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Abstract 
Integration of middleware scheduling and resource 

management services enables open distributed real-time 
embedded (DRE) applications to meet end-to-end quality 
of service (QoS) requirements in highly variable operating 
environments. This paper describes our research 1  on 
integrating CORBA scheduling and resource management 
services, and presents experiments we conducted to 
validate and quantify the benefits of this integration.  

Our experimental results show that integrating 
distributed scheduling and resource management in 
middleware for open DRE systems can offer significant 
improvements in predictability. Specifically, integrating 
our stand-alone resource management service with a 
previously unmanaged experimental baseline application 
reduced the ratio of missed deadlines from 26% to 10%, 
and the same application performed even better under the 
control of integrated scheduling and resource management 
services, with a missed deadline ratio of only 1%. 

1. Introduction 
 
Quality of service (QoS) management in open 

distributed real-time and embedded (DRE) systems is 
particularly challenging because open DRE systems cannot 
assume upper bounds on resource demands by system tasks, 
or lower bounds on resource availability that are the norm 
in closed DRE systems.  Task resource demands in an open 
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DRE system may exceed any particular static allocation of 
available resources, due to changing environmental 
conditions, damage to or destruction of resources, or 
evolving application objectives.  
Motivating applications: Open DRE systems in which 
resource demands may exceed available resources include 
military command and control [11], robotic search and 
rescue [35], and adaptive audio/video streaming [16].  

For example, in a time-sensitive military mission 
replanning application, a command-and-control aircraft 
operator can collaborate with the weapon systems officer 
(WSO) in a strike aircraft by relaying tasking orders and 
imagery, and interacting with the WSO to re-plan the 
aircraft’s current mission to engage a time-critical target. In 
addition to each aircraft’s own critical processing 
requirements, it may be necessary to ensure that elements 
of the collaboration session between the aircraft also 
receive critical assurances, e.g., for time-bounded delivery 
of collaboration alerts and new tasking orders.  
QoS management requirements: In general, open DRE 
systems require four key resource management capabilities: 
1. Assurance of timeliness and other QoS requirements 

along end-to-end paths that may span only endsystems 
connected by a common backplane, or may span 
dispersed endsystems across multiple intervening hops; 

2. Custom configurability of middleware policies and 
mechanisms for efficiency and improved assurance of 
meeting timeliness and other QoS requirements; 

3. Timely adaptation within rapidly changing operating 
environments of open systems; and 

4. Opportunistic optimizations of QoS based on 
situational factors. 

 

Limitations of previous approaches: These requirements 
span classical DRE system boundaries, including 
endsystems, architectural layers, and service interfaces. 
Historically, middleware resource management approaches 
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have produced layered solutions in which services 
independently mediate interactions between the application 
and lower-level system software. These approaches have 
key shortcomings for open DRE systems in which end-to-
end QoS requirements must be assured, configured, 
adapted, and optimized within highly variable operating 
environments. This is because coarse-grained interactions 
between independent services cannot provide enough 
timely information for the services to make sound 
decisions in time.  
Solution approach → integrated resource management 
in middleware: To address the above challenges for open 
systems like the military mission replanning example, we 
have developed an integrated approach based on our 
previous work on scheduling patterns [10][13].  Our 
previous research efforts have examined the capabilities of 
individual resource management services, and have made 
preliminary investigations of the benefits of cross-cutting 
the barriers between individual layers and services, such as 
integrating scheduling services with higher-level QoS 
management services for improved predictability of real-
time image transmission [11].   

This paper describes our work on developing global, 
distributed, and integrated scheduling and resource 
management capabilities, which extends our earlier 
research to address the integration of peer services within 
the same middleware QoS management layer. Our 
objective in this research is to provide DRE applications 
better QoS enforcement, through careful integration of 
policies and mechanisms for how resources are allocated 
and how access to those resources is arbitrated [4]. This 
finer-grain integration of services can enable better 
decision making across services without sacrificing 
decoupled, component-based development of individual 
services, which is also important for open systems. 

