
 1

Patterns in Distributed Real-Time Scheduling

Lisa Cingiser DiPippo, Victor Fay-Wolfe,
Jiangyin Zhang, Matthew Murphy,

Priyanka Gupta
The University of Rhode Island

Kingston, RI USA 02881
{dipippo, wolfe, zhang, murphym,

guptap}@cs.uri.edu

Abstract

This paper describes patterns in distributed real-time scheduling. It begins with an overview of the patterns in the
paper, and a view of the pattern language made up of the patterns described. The paper goes on to describe each of the
patterns in Alexandrian form.

1 Introduction
Many real-time distributed applications such as avionics, on-line stock trading, and military command and

control systems require that scheduling be performed across the system to ensure that the quality of service

(QoS) requirements specified by the application are met. Middleware in a distributed real-time system

(DRTS) can provide the infrastructure and mechanisms required to perform the necessary scheduling. In

such a distributed system, each endsystem may provide its own local scheduling mechanisms. However,

the middleware across the system must take into account the entire system, and provide coordinated

scheduling information to the individual endsystems, which will enforce the globally determined

scheduling decisions. The global scheduling decisions that are made in a DRTS include where to allocate

service requests, how to provide scheduling information to local endsystems, and how to handle overload

that can cause QoS failures in the system. For example, in a command and control application in which

sensor information must reach a decision-maker, and then possibly a shooter, global end-to-end QoS

requirements must be coordinated by the middleware, and enforced on the endsystems involved.

From this type of application, distributed real-time scheduling patterns have emerged. While many patterns

may be applied in performing scheduling at the distributed level, this paper concentrates on those patterns

that specifically involve global decision-making that considers the entire distributed system. In this section

of the paper we give a brief overview of the distributed real-time scheduling patterns. We also provide a

view of the relationships among these patterns through a pattern language. Sections 2-4 describe the

pattern details in Alexandrian [1] form. Section 5 concludes by summarizing and by placing the patterns

described here into a larger context with other patterns in distributed real-time systems.

1.1 Patterns Overview

The distributed real-time scheduling patterns described here are: Service Request Binding, Local

Enforcement, and a group of overload management patterns. Service Request Binding allows middleware

to match a request for service by an application with a provider of the service using an analysis of the QoS

 2

specifications of the requestor, and the QoS capabilities of the provider. Local Enforcement provides a way

for globally determined scheduling decisions to be enforced on local endsystems with varying

implementation mechanisms.

Figure 1 - Overload Management Pattern Hierarchy

The overload management patterns discussed here are a group of related patterns, as depicted in Figure 1.

Overload is defined to be a situation in which QoS timing specifications cannot be met. For example, if an

endsystem has been scheduled to execute a set of tasks for which it cannot meet the deadlines of all of the

tasks, overload has occurred. Further, in an end-to-end application overload on one endsystem can

propagate to other endsystems involved in the application if a task on one endsystem is dependent upon

another task on an overloaded node. The overload management patterns described here are divided into

two types. Figure 1 depicts the categorization of the overload management patterns. Overload detection

involves determining when and where overload has or might occur. There are three specific patterns in this

category: Up Front Analysis, Resource Monitoring, and Failure Detection. Up Front Analysis detects

overload before it occurs by performing a priori analysis whenever a new request for resources enters the

system. Alternatively, Resource Monitoring detects overload by analyzing system conditions as they are

occurring. Failure Detection detects overload after a QoS failure has occurred.

