
- 1 -

Integrated CORBA Scheduling and Resource Management
for Distributed Real-Time Embedded Systems

Kevin Bryan, Lisa C. DiPippo, Victor Fay-Wolfe,

Matthew Murphy, and Jiangyin Zhang
Department of Computer Science

University of Rhode Island
Kingston, Rhode Island 02881, USA

{bryank,dipippo,wolfe,murphym,zhang}@cs.uri.edu

David T. Fleeman, David W. Juedes, Chang Liu,
and Lonnie R. Welch

School of Electrical Engineering and Computer Science
Ohio University

Athens, Ohio 45701, USA
{fleeman,juedes,liuc,welch}@ohio.edu

Douglas Niehaus
Electrical Engineering & Computer Science Department

University of Kansas
Lawrence, Kansas 66045, USA

niehaus@eecs.ukans.edu

Christopher D. Gill
Department of Computer Science and Engineering

Washington University
St. Louis, Missouri 63130, USA

cdgill@cse.wustl.edu

Keywords: QoS in open systems; integrated scheduling
and resource management; CORBA

Abstract
Integration of middleware scheduling and resource

management services enables open distributed real-time
embedded (DRE) applications to meet end-to-end quality
of service (QoS) requirements in highly variable operating
environments. This paper describes our research 1 on
integrating CORBA scheduling and resource management
services, and presents experiments we conducted to
validate and quantify the benefits of this integration.

Our experimental results show that integrating
distributed scheduling and resource management in
middleware for open DRE systems can offer significant
improvements in predictability. Specifically, integrating
our stand-alone resource management service with a
previously unmanaged experimental baseline application
reduced the ratio of missed deadlines from 26% to 10%,
and the same application performed even better under the
control of integrated scheduling and resource management
services, with a missed deadline ratio of only 1%.

1. Introduction

Quality of service (QoS) management in open

distributed real-time and embedded (DRE) systems is
particularly challenging because open DRE systems cannot
assume upper bounds on resource demands by system tasks,
or lower bounds on resource availability that are the norm
in closed DRE systems. Task resource demands in an open

1 This research was supported in part by the DARPA PCES program,
contract # F33615-03-C-4111.

DRE system may exceed any particular static allocation of
available resources, due to changing environmental
conditions, damage to or destruction of resources, or
evolving application objectives.
Motivating applications: Open DRE systems in which
resource demands may exceed available resources include
military command and control [11], robotic search and
rescue [35], and adaptive audio/video streaming [16].

For example, in a time-sensitive military mission
replanning application, a command-and-control aircraft
operator can collaborate with the weapon systems officer
(WSO) in a strike aircraft by relaying tasking orders and
imagery, and interacting with the WSO to re-plan the
aircraft’s current mission to engage a time-critical target. In
addition to each aircraft’s own critical processing
requirements, it may be necessary to ensure that elements
of the collaboration session between the aircraft also
receive critical assurances, e.g., for time-bounded delivery
of collaboration alerts and new tasking orders.
QoS management requirements: In general, open DRE
systems require four key resource management capabilities:
1. Assurance of timeliness and other QoS requirements

along end-to-end paths that may span only endsystems
connected by a common backplane, or may span
dispersed endsystems across multiple intervening hops;

2. Custom configurability of middleware policies and
mechanisms for efficiency and improved assurance of
meeting timeliness and other QoS requirements;

3. Timely adaptation within rapidly changing operating
environments of open systems; and

4. Opportunistic optimizations of QoS based on
situational factors.

Limitations of previous approaches: These requirements
span classical DRE system boundaries, including
endsystems, architectural layers, and service interfaces.
Historically, middleware resource management approaches

- 2 -

have produced layered solutions in which services
independently mediate interactions between the application
and lower-level system software. These approaches have
key shortcomings for open DRE systems in which end-to-
end QoS requirements must be assured, configured,
adapted, and optimized within highly variable operating
environments. This is because coarse-grained interactions
between independent services cannot provide enough
timely information for the services to make sound
decisions in time.
Solution approach → integrated resource management
in middleware: To address the above challenges for open
systems like the military mission replanning example, we
have developed an integrated approach based on our
previous work on scheduling patterns [10][13]. Our
previous research efforts have examined the capabilities of
individual resource management services, and have made
preliminary investigations of the benefits of cross-cutting
the barriers between individual layers and services, such as
integrating scheduling services with higher-level QoS
management services for improved predictability of real-
time image transmission [11].

This paper describes our work on developing global,
distributed, and integrated scheduling and resource
management capabilities, which extends our earlier
research to address the integration of peer services within
the same middleware QoS management layer. Our
objective in this research is to provide DRE applications
better QoS enforcement, through careful integration of
policies and mechanisms for how resources are allocated
and how access to those resources is arbitrated [4]. This
finer-grain integration of services can enable better
decision making across services without sacrificing
decoupled, component-based development of individual
services, which is also important for open systems.