Our integrated approach consists of a distributed 
scheduling (DS) service [4], which coordinates the 
activities of multiple endsystems, a distributed resource 
management (DRM) service [6], which allocates resources 
on each endsystem, and several alternative endsystem 
scheduling options (e.g., RTC 1.2 fixed priority schedulers 
[17], Kokyu [14], and group scheduling [8]), which 
arbitrate access to resources at the local endsystem level. 
We have integrated our DS and DRM services in the 
context of the TAO [30] CORBA [24] object request 
broker, and have performed experiments to validate and 
evaluate this integration, which we present in Section 4.  

The system architecture of our approach is presented 
in Section 2. Section 3 presents the integration of two top-
level components in this architecture, the distributed 
scheduling service and the resource management service. 
Section 4 describes experiments that we performed to 
validate and evaluate our approach. Section 5 discusses 
related work. Finally, Section 6 concludes the paper. 

2. System Architecture 
 
The key to our approach is a system architecture that 

enables integration of the following focus areas: 
• Distributed Scheduling 
• Distributed Resource Management 
• Endsystem Scheduling 
• Information Collection and Use 

Figure 1 illustrates the architecture of an open DRE 
system involving three endsystems under the control of our 
integrated scheduling and resource management 
capabilities. Figure 1 shows how the four areas are 
reflected in the system architecture. 

 
Figure 1. Integrated QoS Management Architecture 

On each endsystem, a local scheduling component 
schedules access to resources within that endsystem, and a 
local information collection component records a variety of 
status information such as CPU utilization, progress of 
application activities, and success or failure of tasks in 
meeting their deadlines. This local status information is 
distilled into higher-level information such as predictability 
of local tasks in meeting intermediate deadlines toward 
timely completion of end-to-end activities. The higher-
level information is sent to a distributed information 
collection service called the system information repository. 
In addition to the local scheduling and system repository 
components, there are two distributed CORBA services, 
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the distributed scheduling service and the distributed 
resource management service. These services work 
together to provide fine-grain adaptive scheduling and 
resource management capabilities to the open DRE system. 

By adopting this architecture, we aim to improve 
system quality, reduce end-to-end latency, and provide 
rigorous management of scheduling aspects across 
systems.  The four focus areas are further explained in the 
following subsections. 

2.1. Distributed Scheduling 
 
We have developed a distributed scheduling service [4] 

to provide distributed real-time scheduling decisions for 
local enforcement in the TAO middleware [30]. The DS 
service is informed at system initiation of relevant local 
scheduling attributes for individual endsystem scheduling 
points along end-to-end paths. Such attributes may include 
local operating systems, event queues, POA (Portable 
Object Adapter) policies, dispatchers, and network routers.  
For instance, it will be told if a Real-Time CORBA 1.2 
(RTC 1.2) 2  [25] endsystem scheduler enforces a fixed 
priority or earliest deadline first (EDF) policy. The DS 
service is also made aware of the end-to-end activities that 
must be supported in the middleware. If given global 
knowledge of all end-to-end executions and of all local 
scheduling capabilities, the DS service can set globally-
sound scheduling parameters for each local enforcement 
mechanism. For instance, if the DS service knows that all 
endsystem schedulers are RTC 1.2 compliant and enforce 
EDF, the DS service will determine a globally-sound 
deadline for RTC 1.2 distributable threads at each of the 
scheduling points each distributable thread will encounter. 

Our DS service implementation uses the Adapter 
pattern to “wrap” the local enforcement mechanism. The 
Adapter intercepts calls to the local enforcement 
mechanism and interacts with the DS service. This 
interaction may be a local call to a DS service daemon on 
the end-system, or may require a remote call to a remote 
component of the DS service. For instance, if an RTC 1.2 
distributable thread sets its deadline, the Adapter for the 
local RTC 1.2 scheduler will first check with the DS 
service to determine if the requested deadline should be 
altered. Furthermore, subsequent dispatches of subtasks in 
the distributable thread will check with DS service to allow 
intermediate deadlines to be set. 