Overload handling involves determining how to respond to the detection of overload. This paper describes

three ways in which overload can be handled: Task Scheduling Adjustment, Application QoS Adjustment,

and Resource Reallocation. Task Scheduling Adjustment handles overload by adjusting the task scheduling

parameters, such as priority, deadline and importance. This can be implemented by Deny Request, which

does not allow execution of a request that could potentially cause overload. Task scheduling adjustment

can alternatively be implemented by Cancellation, in which one or more tasks has its scheduling

parameters adjusted in order to relieve the overload. Application QoS Adjustment allows the application to

Overload Management

Overload
Detector

Overload Handler

Up-front
Analysis

Failure
Detection

Resource
Monitoring Task

Scheduling
Adjustment

Application
QoS

Adjustment

Resource
Reallocation

Deny
Request

Cancellation

Overload Management

Overload
Detector

Overload Handler

Up-front
Analysis

Failure
Detection

Resource
Monitoring Task

Scheduling
Adjustment

Application
QoS

Adjustment

Resource
Reallocation

Deny
Request

Cancellation

 3

specify how to handle the overload. Resource Reallocation handles overload by moving execution of a

task on an overloaded node to another, less loaded node.

1.2 Pattern Language

The pattern language that illustrates the relationships among the distributed real-time scheduling patterns

described in this paper is depicted in Figure 2. These relationships are further explored in the full

descriptions of the patterns (Sections 2-4).

Figure 2 - Distributed Real-Time Scheduling Pattern Language

2 Service Request Binding Pattern
In a DRTS, it is possible that several specific services may be offered by more

than one provider. An application that requires such a service must have some

way of finding the location of the provider that will best meet its Quality of

Service (QoS) needs. The Service Request Binding pattern provides a solution

that allows applications to “find” the appropriate service provider to which to

bind.

������������

Service
Request
Binding

Local
Enforcement

Up Front
Analysis

Failure
Detection

Deny Request
Application

QoS
Adjustment

Cancellation
Resource

Reallocation

A = alternatives C = complements I = implements

A A A

A

A

C

C C
C

CC

I

I I

I

Service
Request
Binding

Local
Enforcement

Up Front
Analysis

Failure
Detection

Deny Request
Application

QoS
Adjustment

Cancellation
Resource

Reallocation

Service
Request
Binding

Service
Request
Binding

Local
Enforcement

Local
Enforcement

Up Front
Analysis
Up Front
Analysis

Failure
Detection
Failure

Detection
Resource

Monitoring

Deny RequestDeny Request
Application

QoS
Adjustment

Application
QoS

Adjustment
CancellationCancellation

Resource
Reallocation

Resource
Reallocation

A = alternatives C = complements I = implements

A A A

A

A

C

C C
C

CC

I

I I

I

Service
Request
Binding

Local
Enforcement

Up Front
Analysis

Failure
Detection

Deny Request
Application

QoS
Adjustment

Cancellation
Resource

Reallocation

Service
Request
Binding

Service
Request
Binding

Local
Enforcement

Local
Enforcement

Up Front
Analysis
Up Front
Analysis

Failure
Detection
Failure

Detection

Deny RequestDeny Request
Application

QoS
Adjustment

Application
QoS

Adjustment
CancellationCancellation

Resource
Reallocation

Resource
Reallocation

A = alternatives C = complements I = implements

A A A

A

A

C

C C
C

CC

I

I I

I

Service
Request
Binding

Service
Request
Binding

Local
Enforcement

Local
Enforcement

Up Front
Analysis
Up Front
Analysis

Failure
Detection
Failure

Detection

Deny RequestDeny Request
Application

QoS
Adjustment

Application
QoS

Adjustment
CancellationCancellation

Resource
Reallocation

Resource
Reallocation

Service
Request
Binding

Service
Request
Binding

Local
Enforcement

Local
Enforcement

Up Front
Analysis
Up Front
Analysis

Failure
Detection
Failure

Detection
Resource

Monitoring

Deny RequestDeny Request
Application

QoS
Adjustment

Application
QoS

Adjustment
CancellationCancellation

Resource
Reallocation

Resource
Reallocation

A = alternatives C = complements I = implements

A A A

A

A

C

C C
C

CC

I

I I

I

Resource
Reallocation

Resource
Reallocation

A = alternatives C = complements I = implements

A A A

A

A

C

C C
C

CC

I

I I

I

 4

When more than one provider offers a requested service, a choice must be made as to which provider

will best meet the requirements of the requesting application.

One of the challenges of large-scale distributed real-time systems involves the need for entities to learn

about each other. In client/server systems, the client must find a server from which it can request service.

