in [10], [11] and [12].

4.2 Resource Monitoring Pattern

Unlike theUp Front Analysigattern of Section 4.1, thResource Monitoringattern detects the potential
for overload before or as it occurs. That isaiht compare monitored results with defined threshtud
detect that overload will occur if not action ikea. We do not describe this pattern here bedaisse

described in [13]; we include it in this paper émmpleteness.

4.3 FailureDetection Pattern

In a system in which it is not necessary or feasiblperform up front
analysis, or specific QoS monitoring, it is necegsa know when and
where overload has occurred so that it can be BedndlheFailure
Detectionpattern detects overload after it has occurredcanded a
system QoS failure, such as missed deadlines,gyadation of service in
a DRTS.

000

In a system in which overload can occur, there mudie some way to detect it and report it so that it

can be handled.

In order to maintain the specified levels of Qo§uieed by an application, failures in the systemmuith be
detected so that they can be handled. Furthecti@t of failures will allow the system to know evie

future adjustments might be necessary to eventuadlyce the number of future QoS failures.

Provide a mechanism to detect QoS failure. Allowgplications to specify QoS requirements such as
deadlines and periods. The failure mechanism shoulgrovide a means to determine if the
requirements have been met. For example, in [7]@echanism is provided that can detect timing
failures and provide information about the failure to the failure handler. CORBA and many other

run-time systems provide a timeout mechanism thatan detect deadline violations.

This solution differs from the Resource Monitoring pattern [13] in that the Resource Monitoring
pattern can intelligently analyze the performance bthe DRTS and determine when it is necessary to
act. This may be in reaction to some performancéiteshold being hit that indicates that overload

will occur if no action is taken soon. Thd-ailure Detection pattern allows the failure to occur and
then reports it to be handled. This is a more “optnistic” pattern than both Up Front Analysis and

Resource Monitoring because it assumes that no aati is required unless the failure actually occurs.

Cliant Application Server Application
| 1 # i i i
Y Y Y) Y Y
HEHEN NS SN W %
Static DIl ORB ORB ||skaleton| | DI Object
Stub Interface Intarfaca Adaptar
Cliant ORB Cora @ ‘L/\ Sarver ORB Cora @
Network
IDL-cependent Sarms for all @ Thete may be multiple
applications object adapters

Figure 6 —CORBA Time-Out uses theFailure Detection Pattern [14]
000

Figure 6 illustrates the Failure Detection patt@srused in a CORBA Time-Out. TRailure Detection
pattern provides information to ti@ancellationpattern to determine which tasks to cancel, when.
Examples of this pattern appear in [15], [16] ahd][

4.4 Deny Request Pattern

In a DRTS in which recovery is too costly or notaption, and overload should
not occur, there needs to be a simple way to niaitite QoS performance of
the system. ThBeny Requegiattern addresses overload by keeping tasks

from starting if they cause an overload.
000

If the potential for overload has been detected ufront, and recovery from

failure or QoS degradation is not an option, the osrload should not be
allowed to occur.

10

In many DRTSs the timing constraints on the apfibca can be too tight to allow for recovery froro®)
failures during system execution. It is often thse that maintaining the performance of the exjsti
system is more important than allowing new taskarti@r the system that might cause overload toroccu
For example in sensor networks where existing téwks intricate dynamic relationships with eachesth
it might not be safe to terminate existing taska,denying an entering task may be allowed. In such
systems it is not feasible to wait for overloadtzur and then fix it, or to cancel an existingtasorder

to allow a new task to execute. There must beyatvanaintain the integrity of the system if a ngwl

requested task will not fit.

Provide a mechanism that can deny a request if therare not enough resources to service the request.
In a DRTS that employs this pattern, it is assumethat overload detection uses an up front analysis
technique (Section 4.1) to determine if a newly cpiested task will cause overload. When a request is
denied, the client making the request can decide tielay the request and resubmit it at a later time.
However, if the request has a timing constraint thewould preclude it from being delayed, it will

simply not execute at all. In this case the cliemhay be required to do exceptiorhandling of its own.

Transactions

l Amival qusus
| | | | | | Rejsction gqusie
¢ [T 1]
h
e Admission
Caontrolier rajgdt
e trarsachon berminakes
. ¥
¥ Admitiod)
Traresetion g g Ready gueue
Owerload _ Tabla
- Reszalvar il —— - | | | ‘ | |
1
: F Y
! : [Y
¥ ; : ¥
Tﬂaﬁ .'. B Transaction 1 .
Seheduler] Dizpatzher
imn=xcion complis

Figure 7 - An overload management in RTDBS usin@eny Request (from [18]).
000

Figure 7 depicts an illustration of the Deny Requedtern in a real-time database system. Thessimi
controller determines if a new transaction candbeduled. If not, the request is denied, andptased in
a rejection queue. Examples of this pattern apipgd8], [11] and [12]. Figure 3, from [18], showse
pattern is used in overload management in a nes-tiatabase system.. Theny Requegiattern receives

information from théJp Front Analysigattern to determine if the requested task shbeldenied.