Our integrated approach consists of a distributed
scheduling (DS) service [4], which coordinates the
activities of multiple endsystems, a distributed resource
management (DRM) service [6], which allocates resources
on each endsystem, and several alternative endsystem
scheduling options (e.g., RTC 1.2 fixed priority schedulers
[17], Kokyu [14], and group scheduling [8]), which
arbitrate access to resources at the local endsystem level.
We have integrated our DS and DRM services in the
context of the TAO [30] CORBA [24] object request
broker, and have performed experiments to validate and
evaluate this integration, which we present in Section 4.

The system architecture of our approach is presented
in Section 2. Section 3 presents the integration of two top-
level components in this architecture, the distributed
scheduling service and the resource management service.
Section 4 describes experiments that we performed to
validate and evaluate our approach. Section 5 discusses
related work. Finally, Section 6 concludes the paper.

2. System Architecture

The key to our approach is a system architecture that

enables integration of the following focus areas:
• Distributed Scheduling
• Distributed Resource Management
• Endsystem Scheduling
• Information Collection and Use

Figure 1 illustrates the architecture of an open DRE
system involving three endsystems under the control of our
integrated scheduling and resource management
capabilities. Figure 1 shows how the four areas are
reflected in the system architecture.

Figure 1. Integrated QoS Management Architecture

On each endsystem, a local scheduling component
schedules access to resources within that endsystem, and a
local information collection component records a variety of
status information such as CPU utilization, progress of
application activities, and success or failure of tasks in
meeting their deadlines. This local status information is
distilled into higher-level information such as predictability
of local tasks in meeting intermediate deadlines toward
timely completion of end-to-end activities. The higher-
level information is sent to a distributed information
collection service called the system information repository.
In addition to the local scheduling and system repository
components, there are two distributed CORBA services,

- 3 -

the distributed scheduling service and the distributed
resource management service. These services work
together to provide fine-grain adaptive scheduling and
resource management capabilities to the open DRE system.

By adopting this architecture, we aim to improve
system quality, reduce end-to-end latency, and provide
rigorous management of scheduling aspects across
systems. The four focus areas are further explained in the
following subsections.

2.1. Distributed Scheduling

We have developed a distributed scheduling service [4]

to provide distributed real-time scheduling decisions for
local enforcement in the TAO middleware [30]. The DS
service is informed at system initiation of relevant local
scheduling attributes for individual endsystem scheduling
points along end-to-end paths. Such attributes may include
local operating systems, event queues, POA (Portable
Object Adapter) policies, dispatchers, and network routers.
For instance, it will be told if a Real-Time CORBA 1.2
(RTC 1.2) 2 [25] endsystem scheduler enforces a fixed
priority or earliest deadline first (EDF) policy. The DS
service is also made aware of the end-to-end activities that
must be supported in the middleware. If given global
knowledge of all end-to-end executions and of all local
scheduling capabilities, the DS service can set globally-
sound scheduling parameters for each local enforcement
mechanism. For instance, if the DS service knows that all
endsystem schedulers are RTC 1.2 compliant and enforce
EDF, the DS service will determine a globally-sound
deadline for RTC 1.2 distributable threads at each of the
scheduling points each distributable thread will encounter.

Our DS service implementation uses the Adapter
pattern to “wrap” the local enforcement mechanism. The
Adapter intercepts calls to the local enforcement
mechanism and interacts with the DS service. This
interaction may be a local call to a DS service daemon on
the end-system, or may require a remote call to a remote
component of the DS service. For instance, if an RTC 1.2
distributable thread sets its deadline, the Adapter for the
local RTC 1.2 scheduler will first check with the DS
service to determine if the requested deadline should be
altered. Furthermore, subsequent dispatches of subtasks in
the distributable thread will check with DS service to allow
intermediate deadlines to be set.

In the implementation with which the experiments
presented in Section 4 were conducted, both distributed
scheduling and distributed resource management services
have been integrated, the target local enforcement
mechanism is TAO’s RTC 1.2 fixed priority scheduling

2 The OMG has recently renumbered the second Real-Time CORBA
specification from 2.0 to 1.2. The contents of the specification remain the
same, however.

service [17]. We have also integrated a distributed dynamic
scheduling service with a Kokyu [9][12][14] based
endsystem scheduling mechanism. Kokyu can be
configured to support many local enforcement mechanisms.
Our initial distributed dynamic scheduling approach uses
Sun’s algorithms [32], which establish release times and
intermediate deadlines for subtasks in an end-to-end task.
Since Sun’s algorithms assume EDF scheduling on local
operating systems, we have configured Kokyu to do EDF
scheduling. As future work we will integrate distributed
dynamic scheduling with our progress-based group
scheduling approach [1] which is described in Section 2.3.
We will also integrate our distributed resource
management service and distributed dynamic scheduling
service for both the Kokyu and group scheduling
endsystem scheduling variations, to compare and contrast
the effects of different endsystem scheduling approaches
on distributed scheduling and resource management.

2.2. Distributed Resource Management

We have implemented a distributed resource

management service in CORBA as part of the Quality-
based Adaptive Resource Management Architecture
(QARMA) [6] project. The QARMA DRM service
consists of the following types of elements:

• monitors that gather information about resource
usage, resource availability, application
performance, and environmental conditions;

• detectors that evaluate particular subsets of the
information in the system repository, to decide
whether or not to trigger the decision-maker to
perform a reallocation;

• a decision-maker that uses a subset of the
information in the system repository to decide
what actions should be performed to ensure that
end-to-end performance requirements are satisfied
and that overall end-to-end performance is
improved when opportunities arise; and

• enactors that receive instructions from the
decision-maker about what actions to perform in
the system, and then enact those actions.