Further, the client may impose timing QoS requirements on the response from the server. Similarly, in a

real-time multi-agent system, certain agents provide services that other agents may require, with specified

QoS requirements. Consider a simple example in which a client wishes to print a document within a

specified amount of time in a network with more than one printer. Instead of the client having to explicitly

be aware of all printers and their current capabilities (e.g. pages per minute, color/no color, current queue

length), the client should be able to inform the middleware of its service requirements, including timing

requirements, and then allow the middleware to choose the appropriate printer. This both simplifies the

client development and enhances system flexibility.

In general, an application in a DRTS may require that some service be performed on its behalf and respond

within a specified deadline. If there is more than one provider that can offer the required service, then the

application should make the request to the provider that can best meet the deadline of this application,

while considering other execution in the system as well. This does not necessarily mean that the

application should request the “fastest” service or from the provider with the lightest load. This decision

should be made in the context of the entire system by considering the QoS requirements of all applications

and the QoS capabilities of all nodes in the system.

Provide a middleware mechanism where service providers register their QoS capabilities, and

applications use the mechanism to request their required QoS. The middleware analyzes the

requests in the context of the entire distributed system and then binds each application request to the

provider that it determines to best meets the overall QoS requirements of the system.

Figure 3 – Service Request Binding Pattern

������������

Que
ry

Trader

Client Service

ExportOffe
r(s

)

Bind

Que
ry

Trader

Client Service

ExportOffe
r(s

)

Bind

 5

Figure 3 illustrates the Service Request Binding pattern where a Trader service is used to provide bindings

between clients that have requests with QoS requirements and servers that provide services. Some

instances of this pattern include [2], [3], and [4]. The Service Request Binding pattern uses the Up Front

Analysis pattern to make decisions about good bindings. Up Front Analysis can determine whether or not a

particular binding choice will cause a node in the system to become overloaded. The Service Request

Binding pattern is also related to the Resource Reallocation pattern in that initial bindings may meet

requirements as they are known at the time of a client’s request. However, as requirements change, or the

system changes, reallocation may be necessary.

3 Local Enforcement Pattern
Optimal distributed scheduling often requires the use of global scheduling

information and coordinated scheduling enforcement throughout the distributed

system. Final scheduling enforcement is usually made by endsystems using

techniques that are local to each endsystem. Unfortunately, given the

heterogeneity of possible endsystems in a distributed system, there is usually no

single notion of local enforcement. For instance, many endsystems use a form

of priority-based local enforcement, but even these endsystems often have different valid priority ranges

and cardinality. The Local Enforcement pattern allows the middleware to transform globally-determined

scheduling information for a task into scheduling information that is appropriate for the local endsystem on

which it executes.

������������

Global scheduling decisions in a real time distributed system must be enforced on local endsystems

that may have heterogeneous local scheduling enforement techniques.

Endsystems use scheduling information to order task execution, but the implementation details vary among

endsystems. Many systems assign all tasks a given priority within some valid priority range. For example,

RT CORBA 1.0 allows for 32,767 different priorities, but the real-time operating systems that lie on the

individual endsystems may allow far fewer priorities [5]. This problem is not constrained to endsystems,

but extends to other local scheduling enforcement points as well. For example, Differentiated Services

(diffserv) routing in IP networks allows packets to maintain priority across the network, but only allows up

to 64 possible priority values, and usually less [6]. Furthermore, certain systems may order priority in

ascending order, while others order priority in descending order.

Given a global set of scheduling parameters such as deadline, period, and importance, different endsystems

may enforce the global scheduling decisions differently. For example, consider a distributed system where

it is determined to be optimal to globally enforce Most Urgent First (MUF [7]) scheduling across the

system. One endsystem may provide an operating system level priority assignment based only on the

 6

deadlines of the tasks scheduled on that endsystem, while another endsystem, given the same set of

parameters, may locally implement the MUF scheduling by setting up thread queues and dispatch the tasks

to threads without the use of OS-level priorities. In either case, the distributed system must have some way

to provide the right information to the endsystem so that the scheduling policy can be enforced as expected.