11

45 Cancdlation Pattern

In a DRTS where overload can occur and it is fdagibterminate or

change existing tasks, ti@ancellationpattern allows for tasks to be either
removed from the system, or to have their schedydarameters changed.
This is done when new tasks may contribute moreeved the systems than
one or more existing tasks.

000

In DRTS’s where overlaod can occur and new tasks ngacontribute more value than existing tasks,

there must be some way to terminate or adjust thecheduling parameters of existing tasks.

In general, in a DRTS, if overload is either a ptitd problem (predicted) or an actual problem (ooed)
handling the overload is necessary. Tieny Requegtattern described in Section 4.4 always chooses to
not allow the new request to begin execution. Hmrein many systems tasks can have varying lefels
importance, and it may be unacceptable to denyyaingortant new task in order to allow the curhgnt
executing tasks to continue to run. For exampey tasks representing the detection of new threats

be more important to execute than existing tagitso, in systems where up front analysis is hotluges

not feasible to use tHeeny Requegiattern to handle overload because there is naaviyow if the

current request will be schedulable. In both ekthcases, it may be necessary to either removerone
more tasks from the system, or to adjust the sdimegdparameters of existing tasks in order to adlevthe

overload.

Provide a mechanism to allow a task to cancel itdebr to cancel another task. The mechanism
should include a technique for deciding which taskshould be cancelled. For instance, if an overload
is detected using thd-ailure Detection pattern (Section 4.3), then theCancellation mechanism should
cancel the task that failed. On the other hand, ithe potential for deadline violation is detected Y the
Up Front Analysis pattern (Section 4.1), theCancellation mechanism can choose from among all of
the tasks in the system that are affected by the exoad. It can use information about the tasks and
about the system to determine which task(s) to caat This information can include information

such as the relative importance of the tasks, theemaining execution time of the tasks, the time to
recover from cancellation, and the dependencies amg the tasks in the system. Canceling a low
importance task to allow a more important task exeate may be increase the value obtained by the
system. However, if the cancelled task has almastmpleted, or has several tasks that depend on its
completion, then it might not be the best choice facancellation. TheCancellation mechanism should

provide algorithms for choosing the tasks to cancejiven various system circumstances.

Cancellation of a task may be implemented in various ways. Wheatask has already missed its

deadline, which has been detected using th&ilure Detection pattern, termination of the task maybe

12

the best way to implementCancellation. However, in a system that has predicted overlodoased on
Up Front Analysis, the prediction may be pessimistic and the overlaamay not actually occur at all.
Rather than terminating the task(s) chosen by th€ancellation mechanism, it may be better to
change the scheduling parameters instead. This camanifest itself in lowering the priority of a
cancelled task, or lengthening its deadline or itperiod. The Cancelled tasks will not meet their
timing constraints in the worst case, but may be db to complete if there is more slack in the
schedule than was predicted by th&p Front Analysis.

BSS- A

cancel DT Head of DT
Propagate -
cancel
— Process the
cancel at next
scheduling point
ESS- A
Host 1 Host 2 Host 3

Figure 8 -Real-Time CORBA Distributable Thread using Cancellation (from [19]).
000

Figure 8 illustrates the Cancellation pattern acsjed in Real-Time CORBA 2.0. A distributable¢hd
can be cancelled during its execution. The caatiel is processed at the next scheduling poiisin
execution. Examples of this pattern appear i, [2®], [21] and [22]. Figure 4, from [19], showsw
the Cancellationpattern is used in the Real-Time CORBA 2.0 Disitdble Thread architecture. The
Cancellationpattern can use analysis information providedheyJp Front Analysiattern to determine
which tasks to cancel. It may also use informagiopvided by thd-ailure Detectionpattern to cancel a

task with a QoS failure.

13

4.6 Application QoS Adjustment

The QoS Adjustmergattern has thapplicationnegotiate to adjust the QoS requirements of tasés
intelligent way when overload has occurred. Thigepa is described in [23], we include it here for
completeness.

4.7 Resource Reallocation

TheResource Reallocatigpattern has the system reallocate resourcesegattt overload. In this pattern
QoS is not necessarily adjusted, nor are tasksetiad¢instead the system attempts to find a better
resource allocation, perhaps moving tasks to teddd nodes, that will still maintain the origiS
specified by the application. We do not descriteefattern here, it is described in [13]. We idelit here

for completeness.

5 Conclusions
This paper has presented a pattern language fedstihg in a DRTS. These patterns provide a

framework for middleware developers to use whetding a system with global QoS requirements that
must be enforced on local endsystems. While thergéd description of the context for these patterns
involves distributed real-time systems, specifitads about the particular applications will redult
different traversals of the pattern language inuFé2. For example, in a system that cannot tteera
recovery of existing execution, thip Front Analysigattern might be used along with theny Request
pattern for overload management. On the other hitite system has softer constraints, and caratb
be optimistic about failure, it can use thalure Detectionpattern with theCancellationpattern to manage
overload.

The patterns in this language clearly do not stdade. They are closely related to other pattewaved
in scheduling in a distributed system. A largettgra language is described in [24]. Here, these
distributed real-time scheduling patterns are ptat context with patterns for global resource altamn,

scheduling on endsystem middleware, and schedatitite operating system level.