In the implementation with which the experiments 
presented in Section 4 were conducted, both distributed 
scheduling and distributed resource management services 
have been integrated, the target local enforcement 
mechanism is TAO’s RTC 1.2 fixed priority scheduling 
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service [17]. We have also integrated a distributed dynamic 
scheduling service with a Kokyu [9][12][14] based 
endsystem scheduling mechanism. Kokyu can be 
configured to support many local enforcement mechanisms. 
Our initial distributed dynamic scheduling approach uses 
Sun’s algorithms [32], which establish release times and 
intermediate deadlines for subtasks in an end-to-end task. 
Since Sun’s algorithms assume EDF scheduling on local 
operating systems, we have configured Kokyu to do EDF 
scheduling.  As future work we will integrate distributed 
dynamic scheduling with our progress-based group 
scheduling approach [1] which is described in Section 2.3. 
We will also integrate our distributed resource 
management service and distributed dynamic scheduling 
service for both the Kokyu and group scheduling 
endsystem scheduling variations, to compare and contrast 
the effects of different endsystem scheduling approaches 
on distributed scheduling and resource management. 

2.2. Distributed Resource Management 
 
We have implemented a distributed resource 

management service in CORBA as part of the Quality-
based Adaptive Resource Management Architecture 
(QARMA) [6] project. The QARMA DRM service 
consists of the following types of elements: 

• monitors that gather information about resource 
usage, resource availability, application 
performance, and environmental conditions; 

• detectors that evaluate particular subsets of the 
information in the system repository, to decide 
whether or not to trigger the decision-maker to 
perform a reallocation;  

• a decision-maker that uses a subset of the 
information in the system repository to decide 
what actions should be performed to ensure that 
end-to-end performance requirements are satisfied 
and that overall end-to-end performance is 
improved when opportunities arise; and 

• enactors that receive instructions from the 
decision-maker about what actions to perform in 
the system, and then enact those actions. 

Different types of monitors serve different purposes, 
including host monitors that watch resource usage on a 
single host computer, and path monitors that watch events 
that take place along a particular end-to-end path [25].  

2.3. Endsystem scheduling 
 
At each endsystem, access to resources by competing 

activities must be scheduled according to end-to-end 
application level requirements. In our architecture, the DS 
service translates those end-to-end requirements into local 
resource scheduling policies enforced on each individual 
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endsystem. Resource scheduling mechanisms used to 
enforce those local policies can be provided at both the 
middleware and operating system levels. Historically, such 
scheduling mechanisms have included: 

• ordered queues in the Kokyu framework and 
thread pools with lanes in TAO’s Real-Time 
CORBA 1.0 implementation [26] at the 
middleware level, and  

• low-level abstractions such as prioritized or share-
based allocation of CPU cycles in KURT-Linux 
[23][31] or TimeSys Linux [33], or network 
bandwidth in RSVP [3] at the operating system 
level. 

Although these traditional mechanisms are sufficiently 
powerful to express the resource allocation requirements of 
distributed real-time applications, programming those 
abstractions directly can be both tedious and error prone 
for even moderately complex systems. Our previous 
research has shown that higher-level application progress 
requirements can be mapped to scheduling enforcement 
mechanisms more directly and efficiently, through modular 
intermediate abstractions provided by an approach we call 
group scheduling [8].   

Our group scheduling model combines the advantages 
of two familiar scheduling paradigms: hierarchical 
[15][28][29] and path-oriented [1] [20].  Under recent 
modifications to KURT-Linux, the operating system (OS) 
implementation of the group scheduling model can control 
execution of every type of computation component  under 
Linux, including threads, interrupt handlers,  soft-IRQs, 
bottom-halves, and tasklets [7]. The group scheduling 
model has also been implemented at the middleware level 
[8], and our recent empirical evaluations [1] show 
qualitatively similar performance between the OS and 
middleware implementations, albeit at a cost of additional 
overhead for the group scheduling mechanisms in 
middleware. 

We have integrated traditional endsystem scheduling 
frameworks such as TAO’s RTC 1.2 fixed priority 
scheduler and the Kokyu framework with our distributed 
scheduling service.  We will also integrate our group 
scheduling framework with distributed scheduling and 
resource management, to allow finer-grained enforcement 
of end-to-end activities progress requirements.  

