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Abstract 

This paper describes patterns in distributed real-time scheduling.  It begins with an overview of the patterns in the 
paper, and a view of the pattern language made up of the patterns described.  The paper goes on to describe each of the 
patterns in Alexandrian form. 

1 Introduction 
Many real-time distributed applications such as avionics, on-line stock trading, and military command and 

control systems require that scheduling be performed across the system to ensure that the quality of service 

(QoS) requirements specified by the application are met.  Middleware in a distributed real-time system 

(DRTS) can provide the infrastructure and mechanisms required to perform the necessary scheduling.  In 

such a distributed system, each endsystem may provide its own local scheduling mechanisms.  However, 

the middleware across the system must take into account the entire system, and provide coordinated 

scheduling information to the individual endsystems, which will enforce the globally determined 

scheduling decisions.  The global scheduling decisions that are made in a DRTS include where to allocate 

service requests, how to provide scheduling information to local endsystems, and how to handle overload 

that can cause QoS failures in the system.  For example, in a command and control application in which 

sensor information must reach a decision-maker, and then possibly a shooter, global end-to-end QoS 

requirements must be coordinated by the middleware, and enforced on the endsystems involved.   

From this type of application, distributed real-time scheduling patterns have emerged.  While many patterns 

may be applied in performing scheduling at the distributed level, this paper concentrates on those patterns 

that specifically involve global decision-making that considers the entire distributed system.  In this section 

of the paper we give a brief overview of the distributed real-time scheduling patterns.  We also provide a 

view of the relationships among these patterns through a pattern language.  Sections 2-4 describe the 

pattern details in Alexandrian [1] form.  Section 5 concludes by summarizing and by placing the patterns 

described here into a larger context with other patterns in distributed real-time systems. 

1.1 Patterns Overview 

The distributed real-time scheduling patterns described here are:  Service Request Binding, Local 

Enforcement, and a group of overload management patterns.  Service Request Binding allows middleware 

to match a request for service by an application with a provider of the service using an analysis of the QoS 
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specifications of the requestor, and the QoS capabilities of the provider.  Local Enforcement provides a way 

for globally determined scheduling decisions to be enforced on local endsystems with varying 

implementation mechanisms. 

 

Figure 1 - Overload Management Pattern Hierarchy 

 
The overload management patterns discussed here are a group of related patterns, as depicted in Figure 1.  

Overload is defined to be a situation in which QoS timing specifications cannot be met.  For example, if an 

endsystem has been scheduled to execute a set of tasks for which it cannot meet the deadlines of all of the 

tasks, overload has occurred.  Further, in an end-to-end application overload on one endsystem can 

propagate to other endsystems involved in the application if a task on one endsystem is dependent upon 

another task on an overloaded node.  The overload management patterns described here are divided into 

two types.  Figure 1 depicts the categorization of the overload management patterns.  Overload detection 

involves determining when and where overload has or might occur.  There are three specific patterns in this 

category:  Up Front Analysis, Resource Monitoring, and Failure Detection.  Up Front Analysis detects 

overload before it occurs by performing a priori analysis whenever a new request for resources enters the 

system.  Alternatively, Resource Monitoring detects overload by analyzing system conditions as they are 

occurring.  Failure Detection detects overload after a QoS failure has occurred.   

Overload handling involves determining how to respond to the detection of overload.   This paper describes  

three ways in which overload can be handled:  Task Scheduling Adjustment, Application QoS Adjustment, 

and Resource Reallocation.  Task Scheduling Adjustment handles overload by adjusting the task scheduling 

parameters, such as priority, deadline and importance.  This can be implemented by Deny Request, which 

does not allow execution of a request that could potentially cause overload.  Task scheduling adjustment 

can alternatively be implemented by Cancellation, in which one or more tasks has its scheduling 

parameters adjusted in order to relieve the overload.  Application QoS Adjustment allows the application to 
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specify how to handle the overload.  Resource Reallocation handles overload by moving execution of a 

task on an overloaded node to another, less loaded node. 

 

1.2 Pattern Language 

The pattern language that illustrates the relationships among the distributed real-time scheduling patterns 

described in this paper is depicted in Figure 2.  These relationships are further explored in the full 

descriptions of the patterns (Sections 2-4). 