References

[1] C. Alexander, S. Ishikawa, and M. SilversteAnPattern Language: Towns, Buildings, Construction
Oxford University Press, 1977.

[2] A. Uvarov, L. Cingiser DiPippo, V. Fay-Wolfend P. Gupta, Slack-Time Driven Distributed Real-
Time Dynamic Binding, submitted tiburnal of Parallel and Distributed Computingpril 2003.

[3] G. Parr, I. W.K.Ho, A. Marshall, D H.T.Chieng, Software Agent Brokering Environment for ATM
Real-Time Network Resource Allocatio@nline Seminar on Embedded Software, Open Symposium
for Electrical Engineers (OSEE27 Feb 2001. www.osee.net.

14

[4] H. O. Rafaelsen, F. Eliassen,. Trading and Niating Stream Bindings, IRroceedings of
Middleware'2000New York, 3-7 April 2000, http://citeseer.nj.nezm/rafaelsen00trading.html.

[5] OMG, Realtime CORBAElectronic document at http://mwww.omg.org/doclkm/98-10-05.pdf.
[6] Sourceforge, Differentiated Services for Lintnttp://diffserv.sourceforge.net/.

[7] D. Stewart, P. Khosla, Real-Time Schedulinddghamically Reconfigurable Systen®roceedings of
the IEEE International Conference on Systems Emging, Dayton Ohio, pp. 139-142, August 1991.

[8] Craig Rodrigues, Yamuna Krishnamurthy, Irfanfyia Pradeep Gore, Using Prioritized Network
Traffic to Achieve End-to-End PredictabilitReal-Time and Embedded Distributed Object
Computing June 15-18, 2002, Arlington, Virginia, USA.

[9] L. DiPippo, V. F. Wolfe, L. Esibov, G. CoopdR, Johnston, B. Thuraisingham, J. Maugeheduling
and Priority Mapping for Static Real-Time MiddleveaReal-Time Systems Journ2aQ, 155-182,
2001.

[10] R. Steinsen, Predicting Transient OverloadRéal-Time Systems using Artificial Neural Netwarks
University of Skovde, Technical Report #HS-IDA-M™-906, 1999.

[11]J. Liu,Real-Time SystemBrentice Hall, 2000

[12] Sven Gestegard RoberEgexible automatic memory management for real-tamé embedded
systemgsLicenciate thesis, Dept. of Computer Science d University, May 2003.

[13] Toni Marinucci, Lonnie Welch, Patterns for Bdeping Adaptive, Distributed Real-Time Systems,
submitted tdPLoP 2003

[14]OMG, Common Object Request Broker Architectintgp://www.omg.org.

[15]J. Hansson, S. Son, J. Stankovic, S. Andlgnaic Transaction Scheduling and Reallocation in
Overloaded Real-Time Database Systetseceedings of the 5th International ConferenoeReal-
Time Computing Systems and Applications (RTCSAB&)shima, Japan, IEEE Computer Society
Press, 1998.

[16] C. Gill, D. Schmidt, R. Cytron, Multi-Paradig8cheduling for Distributed Real-Time Embedded
Computing IEEE Proceedings Special Issue on Modeling ansigieof Embedded Syster@stober
2002.

[17]1Douglas C. Schmidt Steve Vinosk,i Object Intatnections: An Overview of the OMG CORBA
Messaging Quality of Service (QoS) Framework (Caiurfl), C++ Report, March.

[18]J. Hansson, S. Son: Overload Management in BT Real-Time Database Systems: Architecture and
Techniques Kluwer Academic Publishers, 2001.

[19] OMG, Realtime CORBA Dynamic Scheduling, ptcf@8-34, http://www.omg.org/cgi-
bin/apps/doc?ptc/01-08-34.pdf.

[20] C. Gill, D. Schmidt, R. Cytron, Multi-Paradig8cheduling for Distributed Real-Time Embedded
Computing IEEE Proceedings Special Issue on Modeling ansiddeof Embedded Syster@stober
2002.

[21] D. Hong, Real-Time Transaction Scheduling:as3Conscious Approach, thesis, D. Hong, Theodore
Johnson, Sharma Chakravarthy, Real-Time Trans&ctieduling: A Cost Conscious Approach,
SIGMOD Conference 1993: 197-206.

[22] C. Montez, J. Fraga, R. Oliveira, An AdaptMedel for Programming Distributed Real-Time
Applications in CORBA, WSTR'98, Rio de Janeiro, Rizil, May 1998.

[23]J. P.Loyall, P. Rubel, M. Atighetchi, R. Sckanl. Zinky, Emerging Patterns in Adaptive, Distied
Real-Time, Embedded Middlewa®@ OPSLA 2002 Workshop on Patterns in DistributedReee
and Embedded Systeriov. 2002.

15

[24] C. Gill, D. Niehaus, L. DiPippo, V. Fay Wolfand L. Welch, Mapping a Multi-Level Scheduling
Pattern Language to Distributed Real-Time Embedglgalications,OOPSLA 2002 Workshop on
Patterns in Distributed Real-time and Embeddede®ystNov. 2002.

16