2.4. Information collection and use 
 
The distributed resource management (RM) subsystem 

is responsible for ensuring that adequate resources are 
available for use when and where they are required along 
the end-to-end path of a computation through the 
distributed system. Precisely what kind of information is 
required depends on the computations being supported, but 
(1) the RM subsystem must have access to a wide variety 
of information and (2) the precise set of information 

required will vary with system configuration and operating 
conditions. the set of data collection requirements is 
complicated further by the needs of endsystem scheduling, 
and our need to evaluate the performance of our end-to-end 
distributed computations, The combined set of 
requirements is significantly more demanding than 
commonly used performance data collection methods can 
handle, and has required considerable effort on our part in 
support of data collection. 

Our endsystem data collection system, called Data 
Streams, supports data gathering from both the application 
level through its Data Steams User-level Interface (DSUI), 
and from the underlying endsystem OS through its Data 
Streams Kernel Interface (DSKI) [22]. The DSUI is 
portable across a wide range of endsystems, requiring 
access only to an endsystem time standard for time-
stamping data records. The DSKI is a standard device 
driver and is thus portable across a range of endsystem, but 
creation of an instrumentation point requires access to the 
source code being instrumented. The Data Streams 
subsystem supports name spaces of instrumentation points 
that generate a performance datum when a thread of 
control passes through an instrumentation point in 
application, middleware, or OS code.  Each 
instrumentation point is disabled by default, and can be 
enabled, configured, and associated with a data stream 
selectively as required for each task. 

Data from each instrumentation point is in a standard 
format permitting sets of data gathered separately to be 
merged and processed in a number of ways. This ability to 
merge data gathered separately is important because the set 
of information required to answer a particular performance 
evaluation question, to support a group scheduling 
algorithm on-line, or to support the RM subsystem may 
come from many sections of the system. The Data Streams 
subsystem is thus strongly aspect oriented in the sense that 
it supports configuring the collection of exactly the data set 
required for a particular situation, regardless of how the 
sources of that data cut across conventional system 
component boundaries. 

The QARMA DRM service monitors, detectors, 
decision-makers, and enactors also make use of the system 
repository. For example, the monitors store the data it 
gathers to the system repository; the detectors and the 
decision-makers uses data in the system repository to make 
their decisions. The information in the system repository is 
also accessible to the DS service. The system repository 
stores information about which end-to-end tasks are 
currently running, and on what resources.  This will enable 
the DS service to determine if a newly requested 
distributable thread can be scheduled along with the other 
tasks currently running in the system. Such sharing 
facilitates fine-grain integration of the DS service and the 
DRM service. 
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3. System Integration 
We are approaching the problem of system integration 

in an incremental fashion. First, we have integrated the DS 
service and the DRM service, as this paper describes.  
These services are integrated with a basic RTC 1.2 fixed 
priority scheduler.  

3.1. Integration of DS and DRM Services 
 

 
Figure 2. Integrated DS and DRM Services 

The integration of the DS service with the QARMA 
Resource Manager [6], and with TAO’s RTC 1.2 
scheduling service, is shown in Figure 2. In interactions 
depicted in Figure 3, a distributable thread (labeled DT in 
the figure) makes a begin_scheduling_segment() call 
(labeled bss), which  is intercepted by the DS service 
Adapter. The Adapter sends the requested scheduling 
parameters to the DS service via a 
begin_distributed_scheduling_segement() call (labeled 
bdss). The DS service performs a global schedulability 
analysis (currently an EDF utilization bound analysis on all 
nodes). If the system is schedulable, the DS service sets the 
scheduling parameters (currently the release times and 
deadlines) for the distributable thread on the local 
enforcement mechanism(s) (TAO’s RTC 1.2 scheduler). If 
the system is not schedulable, the DS service makes 
rm_reactive() call and invokes the DRM service, which 
either adjusts the QoS of the execution or reallocates 
resources. The system repository, as depicted in the system 
architecture, is the central storage of all static and dynamic 
configuration and status information of the DRE 
applications. Both the DRM service and the DS service 
share the system repository, so that they have a common 
picture of resource status and usage in the entire system. 
The experiment results presented in Section 4 validate the 
integration of the DS service and the DRM service. 

 

 
Figure 3. Interactions between DS and DRM Services 

3.2. Further system integration 
 
In addition to our integration of the DS and DRM 

services described in Section 3.1, we have integrated a 
distributed dynamic scheduling service with the Kokyu 
endsystem scheduling framework, and will subsequently 
integrate that DRM service with that instantiation of our 
architecture.   