Different types of monitors serve different purposes,
including host monitors that watch resource usage on a
single host computer, and path monitors that watch events
that take place along a particular end-to-end path [25].

2.3. Endsystem scheduling

At each endsystem, access to resources by competing

activities must be scheduled according to end-to-end
application level requirements. In our architecture, the DS
service translates those end-to-end requirements into local
resource scheduling policies enforced on each individual

- 4 -

endsystem. Resource scheduling mechanisms used to
enforce those local policies can be provided at both the
middleware and operating system levels. Historically, such
scheduling mechanisms have included:

• ordered queues in the Kokyu framework and
thread pools with lanes in TAO’s Real-Time
CORBA 1.0 implementation [26] at the
middleware level, and

• low-level abstractions such as prioritized or share-
based allocation of CPU cycles in KURT-Linux
[23][31] or TimeSys Linux [33], or network
bandwidth in RSVP [3] at the operating system
level.

Although these traditional mechanisms are sufficiently
powerful to express the resource allocation requirements of
distributed real-time applications, programming those
abstractions directly can be both tedious and error prone
for even moderately complex systems. Our previous
research has shown that higher-level application progress
requirements can be mapped to scheduling enforcement
mechanisms more directly and efficiently, through modular
intermediate abstractions provided by an approach we call
group scheduling [8].

Our group scheduling model combines the advantages
of two familiar scheduling paradigms: hierarchical
[15][28][29] and path-oriented [1] [20]. Under recent
modifications to KURT-Linux, the operating system (OS)
implementation of the group scheduling model can control
execution of every type of computation component under
Linux, including threads, interrupt handlers, soft-IRQs,
bottom-halves, and tasklets [7]. The group scheduling
model has also been implemented at the middleware level
[8], and our recent empirical evaluations [1] show
qualitatively similar performance between the OS and
middleware implementations, albeit at a cost of additional
overhead for the group scheduling mechanisms in
middleware.

We have integrated traditional endsystem scheduling
frameworks such as TAO’s RTC 1.2 fixed priority
scheduler and the Kokyu framework with our distributed
scheduling service. We will also integrate our group
scheduling framework with distributed scheduling and
resource management, to allow finer-grained enforcement
of end-to-end activities progress requirements.

2.4. Information collection and use

The distributed resource management (RM) subsystem

is responsible for ensuring that adequate resources are
available for use when and where they are required along
the end-to-end path of a computation through the
distributed system. Precisely what kind of information is
required depends on the computations being supported, but
(1) the RM subsystem must have access to a wide variety
of information and (2) the precise set of information

required will vary with system configuration and operating
conditions. the set of data collection requirements is
complicated further by the needs of endsystem scheduling,
and our need to evaluate the performance of our end-to-end
distributed computations, The combined set of
requirements is significantly more demanding than
commonly used performance data collection methods can
handle, and has required considerable effort on our part in
support of data collection.

Our endsystem data collection system, called Data
Streams, supports data gathering from both the application
level through its Data Steams User-level Interface (DSUI),
and from the underlying endsystem OS through its Data
Streams Kernel Interface (DSKI) [22]. The DSUI is
portable across a wide range of endsystems, requiring
access only to an endsystem time standard for time-
stamping data records. The DSKI is a standard device
driver and is thus portable across a range of endsystem, but
creation of an instrumentation point requires access to the
source code being instrumented. The Data Streams
subsystem supports name spaces of instrumentation points
that generate a performance datum when a thread of
control passes through an instrumentation point in
application, middleware, or OS code. Each
instrumentation point is disabled by default, and can be
enabled, configured, and associated with a data stream
selectively as required for each task.

Data from each instrumentation point is in a standard
format permitting sets of data gathered separately to be
merged and processed in a number of ways. This ability to
merge data gathered separately is important because the set
of information required to answer a particular performance
evaluation question, to support a group scheduling
algorithm on-line, or to support the RM subsystem may
come from many sections of the system. The Data Streams
subsystem is thus strongly aspect oriented in the sense that
it supports configuring the collection of exactly the data set
required for a particular situation, regardless of how the
sources of that data cut across conventional system
component boundaries.

The QARMA DRM service monitors, detectors,
decision-makers, and enactors also make use of the system
repository. For example, the monitors store the data it
gathers to the system repository; the detectors and the
decision-makers uses data in the system repository to make
their decisions. The information in the system repository is
also accessible to the DS service. The system repository
stores information about which end-to-end tasks are
currently running, and on what resources. This will enable
the DS service to determine if a newly requested
distributable thread can be scheduled along with the other
tasks currently running in the system. Such sharing
facilitates fine-grain integration of the DS service and the
DRM service.

- 5 -

3. System Integration
We are approaching the problem of system integration

in an incremental fashion. First, we have integrated the DS
service and the DRM service, as this paper describes.
These services are integrated with a basic RTC 1.2 fixed
priority scheduler.