 

Figure 2 - Distributed Real-Time Scheduling Pattern Language 

2 Service Request Binding Pattern 
In a DRTS, it is possible that several specific services may be offered by more 

than one provider.  An application that requires such a service must have some 

way of finding the location of the provider that will best meet its Quality of 

Service (QoS) needs.   The Service Request Binding pattern provides a solution 

that allows applications to “find” the appropriate service provider to which to 

bind. 
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When more than one provider offers a requested service, a choice must be made as to which provider 

will best meet the requirements of the requesting application. 

One of the challenges of large-scale distributed real-time systems involves the need for entities to learn 

about each other.  In client/server systems, the client must find a server from which it can request service.  

Further, the client may impose timing QoS requirements on the response from the server.  Similarly, in a 

real-time multi-agent system, certain agents provide services that other agents may require, with specified 

QoS requirements.  Consider a simple example in which a client wishes to print a document within a 

specified amount of time in a network with more than one printer.  Instead of the client having to explicitly 

be aware of all printers and their current capabilities  (e.g. pages per minute, color/no color, current queue 

length), the client should be able to inform the middleware of its service requirements, including timing 

requirements, and then allow the middleware to choose the appropriate printer.  This both simplifies the 

client development and enhances system flexibility.   

In general, an application in a DRTS may require that some service be performed on its behalf and respond 

within a specified deadline.  If there is more than one provider that can offer the required service, then the 

application should make the request to the provider that can best meet the deadline of this application, 

while considering other execution in the system as well.  This does not necessarily mean that the 

application should request the “fastest” service or from the provider with the lightest load.  This decision 

should be made in the context of the entire system by considering the QoS requirements of all applications 

and the QoS capabilities of all nodes in the system.  

Provide a middleware mechanism where service providers register their QoS capabilities, and 

applications use the mechanism to request their required QoS.  The middleware analyzes the 

requests in the context of the entire distributed system and then binds each application request to the 

provider that it determines to best meets the overall QoS requirements of the system.   

Figure 3 – Service Request Binding Pattern 
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Figure 3 illustrates the Service Request Binding pattern where a Trader service is used to provide bindings 

between clients that have requests with QoS requirements and servers that provide services.  Some 

instances of this pattern include [2], [3], and [4].  The Service Request Binding pattern uses the Up Front 

Analysis pattern to make decisions about good bindings.  Up Front Analysis can determine whether or not a 

particular binding choice will cause a node in the system to become overloaded.  The Service Request 

Binding pattern  is also related to the Resource Reallocation pattern in that initial bindings may meet 

requirements as they are known at the time of a client’s request.  However, as requirements change, or the 

system changes, reallocation may be necessary.  

3 Local Enforcement Pattern 
Optimal distributed scheduling often requires the use of global scheduling  

information and coordinated scheduling enforcement throughout the distributed 

system.  Final scheduling enforcement is usually made by endsystems using 

techniques that are local to each endsystem.  Unfortunately, given the 

heterogeneity of possible endsystems in a distributed system, there is usually no 

single notion of local enforcement.  For instance, many endsystems use a form 

of priority-based local enforcement, but even these endsystems often have different valid priority ranges 

and cardinality.  The Local Enforcement pattern allows the middleware to transform globally-determined 

scheduling information for a task into scheduling information that is appropriate for the local endsystem on 

which it executes.    

������������ 

Global scheduling decisions in a real time distributed system must be enforced on local endsystems 

that may have heterogeneous local scheduling enforement techniques. 

Endsystems use scheduling information to order task execution, but the implementation details vary among 

endsystems.  Many systems assign all tasks a given priority within some valid priority range. For example, 

RT CORBA 1.0 allows for 32,767 different priorities, but the real-time operating systems that lie on the 

individual endsystems may allow far fewer priorities  [5]. This problem is not constrained to endsystems, 

but extends to other local scheduling enforcement points as well.  For example, Differentiated Services 

(diffserv) routing in IP networks allows packets to maintain priority across the network, but only allows up 

to 64 possible priority values, and usually less  [6].  Furthermore, certain systems may order priority in 

ascending order, while others order priority in descending order.   