As future work, we will upgrade the Kokyu-based 
integration to use group scheduling capabilities on each 
endsystem.  The results of our endsystem group scheduling 
experiments [1] show that both priority and share based 
scheduling policies can be combined with different 
interpretations of fairness to produce a number of effective 
end-to-end scheduling policies. We are also investigating 
the use of scheduling decision functions that exploit 
application-specific computation progress information, for 
potential improvements in application execution behavior. 

It is also interesting to note that one could implement 
group scheduling directly within Kokyu for application 
progress semantics such as EDF/MUF-style enforcement 
of sub-task deadlines on each endsystem along an end-to-
end path. This observation offers a potential migration path 
for a distributed scheduling service from a traditional 
Kokyu endsystem scheduler to a Kokyu-based 
implementation of group scheduling policies, and finally to 
the direct group scheduling implementation [1]. With these 
alternatives in mind, and we will conduct further 
experiments to evaluate our approach as we begin final 
integration of our resource management, distributed 
scheduling, and local endsystem scheduling service 
implementations. 
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4. Experiments 
 
We conducted a set of experiments to validate our 

approach of integrating resource management and 
distributed scheduling. We first measured the performance 
of a DRE system controlled by the QARMA DRM service 
alone. We then measured the performance of the same 
DRE system controlled by the joint DS service and DRM 
service service.  We also compared the results against a 
baseline system without either DS or DRM services. 

4.1 Experiment setup 
 
Our experiments were based on a distributed video 

delivery application for Unmanned Aerial Vehicles 
(UAVs). The UAV application consists of senders, which 
acquire and send out video frames; viewers, which either 
display the video to human monitors or feed the video to 
automatic target recognizers; and distributors, which 
replay the videos frames from senders to viewers. The 
DRM service had been integrated with the UAV 
application [6]. In this experiment, we collected data from 
a simulated UAV application that runs in RMBench, a tool 
designed for performance evaluation of real-time 
embedded systems [5]. We used the simulated UAV for 
these experiments because the real UAV application is 
maintained by a third party and has only three dramatically 
different service levels (30 frames per second, 10 FPS, 2 
FPS). Use of the simulated UAV environment in our 
experiments allowed us to use ten service levels and to 
demonstrate more clearly the benefits of our approach in a 
single set of experiments.  

The experiments were performed in the Emulab [34].  
We used 4 PCs with single 850MHz CPUs running Red 
Hat Linux 9 in the experiments. The PCs were connected 
by a 100MBS network. One PC hosted all senders in the 
UAV application; a second hosted all distributors; the third 
all viewers; and the fourth the DS and DRM services. 

 
Figure 4. Nine-Minute Experiment Scenario with Six 
Tasks. 

 

The experiment consisted of six periodic end-to-end 
tasks, which in this case were sender/distributor/viewer 
chains. Task 1 through Task 6 were assigned importance 1 
through 6 (1= lowest, 6 = highest), respectively. Each task 
consisted of three sub-tasks:  sender, distributor, and 
viewer. Each task could be run at 10 different service 
levels, with level 10 providing the highest video quality 
and level 1 the lowest. Task 2 and task 4 ran for the 
entirety of the experiment, which was 9 minutes, and were 
initially schedulable on each of the nodes at service levels 
5 and 10 respectively. Task 1 then entered the system and 
caused overload on some of the nodes. Task 1 then left the 
system and task 3 entered, again overloading the system.  
Tasks 5 and 6 then also entered the system at different 
times.  Task properties are summarized in Table 1. The key 
time periods in the experiment are summarized in Table 2. 
The timeline of these events is depicted in Figure 4. 

Table 1. Task Properties in the Experiments. 

Task Task 
Importance 

Period 
(sec) 

Worst Case Execution 
Time (sec) 

T1 1 3 1.3 
T2 2 3 1.3 
T3 3 3 1.3 
T4 4 3 1.3 
T5 5 3 1.3 
T6 6 3 1.5 

 

Table 2. Timeline for the Experiments. 