3.1. Integration of DS and DRM Services

Figure 2. Integrated DS and DRM Services

The integration of the DS service with the QARMA
Resource Manager [6], and with TAO’s RTC 1.2
scheduling service, is shown in Figure 2. In interactions
depicted in Figure 3, a distributable thread (labeled DT in
the figure) makes a begin_scheduling_segment() call
(labeled bss), which is intercepted by the DS service
Adapter. The Adapter sends the requested scheduling
parameters to the DS service via a
begin_distributed_scheduling_segement() call (labeled
bdss). The DS service performs a global schedulability
analysis (currently an EDF utilization bound analysis on all
nodes). If the system is schedulable, the DS service sets the
scheduling parameters (currently the release times and
deadlines) for the distributable thread on the local
enforcement mechanism(s) (TAO’s RTC 1.2 scheduler). If
the system is not schedulable, the DS service makes
rm_reactive() call and invokes the DRM service, which
either adjusts the QoS of the execution or reallocates
resources. The system repository, as depicted in the system
architecture, is the central storage of all static and dynamic
configuration and status information of the DRE
applications. Both the DRM service and the DS service
share the system repository, so that they have a common
picture of resource status and usage in the entire system.
The experiment results presented in Section 4 validate the
integration of the DS service and the DRM service.

Figure 3. Interactions between DS and DRM Services

3.2. Further system integration

In addition to our integration of the DS and DRM

services described in Section 3.1, we have integrated a
distributed dynamic scheduling service with the Kokyu
endsystem scheduling framework, and will subsequently
integrate that DRM service with that instantiation of our
architecture.

As future work, we will upgrade the Kokyu-based
integration to use group scheduling capabilities on each
endsystem. The results of our endsystem group scheduling
experiments [1] show that both priority and share based
scheduling policies can be combined with different
interpretations of fairness to produce a number of effective
end-to-end scheduling policies. We are also investigating
the use of scheduling decision functions that exploit
application-specific computation progress information, for
potential improvements in application execution behavior.

It is also interesting to note that one could implement
group scheduling directly within Kokyu for application
progress semantics such as EDF/MUF-style enforcement
of sub-task deadlines on each endsystem along an end-to-
end path. This observation offers a potential migration path
for a distributed scheduling service from a traditional
Kokyu endsystem scheduler to a Kokyu-based
implementation of group scheduling policies, and finally to
the direct group scheduling implementation [1]. With these
alternatives in mind, and we will conduct further
experiments to evaluate our approach as we begin final
integration of our resource management, distributed
scheduling, and local endsystem scheduling service
implementations.

- 6 -

4. Experiments

We conducted a set of experiments to validate our

approach of integrating resource management and
distributed scheduling. We first measured the performance
of a DRE system controlled by the QARMA DRM service
alone. We then measured the performance of the same
DRE system controlled by the joint DS service and DRM
service service. We also compared the results against a
baseline system without either DS or DRM services.

4.1 Experiment setup

Our experiments were based on a distributed video

delivery application for Unmanned Aerial Vehicles
(UAVs). The UAV application consists of senders, which
acquire and send out video frames; viewers, which either
display the video to human monitors or feed the video to
automatic target recognizers; and distributors, which
replay the videos frames from senders to viewers. The
DRM service had been integrated with the UAV
application [6]. In this experiment, we collected data from
a simulated UAV application that runs in RMBench, a tool
designed for performance evaluation of real-time
embedded systems [5]. We used the simulated UAV for
these experiments because the real UAV application is
maintained by a third party and has only three dramatically
different service levels (30 frames per second, 10 FPS, 2
FPS). Use of the simulated UAV environment in our
experiments allowed us to use ten service levels and to
demonstrate more clearly the benefits of our approach in a
single set of experiments.

The experiments were performed in the Emulab [34].
We used 4 PCs with single 850MHz CPUs running Red
Hat Linux 9 in the experiments. The PCs were connected
by a 100MBS network. One PC hosted all senders in the
UAV application; a second hosted all distributors; the third
all viewers; and the fourth the DS and DRM services.

Figure 4. Nine-Minute Experiment Scenario with Six
Tasks.

The experiment consisted of six periodic end-to-end
tasks, which in this case were sender/distributor/viewer
chains. Task 1 through Task 6 were assigned importance 1
through 6 (1= lowest, 6 = highest), respectively. Each task
consisted of three sub-tasks: sender, distributor, and
viewer. Each task could be run at 10 different service
levels, with level 10 providing the highest video quality
and level 1 the lowest. Task 2 and task 4 ran for the
entirety of the experiment, which was 9 minutes, and were
initially schedulable on each of the nodes at service levels
5 and 10 respectively. Task 1 then entered the system and
caused overload on some of the nodes. Task 1 then left the
system and task 3 entered, again overloading the system.
Tasks 5 and 6 then also entered the system at different
times. Task properties are summarized in Table 1. The key
time periods in the experiment are summarized in Table 2.
The timeline of these events is depicted in Figure 4.

Table 1. Task Properties in the Experiments.