Given a global set of scheduling parameters such as deadline, period, and importance, different endsystems 

may enforce the global scheduling decisions differently.  For example, consider a distributed system where 

it is determined to be optimal to globally enforce Most Urgent First (MUF [7]) scheduling across the 

system.  One endsystem may provide an operating system level priority assignment based only on the 
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deadlines of the tasks scheduled on that endsystem, while another endsystem, given the same set of 

parameters, may locally implement the MUF scheduling by setting up thread queues and dispatch the tasks 

to threads without the use of OS-level priorities.  In either case, the distributed system must have some way 

to provide the right information to the endsystem so that the scheduling policy can be enforced as expected. 

 

Determine globally optimal scheduling parameters.  This determination is based upon the global 

scheduling decisions made for the system.  For each endsystem, when possible, install a local 

enforcement policy that is consistent with the assumptions of the global scheduling. When such an 

installation it is not possible, have the global scheduler map the global scheduling parameters to the 

local scheduling parameters, and have the global scheduling take the affect of the mapping into 

account when making its global scheduling decisions.  In the example described above, if it is possible 

to install an MUF scheduler that enforces globally determined urgency parameters on each 

endsystem, do so.  However, if a local endsystem only uses deadline-based scheduling, map the global 

urgency to an appropriate deadline for that local endsystem and have any analysis done in the global 

scheduler comprehend that local enforcement on this endsystem will be deadline-based, not MUF. 

 

Figure 4 - Local Enforcement Pattern 
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Figure 4 illustrates the Local Enforcement pattern where a global priority is assigned, but mapped to a local 

endsystem priority.  Instances of the Local Enforcement pattern can be found in [8], [9], and [5]. A primary 

example is the priority mapping provided by RT CORBA 1.0.  In these systems, a CORBA priority is 

determined globally and then mapped to the local priority of the operating systems.  Furthermore, RT 

Global Scheduling 
Service assigns 
global priority

Local Endsystem
runs task at 

mapped priority

Priority Mapping 
Algorithm maps  

global priority to local 
RTOS priority

Global Scheduling 
Service assigns 
global priority

Local Endsystem
runs task at 

mapped priority

Priority Mapping 
Algorithm maps  

global priority to local 
RTOS priority

Global Scheduling 
Service assigns 
global priority

Local Endsystem
runs task at 

mapped priority

Priority Mapping 
Algorithm maps  

global priority to local 
RTOS priority

Global Scheduling 
Service assigns 
global priority

Local Endsystem
runs task at 

mapped priority

Priority Mapping 
Algorithm maps  

global priority to local 
RTOS priority



 7

CORBA 1.0 provides an interface to install priority mapping algorithms that are consistient with the global 

scheduling assumptions. 

The Local Enforcement pattern is related to the overload handling patterns described in Section 4 because 

each of the handling decisions must be enforced on the local endsystem.   

4 Overload Management Patterns 

In this section we describe the patterns for overload management.  Recall from the hierarchy in Figure 1 

that there are two main categories of overload management patterns:  Overload Detection and Overload 

Handling patterns.  Sections 4.1-4.3 discuss the Overload Detection patterns (Up Front Analysis, Resource 

Monitoring, Failure Detection).  Sections 4.4-4.7 discuss the Overload Handling patterns (Deny Request, 

Cancellation, Application QoS Adjustment, Resource Reallocation). 

4.1  Up Front Analysis Pattern 

Given a particular request for resources in a DRTS, overload can occur if 

there are not enough resources to fulfill the request.  Further, this overload 

can cause other failures across the system.  For example, if the execution of a 

new task on one node causes another task to miss its deadline, then any other 

tasks across the system that depend on the failed task may also fail.  For this 

reason, it is often necessary to avoid overload and not let it occur.  The Up 

Front Analysis pattern allows a distributed real-time system to determine if an 

overload might occur by using analysis techniques. 

 
������������ 

 
Up front detection of overload in a DRTS is necessary if the system requires that overload not occur.   