Determine globally optimal scheduling parameters. This determination is based upon the global

scheduling decisions made for the system. For each endsystem, when possible, install a local

enforcement policy that is consistent with the assumptions of the global scheduling. When such an

installation it is not possible, have the global scheduler map the global scheduling parameters to the

local scheduling parameters, and have the global scheduling take the affect of the mapping into

account when making its global scheduling decisions. In the example described above, if it is possible

to install an MUF scheduler that enforces globally determined urgency parameters on each

endsystem, do so. However, if a local endsystem only uses deadline-based scheduling, map the global

urgency to an appropriate deadline for that local endsystem and have any analysis done in the global

scheduler comprehend that local enforcement on this endsystem will be deadline-based, not MUF.

Figure 4 - Local Enforcement Pattern

������������

Figure 4 illustrates the Local Enforcement pattern where a global priority is assigned, but mapped to a local

endsystem priority. Instances of the Local Enforcement pattern can be found in [8], [9], and [5]. A primary

example is the priority mapping provided by RT CORBA 1.0. In these systems, a CORBA priority is

determined globally and then mapped to the local priority of the operating systems. Furthermore, RT

Global Scheduling
Service assigns
global priority

Local Endsystem
runs task at

mapped priority

Priority Mapping
Algorithm maps

global priority to local
RTOS priority

Global Scheduling
Service assigns
global priority

Local Endsystem
runs task at

mapped priority

Priority Mapping
Algorithm maps

global priority to local
RTOS priority

Global Scheduling
Service assigns
global priority

Local Endsystem
runs task at

mapped priority

Priority Mapping
Algorithm maps

global priority to local
RTOS priority

Global Scheduling
Service assigns
global priority

Local Endsystem
runs task at

mapped priority

Priority Mapping
Algorithm maps

global priority to local
RTOS priority

 7

CORBA 1.0 provides an interface to install priority mapping algorithms that are consistient with the global

scheduling assumptions.

The Local Enforcement pattern is related to the overload handling patterns described in Section 4 because

each of the handling decisions must be enforced on the local endsystem.

4 Overload Management Patterns

In this section we describe the patterns for overload management. Recall from the hierarchy in Figure 1

that there are two main categories of overload management patterns: Overload Detection and Overload

Handling patterns. Sections 4.1-4.3 discuss the Overload Detection patterns (Up Front Analysis, Resource

Monitoring, Failure Detection). Sections 4.4-4.7 discuss the Overload Handling patterns (Deny Request,

Cancellation, Application QoS Adjustment, Resource Reallocation).

4.1 Up Front Analysis Pattern

Given a particular request for resources in a DRTS, overload can occur if

there are not enough resources to fulfill the request. Further, this overload

can cause other failures across the system. For example, if the execution of a

new task on one node causes another task to miss its deadline, then any other

tasks across the system that depend on the failed task may also fail. For this

reason, it is often necessary to avoid overload and not let it occur. The Up

Front Analysis pattern allows a distributed real-time system to determine if an

overload might occur by using analysis techniques.

������������

Up front detection of overload in a DRTS is necessary if the system requires that overload not occur.

In a DRTS with tight timing constraints across the system, missing one deadline can lead to a cascading

effect of missing other deadlines across the system. For example, if the first task in an end-to-end chain of

tasks misses its deadline, the rest of the tasks in the chain are in danger of also failing. Some systems

provide mechanisms to detect these kinds of failures (see Section 4.2) and then react to them. However, the

reaction to such failures must itself be scheduled and can cause further deadlines to be missed. This type of

unpredictable behavior is not tolerable in systems with tight timing constraints and mission-critical tasks.

In systems where uncontrolled failure is not acceptable, it is necessary to be able to predict when overload

will occur. Another class of systems in which overload cannot occur are systems where recovery from

overload-induced failures is not possible. For instance, in manufacturing applications, and in systems that

 8

affect their environment in general, it may often be either costly or impossible to achieve recovery. In

these systems it is often better not to start a task than to allow the task to start and then fail.