Task Task
Importance

Period
(sec)

Worst Case Execution
Time (sec)

T1 1 3 1.3
T2 2 3 1.3
T3 3 3 1.3
T4 4 3 1.3
T5 5 3 1.3
T6 6 3 1.5

Table 2. Timeline for the Experiments.

Time
(sec)

Action Result At Max Quality

0 T2 and T4 begin Schedulable
60 T1 begins Not Schedulable
120 T1 ends Schedulable
180 T3 begins Not Schedulable
240 T3 ends Schedulable
300 T5 begins Not Schedulable
360 T5 ends Schedulable
420 T6 begins Not Schedulable
480 T6 ends Schedulable
540 T2 and T4 ends Not Schedulable

We ran three instances of the experiment. The

baseline experiment did not use the DRM service or the
DS service to control timeliness. The DRM service
experiment used only the DRM service, which reacted to
host overload. The DS / DRM service experiment used the
integrated DRM and DS services.

Metrics had been developed for these experiments to
measure the overall system value achieved for each test,
and the overhead of both the DS service and DRM service
components. Traditional metrics such as end-to-end
latencies and statistics describing the quality settings
during the experiment were also collected.

60 120 180 240 300 360 420 480 5400
time (sec)

T1

T2

T3

T4

T5

T6

- 7 -

4.2 Experiment results

In order to compare the added value of using the DRM

service and the DS service, the same metrics were
collected for all three experiments. Two types of metrics
were collected: performance metrics and overhead metrics.
Performance metrics indicate how well the managed
systems performed in each experiment and include latency,
number of missed deadlines, and quality. Any latency time
larger than three seconds indicates a missed deadline. The
level of service represents quality. Overhead metrics
measure how much overhead is introduced by the
management components. In this experiment, the latencies
of the DS service, DRM service, and supporting QARMA
management components were measured to show the
latency from overload detection to enacting changes to the
operation of the system to remove the overload.

4.2.1 Performance Metrics

Table 3 summarizes the overall metrics for each
stream over the duration of the entire experiment for all
three experiments. The results indicate that the use of the
management components improve both the latency and the
number of missed deadlines significantly for this
experiment, but at the cost of reducing the average quality
of some of the distributed tasks.

Table 3. Metrics.

 Avg.
Latency
(sec)

Max.
Latency
(sec)

Number
of Missed
Deadlines

Avg.
Quality

Baseline
Task1 4.05869 4.27175 20 10
Task2 2.68714 5.61852 32 10
Task3 2.58997 2.71341 0 10
Task4 2.68408 5.58821 44 10
Task5 2.46839 2.87625 0 10
Task6 9.13197 10.3683 15 10
DRM service
Task1 0.235812 0.247172 0 1
Task2 0.720078 2.606511 0 3.6
Task3 0.984620 1.019679 0 4
Task4 2.367169 3.085342 21 8.5
Task5 2.910771 3.171827 1 10
Task6 3.367901 3.385024 20 10
DS / DRM service
Task1 0.44564 1.41718 0 1
Task2 1.22624 4.15631 2 3.6
Task3 1.54162 2.7224 0 4
Task4 2.24104 3.11162 1 8.9
Task5 2.6013 2.97634 0 10
Task6 3.01883 3.83688 1 10

Using the DRM service alone decreased the number of

missed deadlines from 26% to 10%. The integrated DS
service and DRM service reduced the number of missed

deadlines to less than 1%. Since the DS service is able to
control local priorities, the DS / DRM service experiment
showed improvements in both latency and number of
missed deadlines over the DRM service experiment where
local priorities could not be controlled. Also, the average
latency went from 3.93671 seconds in the baseline to
1.76438 seconds in the DRM service experiment and
1.9752 seconds in the DS / DRM service experiment.
Figures 5 and 6 show the average response time for each
task in the DRM service and the DS / DRM service
experiments, respectively. Execution times for each task
were always fixed as worst-case execution times. Using
average-case execution times instead would likely improve
the performance. Missed deadlines in the DS / DRM
service experiment only occurred when a new task entered
the system, and before the RM service had the opportunity
to change the service levels of the appropriate task.

0

0.5

1

1.5

2

2.5

3

3.5

4

3 33 63 93 123 153 183 213 243 273 303 333 363 393 423 453 483 513

Time (seconds)

R
es

po
ns

e
Ti

m
e Task 1

Task 2
Task 3
Task 4
Task 5
Task 6

Figure 5. DRM service Response Times.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

3 33 63 93 12
3

15
3

18
3

21
3

24
3

27
3

30
3

33
3

36
3

39
3

42
3

45
3

48
3

51
3

Time (seconds)

R
es

po
ns

e
Ti

m
e Task 1

Task 2
Task 3
Task 4
Task 5
Task 6

Figure 6. DS / DRM Service Response Times.

Another important observation from the data is that the
management components were able to degrade the
performance of less important tasks, allowing the more
important tasks to run at higher quality levels. Figure 7

- 8 -

shows the quality of the applications over time for the DS /
DRM service experiment. When task 5 entered the system,
both the less important task 2 and task 4 were degraded to
allow task 5 to execute at the highest quality setting. When
task 5 exited the system, task 2 and task 4 were returned to
higher quality settings to consume the resources released
by task 5.