Time 
(sec) 

Action Result At Max Quality 

0 T2 and T4 begin Schedulable  
60 T1 begins Not Schedulable 
120 T1 ends Schedulable 
180 T3 begins Not Schedulable 
240 T3 ends Schedulable 
300 T5 begins Not Schedulable 
360 T5 ends Schedulable 
420 T6 begins Not Schedulable 
480 T6 ends Schedulable 
540 T2 and T4 ends Not Schedulable 

 
We ran three instances of the experiment.  The 

baseline experiment did not use the DRM service or the 
DS service to control timeliness. The DRM service 
experiment used only the DRM service, which reacted to 
host overload. The DS / DRM service experiment used the 
integrated DRM and DS services. 

Metrics had been developed for these experiments to 
measure the overall system value achieved for each test, 
and the overhead of both the DS service and DRM service 
components. Traditional metrics such as end-to-end 
latencies and statistics describing the quality settings 
during the experiment were also collected. 

60 120 180 240 300 360 420 480 5400 
time (sec) 

T1 

T2 

T3 

T4 

T5 

T6 
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4.2 Experiment results 
 
In order to compare the added value of using the DRM 

service and the DS service, the same metrics were 
collected for all three experiments. Two types of metrics 
were collected:  performance metrics and overhead metrics. 
Performance metrics indicate how well the managed 
systems performed in each experiment and include latency, 
number of missed deadlines, and quality. Any latency time 
larger than three seconds indicates a missed deadline. The 
level of service represents quality. Overhead metrics 
measure how much overhead is introduced by the 
management components.  In this experiment, the latencies 
of the DS service, DRM service, and supporting QARMA 
management components were measured to show the 
latency from overload detection to enacting changes to the 
operation of the system to remove the overload. 

4.2.1 Performance Metrics 

Table 3 summarizes the overall metrics for each 
stream over the duration of the entire experiment for all 
three experiments. The results indicate that the use of the 
management components improve both the latency and the 
number of missed deadlines significantly for this 
experiment, but at the cost of reducing the average quality 
of some of the distributed tasks.   

Table 3. Metrics. 

 Avg. 
Latency 
(sec) 

Max. 
Latency 
(sec) 

Number 
of Missed 
Deadlines 

Avg. 
Quality 

Baseline 
Task1 4.05869 4.27175 20 10 
Task2 2.68714 5.61852 32 10 
Task3 2.58997 2.71341 0 10 
Task4 2.68408 5.58821 44 10 
Task5 2.46839 2.87625 0 10 
Task6 9.13197 10.3683 15 10 
DRM service 
Task1 0.235812 0.247172 0 1 
Task2 0.720078 2.606511 0 3.6 
Task3 0.984620 1.019679 0 4 
Task4 2.367169 3.085342 21 8.5 
Task5 2.910771 3.171827 1 10 
Task6 3.367901 3.385024 20 10 
DS / DRM service 
Task1 0.44564 1.41718 0 1 
Task2 1.22624 4.15631 2 3.6 
Task3 1.54162 2.7224 0 4 
Task4 2.24104 3.11162 1 8.9 
Task5 2.6013 2.97634 0 10 
Task6 3.01883 3.83688 1 10 

 
Using the DRM service alone decreased the number of 

missed deadlines from 26% to 10%.  The integrated DS 
service and DRM service reduced the number of missed 

deadlines to less than 1%.  Since the DS service is able to 
control local priorities, the DS / DRM service experiment 
showed improvements in both latency and number of 
missed deadlines over the DRM service experiment where 
local priorities could not be controlled.  Also, the average 
latency went from 3.93671 seconds in the baseline to 
1.76438 seconds in the DRM service experiment and 
1.9752 seconds in the DS / DRM service experiment. 
Figures 5 and 6 show the average response time for each 
task in the DRM service and the DS / DRM service 
experiments, respectively.  Execution times for each task 
were always fixed as worst-case execution times. Using 
average-case execution times instead would likely improve 
the performance. Missed deadlines in the DS / DRM 
service experiment only occurred when a new task entered 
the system, and before the RM service had the opportunity 
to change the service levels of the appropriate task. 
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Figure 5. DRM service Response Times. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

3 33 63 93 12
3

15
3

18
3

21
3

24
3

27
3

30
3

33
3

36
3

39
3

42
3

45
3

48
3

51
3

Time (seconds)

R
es

po
ns

e 
Ti

m
e Task 1

Task 2
Task 3
Task 4
Task 5
Task 6

 
Figure 6. DS / DRM Service Response Times. 