Use existing knowledge of the system, including timing constraints, resource capabilities and

scheduling techniques, to analyze the system. Predict when and where the overloads could happen

and provide results of the analysis to the system to allow it to determine how to handle the overload.

The goal is to determine dynamically if an incoming task can be scheduled in the existing system

without causing overload to occur, thus causing some tasks to possibly miss deadlines.

In a static, hard real-time system, a priori analysis is often used to determine the schedulability of the

entire system. Analysis techniques such as rate monotonic analysis [11] and earliest deadline first

scheduling analysis [11] are well-known ways of determining system schedulability. In a dynamic

DRTS, similar analysis techniques can be used as online “acceptance tests” when a new task requests

resources [11].

Up front analysis can provide a predictable means of determining when and where overload can

occur. This kind of technique can be pessimistic in that often worst case execution times are used to

analyze the system. When the worst case does not occur, resources are wasted. However, in

situations where it is better to be predictable than to fully utilize all resources, up front analysis is

necessary.

Figure 5 – A system using Up Front Analysis in the Admission Controller module [10].

������������

 9

This pattern provides analysis results for the Deny Request and the Cancellation patterns in order to

determine if it is necessary to deny the new request or to cancel an existing task. The Up Front Analysis

pattern is also useful to the Service Request Binding pattern to help determine whether a particular binding

of client to server is schedulable. Figure 5 illustrates the Up Front Analysis pattern where an admission

controller analyzes the system and a new request to determine if it is schedulable. Examples of this pattern

appear in [10], [11] and [12].

4.2 Resource Monitoring Pattern

Unlike the Up Front Analysis pattern of Section 4.1, the Resource Monitoring pattern detects the potential

for overload before or as it occurs. That is, it can compare monitored results with defined thresholds to

detect that overload will occur if not action is taken. We do not describe this pattern here because it is

described in [13]; we include it in this paper for completeness.

4.3 Failure Detection Pattern

In a system in which it is not necessary or feasible to perform up front

analysis, or specific QoS monitoring, it is necessary to know when and

where overload has occurred so that it can be handled. The Failure

Detection pattern detects overload after it has occurred and caused a

system QoS failure, such as missed deadlines, or degradation of service in

a DRTS.

������������

In a system in which overload can occur, there must be some way to detect it and report it so that it

can be handled.

In order to maintain the specified levels of QoS required by an application, failures in the system should be

detected so that they can be handled. Further, detection of failures will allow the system to know where

future adjustments might be necessary to eventually reduce the number of future QoS failures.

Provide a mechanism to detect QoS failure. Allow applications to specify QoS requirements such as

deadlines and periods. The failure mechanism should provide a means to determine if the

requirements have been met. For example, in [7] a mechanism is provided that can detect timing

failures and provide information about the failure to the failure handler. CORBA and many other

run-time systems provide a timeout mechanism that can detect deadline violations.

 10

This solution differs from the Resource Monitoring pattern [13] in that the Resource Monitoring

pattern can intelligently analyze the performance of the DRTS and determine when it is necessary to

act. This may be in reaction to some performance threshold being hit that indicates that overload

will occur if no action is taken soon. The Failure Detection pattern allows the failure to occur and

then reports it to be handled. This is a more “optimistic” pattern than both Up Front Analysis and

Resource Monitoring because it assumes that no action is required unless the failure actually occurs.

Figure 6 – CORBA Time-Out uses the Failure Detection Pattern [14]

������������

Figure 6 illustrates the Failure Detection pattern as used in a CORBA Time-Out. The Failure Detection

pattern provides information to the Cancellation pattern to determine which tasks to cancel, when.

Examples of this pattern appear in [15], [16] and [17].

4.4 Deny Request Pattern

In a DRTS in which recovery is too costly or not an option, and overload should

not occur, there needs to be a simple way to maintain the QoS performance of

the system. The Deny Request pattern addresses overload by keeping tasks

from starting if they cause an overload.