0

2

4

6

8

10

12

0 120 189 300 366 423 492 540

Time

S
er

vi
ce

 L
ev

el

Task 1
Task 2
Task 3
Task 4
Task 5
Task 6

Figure 7. DS/DRM Service Experiment Service Levels.

Note that in the DS / DRM service experiment, four
tasks missed deadlines. All of these missed deadlines
occurred immediately after a task that would make the
system unschedulable entered the system. These deadline
violations occurred because in the RMBench architecture,
the enactor must wait for the task to finish the current
periodic workload before it can change the service level of
the task. In effect, the node remained overloaded until the
node finished execution for particular period. No other
tasks missed deadlines once the DRM service was able to
change the service level of the least important active task.

4.2.2 Overhead Metrics

The elapsed time from overload detection to the
notification of every application of new quality levels is
referred to as the management response time (MRT). In
both the DRM service and the DS / DRM service
experiments, the MRT was measured in the same manner,
but the overall process was initiated differently. In the
DRM service experiment, overload detection was
accomplished using simple host utilization detectors.
These detectors invoked the DRM service whenever a host
was either in overload or in underload as defined by a
utilization threshold. In the DS / DRM service experiment,
overload detection occurred within the DS service, which
invoked the DRM service if overload was detected or if a
task had left the system. In both scenarios, the DRM
service computed service level changes and invoked the
QARMA Enactor Service to carry out those changes. The
Enactor Service then invoked lower level enactors that
updated the service level for each task in the system.

In the DRM service experiment, twelve application
state changes were identified, each resulting in a call to the
DRM service. The average MRT produced by these calls
was 0.13697 seconds, and the maximum was 0.16748
seconds. In the DS / DRM service experiment, the twelve
state changes resulted in only eleven calls to the DRM
service. The DS service did not need to call the DRM
service when the first task entered the system because that
task was schedulable. In the DS / DRM service experiment,
the average MRT for a new task entering the system in
which is could be scheduled was 0.0594 seconds. If the
system was not schedulable, meaning the DS service had to
call the DRM service, the average MRT was 0.18459
seconds. Tasks leaving the system had an average MRT of
0.13255, which is the time it took the DS service to notify
the DRM service of potential overload, and the DRM
service to recalculate maximum Service Levels for the
remaining tasks.

5. Related Work

Several other real-time middleware systems provide

distributed scheduling similar to that provided by the DS
service in this architecture. The RTC1.0 static scheduling
service [21] in TAO provides a distributed scheduling
framework for statically scheduled systems. That is, when
the requirements of all distributed tasks are known a priori,
this service provides guaranteed real-time scheduling. It
does not, however, have the ability to respond to
dynamically changing task requirements, as the DS service
does.

The Tempus middleware framework [18] works in
dynamic environments, and supports the distributable
thread construct. Tempus requires that application timing
constraints be specified as time/utility functions. It then
builds the distributable thread construct on top of POSIX
threads. The current implementation of the DS service
schedules distributable threads through the RTC 1.2 API
using fixed priority local enforcement. However, the
pluggable design of the DS service would allow utility
function-based scheduling to be inserted in place of
priority-based scheduling.

The QuO framework [16] also provides some
scheduling capabilities. However, QuO does not provide a
mechanism to map scheduling decisions to local
endsystems in a standard way. Rather, QuO uses
application-specific information to enforce scheduling
decisions. The DS service in our architecture is meant to
provide scheduling within a RTC 1.2 framework.
However, it goes above and beyond the requirements of
RTC 1.2. The RTC 1.2 specification [25] states that the
current standard handles end-to-end scheduling by
scheduling each node independently. Our DS service can
support globally-sound scheduling (specified as future
work by the RTC 1.2 standard document) where possible

- 9 -

by analyzing entire end-to-end chains and scheduling
individual nodes accordingly.

The majority of real-time computing research has
focused on the scheduling, analysis and resource allocation
for real-time systems whose timing properties and
execution behavior are known a priori. However, open
DRE systems must execute in highly dynamic
environments, thereby precluding accurate characterization
of the applications’ properties by static models. In such
contexts, temporal and execution characteristics can only
be determined accurately by empirical observation or
experience.

Our approach addresses these issues and removes key
limitations. End-to-end real-time performance
requirements drive resource allocation decisions, and a
posteriori resource demands are used in allocation analysis.
Our effort differs from [19], which performed end-to-end
allocation, but assumed average case workloads for servers;
in contrast, we use monitors that provide more accurate
resource usage profiles. More importantly, our integrated
approach enables fine-grain collaboration between the
scheduling and resource management services so that the
scheduler and the resource manager always work together
and do not make decisions that may counteract or
undermine each other’s actions.

6. Conclusions

In conclusion, our research on distributed scheduling,

resource management, and group scheduling, once fully
integrated, has the potential to overcome many of the key
shortcomings of previous layered QoS management
solutions. We have demonstrated performance
improvements of a simulated DRE application controlled
by the integrated distributed scheduling and resource
management services through controlled experiments. The
experiment results showed that the integrated services
further improved the application performance beyond the
improvement achieved by our resource management
service alone.