 

In a DRTS with tight timing constraints across the system, missing one deadline can lead to a cascading 

effect of missing other deadlines across the system.  For example, if the first task in an end-to-end chain of 

tasks misses its deadline, the rest of the tasks in the chain are in danger of also failing.  Some systems 

provide mechanisms to detect these kinds of failures (see Section 4.2) and then react to them.  However, the 

reaction to such failures must itself be scheduled and can cause further deadlines to be missed.  This type of 

unpredictable behavior is not tolerable in systems with tight timing constraints and mission-critical tasks.  

In systems where uncontrolled failure is not acceptable, it is necessary to be able to predict when overload 

will occur.   Another class of systems in which overload cannot occur are systems where recovery from 

overload-induced failures is not possible.  For instance, in manufacturing applications, and in systems that 
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affect their environment in general, it may often be either costly or impossible to achieve recovery.  In 

these systems it is often better not to start a task than to allow the task to start and then fail. 

 
Use existing knowledge of the system, including timing constraints, resource capabilities and 

scheduling techniques, to analyze the system.  Predict when and where the overloads could happen 

and provide results of the analysis to the system to allow it to determine how to handle the overload. 

The goal is to determine dynamically if an incoming task can be scheduled in the existing system 

without causing overload to occur, thus causing some tasks to possibly miss deadlines.    

In a static, hard real-time system, a priori analysis is often used to determine the schedulability of the 

entire system.  Analysis techniques such as rate monotonic analysis [11] and earliest deadline first 

scheduling analysis [11] are well-known ways of determining system schedulability.  In a dynamic 

DRTS, similar analysis techniques can be used as online “acceptance tests” when a new task requests 

resources [11]. 

Up front analysis can provide a predictable means of determining when and where overload can 

occur.  This kind of technique can be pessimistic in that often worst case execution times are used to 

analyze the system.  When the worst case does not occur, resources are wasted.  However, in 

situations where it is better to be predictable than to fully utilize all resources, up front analysis is 

necessary. 

 
 
 
 
 
 
 
 
 
 
 
                                           

 

 

                                 

 

 

Figure 5 – A system using Up Front Analysis in the Admission Controller module [10]. 

 
������������ 
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This pattern provides analysis results for the Deny Request and the Cancellation patterns in order to 

determine if it is necessary to deny the new request or to cancel an existing task.  The Up Front Analysis 

pattern is also useful to the Service Request Binding pattern to help determine whether a particular binding 

of client to server is schedulable.  Figure 5 illustrates the Up Front Analysis pattern where an admission 

controller analyzes the system and a new request to determine if it is schedulable.  Examples of this pattern 

appear in [10], [11] and [12].  

4.2 Resource Monitoring Pattern 

Unlike the Up Front Analysis pattern of Section 4.1, the Resource Monitoring pattern detects the potential 

for overload before or as it occurs.  That is, it can compare monitored results with defined thresholds to 

detect that overload will occur if not action is taken.  We do not describe this pattern here because it is 

described in [13]; we include it in this paper for completeness. 

 

4.3 Failure Detection Pattern 

 

In a system in which it is not necessary or feasible to perform up front 

analysis, or specific QoS monitoring, it is necessary to know when and 

where overload has occurred so that it can be handled.  The Failure 

Detection pattern detects overload after it has occurred and caused a 

system QoS failure, such as missed deadlines, or degradation of service in 

a DRTS.   

������������ 

In a system in which overload can occur, there must be some way to detect it and report it so that it 

can be handled.   

In order to maintain the specified levels of QoS required by an application, failures in the system should be 

detected so that they can be handled.  Further, detection of failures will allow the system to know where 

future adjustments might be necessary to eventually reduce the number of future QoS failures.  

 

Provide a mechanism to detect QoS failure.  Allow applications to specify QoS requirements such as 

deadlines and periods. The failure mechanism should provide a means to determine if the 

requirements have been met.  For example, in [7] a mechanism is provided that can detect timing 

failures and provide information about the failure to the failure handler.  CORBA and many other 

run-time systems provide a timeout mechanism that can detect deadline violations. 
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This solution differs from the Resource Monitoring pattern [13] in that the Resource Monitoring 

pattern can intelligently analyze the performance of the DRTS and determine when it is necessary to 

act.  This may be in reaction to some performance threshold being hit that indicates that overload 

will occur if no action is taken soon.  The Failure Detection pattern allows the failure to occur and 

then reports it to be handled.  This is a more “optimistic” pattern than both Up Front Analysis and 

Resource Monitoring because it assumes that no action is required unless the failure actually occurs.   