������������

If the potential for overload has been detected up front, and recovery from

failure or QoS degradation is not an option, the overload should not be

allowed to occur.

 11

In many DRTSs the timing constraints on the applications can be too tight to allow for recovery from QoS

failures during system execution. It is often the case that maintaining the performance of the existing

system is more important than allowing new tasks to enter the system that might cause overload to occur.

For example in sensor networks where existing tasks form intricate dynamic relationships with each other,

it might not be safe to terminate existing tasks, but denying an entering task may be allowed. In such

systems it is not feasible to wait for overload to occur and then fix it, or to cancel an existing task in order

to allow a new task to execute. There must be a way to maintain the integrity of the system if a newly

requested task will not fit.

Provide a mechanism that can deny a request if there are not enough resources to service the request.

In a DRTS that employs this pattern, it is assumed that overload detection uses an up front analysis

technique (Section 4.1) to determine if a newly requested task will cause overload. When a request is

denied, the client making the request can decide to delay the request and resubmit it at a later time.

However, if the request has a timing constraint that would preclude it from being delayed, it will

simply not execute at all. In this case the client may be required to do exception handling of its own.

Figure 7 - An overload management in RTDBS using Deny Request (from [18]).

������������

Figure 7 depicts an illustration of the Deny Request pattern in a real-time database system. The admissin

controller determines if a new transaction can be scheduled. If not, the request is denied, and it is placed in

a rejection queue. Examples of this pattern appear in [18], [11] and [12]. Figure 3, from [18], shows the

pattern is used in overload management in a real-time database system.. The Deny Request pattern receives

information from the Up Front Analysis pattern to determine if the requested task should be denied.

 12

4.5 Cancellation Pattern

In a DRTS where overload can occur and it is feasible to terminate or

change existing tasks, the Cancellation pattern allows for tasks to be either

removed from the system, or to have their scheduling parameters changed.

This is done when new tasks may contribute more value to the systems than

one or more existing tasks.

������������

In DRTS’s where overlaod can occur and new tasks may contribute more value than existing tasks,

there must be some way to terminate or adjust the scheduling parameters of existing tasks.

In general, in a DRTS, if overload is either a potential problem (predicted) or an actual problem (occurred)

handling the overload is necessary. The Deny Request pattern described in Section 4.4 always chooses to

not allow the new request to begin execution. However, in many systems tasks can have varying levels of

importance, and it may be unacceptable to deny a very important new task in order to allow the currently

executing tasks to continue to run. For example, new tasks representing the detection of new threats may

be more important to execute than existing tasks. Also, in systems where up front analysis is not used, it is

not feasible to use the Deny Request pattern to handle overload because there is no way to know if the

current request will be schedulable. In both of these cases, it may be necessary to either remove one or

more tasks from the system, or to adjust the scheduling parameters of existing tasks in order to alleviate the

overload.

Provide a mechanism to allow a task to cancel itself, or to cancel another task. The mechanism

should include a technique for deciding which tasks should be cancelled. For instance, if an overload

is detected using the Failure Detection pattern (Section 4.3), then the Cancellation mechanism should

cancel the task that failed. On the other hand, if the potential for deadline violation is detected by the

Up Front Analysis pattern (Section 4.1), the Cancellation mechanism can choose from among all of

the tasks in the system that are affected by the overload. It can use information about the tasks and

about the system to determine which task(s) to cancel. This information can include information

such as the relative importance of the tasks, the remaining execution time of the tasks, the time to

recover from cancellation, and the dependencies among the tasks in the system. Canceling a low

importance task to allow a more important task execute may be increase the value obtained by the

system. However, if the cancelled task has almost completed, or has several tasks that depend on its

completion, then it might not be the best choice for cancellation. The Cancellation mechanism should

provide algorithms for choosing the tasks to cancel given various system circumstances.

Cancellation of a task may be implemented in various ways. When a task has already missed its

deadline, which has been detected using the Failure Detection pattern, termination of the task maybe

 13

the best way to implement Cancellation. However, in a system that has predicted overload based on

Up Front Analysis, the prediction may be pessimistic and the overload may not actually occur at all.