In addition, the group scheduling approach also shows
potential advantages when integrated with distributed
scheduling and resource management. The integration of
endsystem group scheduling with the integrated DS and
DRM services is the next stage of our research effort.

We also plan to further improve the current DS / DRM
service integration. For example, the total management
response time of the joint DS / DRM service management
may be reduced by increasing parallelism. For example,
making the rm_reactive() method a one-way call so
that the DS service and the DRM service can work at the
same time. This improvement may be particularly
significant when the DS service and the DRM service run
on different host computers.

References

[1] Tejasvi Aswathanarayana, Venkita Subramonian, Deepti

Mokkapti, Hariharn Subramanian, Douglas Niehaus, and
Christopher Gill, “Design and Performance of Configurable
Endsystem Scheduling Mechanisms”, submitted to the 11th
IEEE Real-time Technology and Application Symposium
(RTAS), San Francisco, CA, March, 2005.

[2] Andy Bavier and Larry Peterson, "BERT: A Scheduler for
Best Effort and Real-time Tasks", Princeton University
Technical Report TR-602-99", March, 1999

[3] R. Braden, et al., "Resource ReSerVation Protocol (RSVP)
Version 1 Functional Specification", Network Working
Group RFC 2205, September, 1997

[4] Kevin Bryan, Lisa C. DiPippo, Victor Fay-Wolfe, David T.
Fleeman, Christopher D. Gill, David W. Juedes, Chang Liu,
Matthew Murphy, Douglas Niehaus, Venkita Subramonian,
Lonnie R. Welch, and Jiangyin Zhang, "Towards Integrated
CORBA Scheduling and Resource Management Services for
Distributed Real-Time and Embedded Systems," the 4th
Annual Workshop on TAO and CIAO, Arlington, VA, July
16, 2004.

[5] Matthew Delaney, Lonnie Welch, David Juedes, Chang Liu,
and David Fleeman, "RMBench: CORBA Services for
Evaluation and Benchmarking of Resource Management
Middleware," Presented at the 2004 OMG Workshop of
Real-Time and Embedded Systems (RTES), Restion, VA,
July 12-15, 2004.

[6] David Fleeman, Matthew Gillen, Andrew Lenharth,
Matthew Delaney, Lonnie Welch, David Juedes, and Chang
Liu, “Quality-based Adaptive Resource Management
Architecture (QARMA): A CORBA Resource Management
Service,” the 12th International Workshop on Parallel and
Distributed Real-Time Systems (WPDRTS 2004) at IPDPS
2004, Santa Fe, New Mexico, USA, April 26-27, 2004.

[7] Michael Frisbie, "A Unified Scheduling Model for Precise
Computation Control," Master's Thesis, University of
Kansas, June 2004.

[8] Michael Frisbie, Douglas Niehaus, Venkita Subramonian,
and Christopher Gill, "Group Scheduling in Systems
Software," the 12th International Workshop on Parallel and
Distributed Real-Time Systems (WPDRTS 2004) at IPDPS
2004, Santa Fe, New Mexico, April 26-27, 2004.

[9] Christopher D. Gill, Flexible Scheduling in Middleware for
Distributed Rate-Based Real-Time Applications, Ph. D.
Dissertation, Department of Computer Science, Washington
University, May 2002.

[10] Christopher Gill, Lisa DiPippo, Victor Fay-Wolfe, Douglas
Niehaus, and Lonnie Welch, “Mapping a Multi-Level
Scheduling Pattern Language to Distributed Real-Time
Embedded Applications,” Proceedings of the Workshop on
Patterns in Distributed Real-Time and Embedded Systems,
Nov. 2002.

[11] Christopher D. Gill, Jeanna M. Gossett, David Corman,
Joseph P. Loyall, Richard E. Schantz, Michael Atighetchi
and Douglas C. Schmidt, “Integrated Adaptive QoS
Management in Middleware: An Empirical Case Study",

- 10 -

10th IEEE Real-time Technology and Application
Symposium (RTAS), Toronto, Canada, May, 2004

[12] Christopher D. Gill, David L. Levine, and Douglas C.
Schmidt, “The Design and Performance of a Real-Time
CORBA Scheduling Service,” Real-Time Systems: the
International Journal of Time-Critical Computing Systems,
special issue on Real-Time Middleware, guest editor Wei
Zhao, March 2001, Vol. 20 No. 2.

[13] Christopher Gill, Douglas Niehaus, Venkita Subramonian,
Lisa DiPippo, and Victor Fay-Wolfe, “Resource Rationalizer:
A Pattern Language for Multi-Scale Scheduling,”
Proceedings of the 9th Conference on Pattern Language of
Programs 2002, Monticello, IL, Sept. 2002.

[14] Christopher D. Gill, Douglas C. Schmidt, and Ron Cytron,
“Multi-Paradigm Scheduling for Distributed Real-Time
Embedded Computing,” IEEE Proceedings Special Issue on
Modeling and Design of Embedded Systems, Volume 91,
Number 1, January 2003.