 

Figure 6 – CORBA Time-Out uses the Failure Detection Pattern [14] 

������������ 

 

Figure 6 illustrates the Failure Detection pattern as used in a CORBA Time-Out.  The Failure Detection 

pattern provides information to the Cancellation pattern to determine which tasks to cancel, when.  

Examples of this pattern appear in [15], [16] and [17].  

 

4.4 Deny Request Pattern 

In a DRTS in which recovery is too costly or not an option, and overload should 

not occur, there needs to be a simple way to maintain the QoS performance of 

the system.  The Deny Request pattern addresses overload by keeping tasks 

from starting if they cause an overload.  

������������ 

If the potential for overload has been detected up front, and recovery from 

failure or QoS degradation is not an option, the overload should not be 

allowed to occur.  
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In many DRTSs the timing constraints on the applications can be too tight to allow for recovery from QoS 

failures during system execution.  It is often the case that maintaining the performance of the existing 

system is more important than allowing new tasks to enter the system that might cause overload to occur.  

For example in sensor networks where existing tasks form intricate dynamic relationships with each other, 

it might not be safe to terminate existing tasks, but denying an entering task may be allowed. In such 

systems it is not feasible to wait for overload to occur and then fix it, or to cancel an existing task in order 

to allow a new task to execute.  There must be a way to maintain the integrity of the system if a newly 

requested task will not fit. 

Provide a mechanism that can deny a request if there are not enough resources to service the request.  

In a DRTS that employs this pattern, it is assumed that overload detection uses an up front analysis 

technique (Section 4.1)  to determine if a newly requested task will cause overload.  When a request is 

denied, the client making the request can decide to delay the request and resubmit it at a later time.  

However, if the request has a timing constraint that would preclude it from being delayed, it will 

simply not execute at all.  In this case the client may be required to do exception handling of its own.   

Figure 7 - An overload management in RTDBS using Deny Request ( from [18]). 

������������ 

 

Figure 7 depicts an illustration of the Deny Request pattern in a real-time database system.  The admissin 

controller determines if a new transaction can be scheduled.  If not, the request is denied, and it is placed in 

a rejection queue.  Examples of this pattern appear in [18], [11] and [12]. Figure 3, from [18], shows the 

pattern is used in overload management in a real-time database system..  The Deny Request pattern receives 

information from the Up Front Analysis pattern to determine if the requested task should be denied.   
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4.5 Cancellation Pattern 

In a DRTS where overload can occur and it is feasible to terminate or 

change existing tasks, the Cancellation pattern allows for tasks to be either 

removed from the system, or to have their scheduling parameters changed. 

This is done when new tasks may contribute more value to the systems than 

one or more existing tasks. 

������������ 

In DRTS’s where overlaod can occur and new tasks may contribute more value than existing tasks, 

there must be some way to terminate or adjust the scheduling parameters of existing tasks.   

 

In general, in a DRTS, if overload is either a potential problem (predicted) or an actual problem (occurred) 

handling the overload is necessary.  The Deny Request pattern described in Section 4.4 always chooses to 

not allow the new request to begin execution.  However, in many systems tasks can have varying levels of 

importance, and it may be unacceptable to deny a very important new task in order to allow the currently 

executing tasks to continue to run.  For example, new tasks representing the detection of new threats may 

be more important to execute than existing tasks.  Also, in systems where up front analysis is not used, it is 

not feasible to use the Deny Request pattern to handle overload because there is no way to know if the 

current request will be schedulable.  In both of these cases, it may be necessary to either remove one or 

more tasks from the system, or to adjust the scheduling parameters of existing tasks in order to alleviate the 

overload. 