Rather than terminating the task(s) chosen by the Cancellation mechanism, it may be better to

change the scheduling parameters instead. This can manifest itself in lowering the priority of a

cancelled task, or lengthening its deadline or its period. The Cancelled tasks will not meet their

timing constraints in the worst case, but may be able to complete if there is more slack in the

schedule than was predicted by the Up Front Analysis.

BSS - A

ESS - A

cancel DT

Process the
cancel at next

scheduling point

Propagate
cancel

Head of DT

Host 1 Host 2 Host 3

Figure 8 - Real-Time CORBA Distributable Thread using Cancellation (from [19]).

������������

Figure 8 illustrates the Cancellation pattern as specified in Real-Time CORBA 2.0. A distributable thread

can be cancelled during its execution. The cancellation is processed at the next scheduling point in its

execution. Examples of this pattern appear in [19], [20], [21] and [22]. Figure 4, from [19], shows how

the Cancellation pattern is used in the Real-Time CORBA 2.0 Distributable Thread architecture. The

Cancellation pattern can use analysis information provided by the Up Front Analysis pattern to determine

which tasks to cancel. It may also use information provided by the Failure Detection pattern to cancel a

task with a QoS failure.

 14

4.6 Application QoS Adjustment

The QoS Adjustment pattern has the application negotiate to adjust the QoS requirements of tasks in an
intelligent way when overload has occurred. The pattern is described in [23], we include it here for
completeness.

4.7 Resource Reallocation

The Resource Reallocation pattern has the system reallocate resources to alleviate overload. In this pattern

QoS is not necessarily adjusted, nor are tasks cancelled, instead the system attempts to find a better

resource allocation, perhaps moving tasks to less loaded nodes, that will still maintain the original QoS

specified by the application. We do not describe the pattern here, it is described in [13]. We include it here

for completeness.

5 Conclusions
This paper has presented a pattern language for scheduling in a DRTS. These patterns provide a

framework for middleware developers to use when building a system with global QoS requirements that

must be enforced on local endsystems. While the general description of the context for these patterns

involves distributed real-time systems, specific details about the particular applications will result in

different traversals of the pattern language in Figure 2. For example, in a system that cannot tolerate

recovery of existing execution, the Up Front Analysis pattern might be used along with the Deny Request

pattern for overload management. On the other hand, if the system has softer constraints, and can afford to

be optimistic about failure, it can use the Failure Detection pattern with the Cancellation pattern to manage

overload.

The patterns in this language clearly do not stand alone. They are closely related to other patterns involved

in scheduling in a distributed system. A larger pattern language is described in [24]. Here, these

distributed real-time scheduling patterns are put into context with patterns for global resource allocation,

scheduling on endsystem middleware, and scheduling at the operating system level.

References

[1] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language: Towns, Buildings, Construction.

Oxford University Press, 1977.

[2] A. Uvarov, L. Cingiser DiPippo, V. Fay-Wolfe, and P. Gupta, Slack-Time Driven Distributed Real-
Time Dynamic Binding, submitted to Journal of Parallel and Distributed Computing, April 2003.

[3] G. Parr, I. W.K.Ho, A. Marshall, D H.T.Chieng, A Software Agent Brokering Environment for ATM
Real-Time Network Resource Allocation, Online Seminar on Embedded Software, Open Symposium
for Electrical Engineers (OSEE). 27 Feb 2001. www.osee.net.

 15

[4] H. O. Rafaelsen, F. Eliassen,. Trading and Negotiating Stream Bindings, In Proceedings of

Middleware'2000, New York, 3-7 April 2000, http://citeseer.nj.nec.com/rafaelsen00trading.html.

[5] OMG, Realtime CORBA. Electronic document at http://www.omg.org/docs/orbos/98-10-05.pdf.

[6] Sourceforge, Differentiated Services for Linux, http://diffserv.sourceforge.net/.