[15] Pawan Goyal, Xingang Guo, and Harrick M. Vin, "A
Hierarchical CPU Scheduler for Multimedia Operating
Systems," In 2nd Symposium on Operating Systems Design
and Implementation, USENIX, October 1996.

[16] David A. Karr, Craig Rodrigues, Joseph Loyall, Richard E.
Schantz, Yamuna Krishnamurthy, Irfan Pyarali and Douglas
C. Schmidt, “Application of the QuO Quality-of-Service
Framework to a Distributed Video Application,” In
Proceedings of the International Symposium on Distributed
Objects and Applications, September 18-20, 2001, Rome,
Italy.

[17] Yamuna Krishnamurthy, Christopher Gill, Douglas C.
Schmidt, Irfan Pyarali, Louis Mgeta, Yuanfang Zhang and
Stephen Torri, "The Design and Implementation of Real-
time CORBA 2.0: Dynamic Scheduling in TAO", 10th IEEE
Real-time Technology and Application Symposium
(RTAS)", Toronto, Canada, May, 2004

[18] Peng Li, Binoy Ravindran, Hyeonjoong Cho, and E. Douglas
Jensen, Scheduling Distributable Real-Time Threads in
Middleware, Proceedings of the International Conference on
Parallel and Distributed Computing, 2004.

[19] P.M. Melliar-Smith, L.E. Moser, V. Kolegaraki, and P.
Narasimhan, “The Realize Middleware for Replication and
Resource Management,” in Proceedings of Middleware ’98,
123-138, Sept. 1998.

[20] D. Mosberger and L. Peterson, "Making Paths Explicit in the
Scout Operating System", 1st Symposium on Operating
Systems Design and Implementation, USENIX Association,
October 1996.

[21] Matthew Murphy, Kevin Bryan, “CORBA 1.0 Compliant
Static Scheduling Service for Periodic Tasks,” Technical
Report TR04-297, University of Rhode Island, Jan. 2004.

[22] Douglas Niehaus, "Improving Support for Multimedia
System Experimentation and Deployment", In Workshop on
Parallel and Distributed Real-Time Systems, San Juan,
Puerto Rico, April 1999. Also appears in Springer Lecture

Notes in Computer Science 1586, Parallel and Distributed
Processing, ISBN 3-540-65831-9, pp 454--465.

[23] Douglas Niehaus, et al., "Kansas University Real-Time
(KURT) Linux", http://www.ittc.ukans.edu/kurt/

[24] Object Management Group (OMG), The Common Object
Request Broker: Architecture and Specification, Revision
2.6, Dec. 2001.

[25] Object Management Group (OMG), Real-Time CORBA
Specification, Version 2.0, formal/03-11-01, Nov. 2003.

[26] Irfan Pyarali, Douglas C. Schmidt and Ron Cytron,
"Achieving End-to-End Predictability of the TAO Real-time
CORBA ORB", 8th IEEE Real-Time Technology and
Applications Symposium (RTAS), September, 2002, San
Jose, CA

[27] Binoy Ravindran, Lonnie R. Welch and Behrooz A. Shirazi,
“Resource Management Middleware for Dynamic,
Dependable Real-Time Systems,” The Journal of Real-Time
Systems, 20:183-196, Kluwer Academic Press, 2000.

[28] John Regehr, Alastair Reid, Kirk Webb, Michael Parker, and
Jay Lepreau, "Evolving Real-Time Systems Using
Hierarchical Scheduling and Concurrency Analysis", In 24th
IEEE Real-Time Systems Symposium, Cancun, Mexico,
December 2003.

[29] John Regehr and John A. Stankovic, "HLS: A Framework
for Composing Soft Real-Time Schedulers," In 22nd IEEE
Real-Time Systems Symposium, London, UK, December
2001.

[30] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee,
“The Design and Performance of Real-Time Object Request
Brokers,” Computer Communications, vol. 21, pp. 294–324,
Apr. 1998.

[31] Balaji Srinivasan, Shyamalan Pather, Robert Hill, Furquan
Ansari and Douglas Niehaus, "A Firm Real-Time System
Implementation Using Commercial Off-The-Shelf Hardware
and Free Software", 4th IEEE Real-Time Technology and
Applications Symposium (RTAS), June 1998, Denver, CO

[32] Jun Sun, Fixed-Priority End-To-End Scheduling in
Distributed Real-Time Systems, Ph.D. Dissertation,
Department of Computer Science, University of Illinois at
Urbana-Champaign, 1997.

[33] TimeSys, "TimeSys Linux/RT 3.0", http://www.timesys.com
[34] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci,

Shashi Guruprasad Mac Newbold, Mike Hibler, Chad Barb,
and Abhijeet Joglekar, “An Integrated Experimental
Environment for Distributed Systems and Networks,” Proc.
of the Fifth Symposium on Operating Systems Design and
Implementation (OSDI 2002), pp. 255-270, Boston, MA,
December 2002.

[35] Z. Zhu, K. Rajasekar, E. Riseman and A. Hanson,
"Panoramic Virtual Stereo Vision of Cooperative Mobile
Robots for Localizing 3D Moving Objects", IEEE Workshop
on Omnidirectional Vision (OMNIVIS) , 2000.