Provide a mechanism to allow a task to cancel itself, or to cancel another task.  The mechanism 

should include a technique for deciding which tasks should be cancelled.  For instance, if an overload 

is detected using the Failure Detection pattern (Section 4.3), then the Cancellation mechanism should 

cancel the task that failed.  On the other hand, if the potential for deadline violation is detected by the 

Up Front Analysis pattern (Section 4.1), the Cancellation mechanism can choose from among all of 

the tasks in the system that are affected by the overload.  It can use information about the tasks and 

about the system to determine which task(s) to cancel.  This information can include information 

such as the relative importance of the tasks, the remaining execution time of the tasks, the time to 

recover from cancellation, and the dependencies among the tasks in the system.  Canceling a low 

importance task to allow a more important task execute may be increase the value obtained by the 

system.  However, if the cancelled task has almost completed, or has several tasks that depend on its 

completion, then it might not be the best choice for cancellation.  The Cancellation mechanism should 

provide algorithms for choosing the tasks to cancel given various system circumstances.  

Cancellation of a task may be implemented in various ways.  When a task has already missed its 

deadline, which has been detected using the Failure Detection pattern, termination of the task maybe 
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the best way to implement Cancellation.  However, in a system that has predicted overload based on 

Up Front Analysis, the prediction may be pessimistic and the overload may not actually occur at all.  

Rather than terminating the task(s) chosen by the Cancellation mechanism, it may be better to 

change the scheduling parameters instead.  This can manifest itself in lowering the priority of a 

cancelled task, or lengthening its deadline or its period.  The Cancelled tasks will not meet their 

timing constraints in the worst case, but may be able to complete if there is more slack in the 

schedule than was predicted by the Up Front Analysis. 

 

 

 

BSS - A

ESS - A

cancel DT

Process the
cancel at next

scheduling point

Propagate
cancel

Head of DT

Host 1 Host 2 Host 3
 

Figure 8 - Real-Time CORBA Distributable Thread using Cancellation (from [19]). 

������������ 

 

Figure 8 illustrates the Cancellation pattern as specified in Real-Time CORBA 2.0.  A distributable thread 

can be cancelled during its execution.  The cancellation is processed at the next scheduling point in its 

execution.   Examples of this pattern appear in [19], [20], [21] and [22].  Figure 4, from [19], shows how 

the Cancellation pattern is used in the Real-Time CORBA 2.0 Distributable Thread architecture.  The 

Cancellation pattern can use analysis information provided by the Up Front Analysis pattern to determine 

which tasks to cancel.  It may also use information provided by the Failure Detection pattern to cancel a 

task with a QoS failure. 
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4.6 Application QoS Adjustment 

The QoS Adjustment pattern has the application negotiate to adjust the QoS requirements of tasks in an 
intelligent way when overload has occurred.  The pattern is described in [23], we include it here for 
completeness.   

4.7 Resource Reallocation 

The Resource Reallocation pattern has the system reallocate resources to alleviate overload.  In this pattern 

QoS is not necessarily adjusted, nor are tasks cancelled, instead the system attempts to find a better 

resource allocation, perhaps moving tasks to less loaded nodes, that will still maintain the original QoS 

specified by the application.  We do not describe the pattern here, it is described in [13].  We include it here 

for completeness. 

5 Conclusions  
This paper has presented a pattern language for scheduling in a DRTS.  These patterns provide a 

framework for middleware developers to use when building a system with global QoS requirements that 

must be enforced on local endsystems.  While the general description of the context for these patterns 

involves distributed real-time systems, specific details about the particular applications will result in 

different traversals of the pattern language in Figure 2.  For example, in a system that cannot tolerate 

recovery of existing execution, the Up Front Analysis pattern might be used along with the Deny Request 

pattern for overload management.  On the other hand, if the system has softer constraints, and can afford to 

be optimistic about failure, it can use the Failure Detection pattern with the Cancellation pattern to manage 

overload. 

The patterns in this language clearly do not stand alone.  They are closely related to other patterns involved 

in scheduling in a distributed system.  A larger pattern language is described in [24].  Here, these 

distributed real-time scheduling patterns are put into context with patterns for global resource allocation, 

scheduling on endsystem middleware, and scheduling at the operating system level. 
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