[7] D. Stewart, P. Khosla, Real-Time Scheduling of Dynamically Reconfigurable Systems, Proceedings of
the IEEE International Conference on Systems Engineering, Dayton Ohio, pp. 139-142, August 1991.

[8] Craig Rodrigues, Yamuna Krishnamurthy, IrfanPyarali, Pradeep Gore, Using Prioritized Network
Traffic to Achieve End-to-End Predictability, Real-Time and Embedded Distributed Object
Computing, June 15-18, 2002, Arlington, Virginia, USA.

[9] L. DiPippo, V. F. Wolfe, L. Esibov, G. Cooper, R. Johnston, B. Thuraisingham, J. Mauer, Scheduling
and Priority Mapping for Static Real-Time Middleware, Real-Time Systems Journal, 20, 155-182,
2001.

[10] R. Steinsen, Predicting Transient Overloads in Real-Time Systems using Artificial Neural Networks,
University of Skovde, Technical Report #HS-IDA-MD-99-006, 1999.

[11] J. Liu, Real-Time Systems, Prentice Hall, 2000

[12] Sven Gestegård Robertz, Flexible automatic memory management for real-time and embedded
systems, Licenciate thesis, Dept. of Computer Science, Lund University, May 2003.

[13] Toni Marinucci, Lonnie Welch, Patterns for Developing Adaptive, Distributed Real-Time Systems,
submitted to PLoP 2003.

[14] OMG, Common Object Request Broker Architecture, http://www.omg.org.

[15] J. Hansson, S. Son, J. Stankovic, S. Andler, Dynamic Transaction Scheduling and Reallocation in
Overloaded Real-Time Database Systems, Proceedings of the 5th International Conference on Real-
Time Computing Systems and Applications (RTCSA'98), Hiroshima, Japan, IEEE Computer Society
Press, 1998.

[16] C. Gill, D. Schmidt, R. Cytron, Multi-Paradigm Scheduling for Distributed Real-Time Embedded
Computing, IEEE Proceedings Special Issue on Modeling and Design of Embedded Systems, October
2002.

[17] Douglas C. Schmidt Steve Vinosk,i Object Interconnections: An Overview of the OMG CORBA
Messaging Quality of Service (QoS) Framework (Column 19), C++ Report, March.

[18] J. Hansson, S. Son: Overload Management in RTDBs. Real-Time Database Systems: Architecture and
Techniques, Kluwer Academic Publishers, 2001.

[19] OMG, Realtime CORBA Dynamic Scheduling, ptc/01-08-34, http://www.omg.org/cgi-
bin/apps/doc?ptc/01-08-34.pdf.

[20] C. Gill, D. Schmidt, R. Cytron, Multi-Paradigm Scheduling for Distributed Real-Time Embedded
Computing, IEEE Proceedings Special Issue on Modeling and Design of Embedded Systems, October
2002.

[21] D. Hong, Real-Time Transaction Scheduling: a Cost-Conscious Approach, thesis, D. Hong, Theodore
Johnson, Sharma Chakravarthy, Real-Time Transactin Scheduling: A Cost Conscious Approach,
SIGMOD Conference 1993: 197-206.

[22] C. Montez, J. Fraga, R. Oliveira, An Adaptive Model for Programming Distributed Real-Time
Applications in CORBA, WSTR'98, Rio de Janeiro, RJ, Brazil, May 1998.

[23] J. P.Loyall, P. Rubel, M. Atighetchi, R. Schantz, J. Zinky, Emerging Patterns in Adaptive, Distributed
Real-Time, Embedded Middleware, OOPSLA 2002 Workshop on Patterns in Distributed Real-time
and Embedded System , Nov. 2002.

 16

[24] C. Gill, D. Niehaus, L. DiPippo, V. Fay Wolfe, and L. Welch, Mapping a Multi-Level Scheduling

Pattern Language to Distributed Real-Time Embedded Applications, OOPSLA 2002 Workshop on
Patterns in Distributed Real-time and Embedded System , Nov. 2002.