Another important observation from the data is that the 
management components were able to degrade the 
performance of less important tasks, allowing the more 
important tasks to run at higher quality levels.  Figure 7 
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shows the quality of the applications over time for the DS / 
DRM service experiment.  When task 5 entered the system, 
both the less important task 2 and task 4 were degraded to 
allow task 5 to execute at the highest quality setting.  When 
task 5 exited the system, task 2 and task 4 were returned to 
higher quality settings to consume the resources released 
by task 5. 
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Figure 7. DS/DRM Service Experiment Service Levels. 

Note that in the DS / DRM service experiment, four 
tasks missed deadlines. All of these missed deadlines 
occurred immediately after a task that would make the 
system unschedulable entered the system. These deadline 
violations occurred because in the RMBench architecture, 
the enactor must wait for the task to finish the current 
periodic workload before it can change the service level of 
the task.  In effect, the node remained overloaded until the 
node finished execution for particular period. No other 
tasks missed deadlines once the DRM service was able to 
change the service level of the least important active task. 

4.2.2 Overhead Metrics 

The elapsed time from overload detection to the 
notification of every application of new quality levels is 
referred to as the management response time (MRT).  In 
both the DRM service and the DS / DRM service 
experiments, the MRT was measured in the same manner, 
but the overall process was initiated differently.  In the 
DRM service experiment, overload detection was 
accomplished using simple host utilization detectors.  
These detectors invoked the DRM service whenever a host 
was either in overload or in underload as defined by a 
utilization threshold.  In the DS / DRM service experiment, 
overload detection occurred within the DS service, which 
invoked the DRM service if overload was detected or if a 
task had left the system.  In both scenarios, the DRM 
service computed service level changes and invoked the 
QARMA Enactor Service to carry out those changes.  The 
Enactor Service then invoked lower level enactors that 
updated the service level for each task in the system.   

In the DRM service experiment, twelve application 
state changes were identified, each resulting in a call to the 
DRM service.  The average MRT produced by these calls 
was 0.13697 seconds, and the maximum was 0.16748 
seconds.  In the DS / DRM service experiment, the twelve 
state changes resulted in only eleven calls to the DRM 
service.  The DS service did not need to call the DRM 
service when the first task entered the system because that 
task was schedulable.  In the DS / DRM service experiment, 
the average MRT for a new task entering the system in 
which is could be scheduled was 0.0594 seconds.  If the 
system was not schedulable, meaning the DS service had to 
call the DRM service, the average MRT was 0.18459 
seconds.  Tasks leaving the system had an average MRT of 
0.13255, which is the time it took the DS service to notify 
the DRM service of potential overload, and the DRM 
service to recalculate maximum Service Levels for the 
remaining tasks. 

5. Related Work 
 
Several other real-time middleware systems provide 

distributed scheduling similar to that provided by the DS 
service in this architecture. The RTC1.0 static scheduling 
service [21] in TAO provides a distributed scheduling 
framework for statically scheduled systems.  That is, when 
the requirements of all distributed tasks are known a priori, 
this service provides guaranteed real-time scheduling.  It 
does not, however, have the ability to respond to 
dynamically changing task requirements, as the DS service 
does.  

The Tempus middleware framework [18] works in 
dynamic environments, and supports the distributable 
thread construct. Tempus requires that application timing 
constraints be specified as time/utility functions. It then 
builds the distributable thread construct on top of POSIX 
threads. The current implementation of the DS service 
schedules distributable threads through the RTC 1.2 API 
using fixed priority local enforcement. However, the 
pluggable design of the DS service would allow utility 
function-based scheduling to be inserted in place of 
priority-based scheduling.   

The QuO framework [16] also provides some 
scheduling capabilities. However, QuO does not provide a 
mechanism to map scheduling decisions to local 
endsystems in a standard way. Rather, QuO uses 
application-specific information to enforce scheduling 
decisions. The DS service in our architecture is meant to 
provide scheduling within a RTC 1.2 framework.  
However, it goes above and beyond the requirements of 
RTC 1.2. The RTC 1.2 specification [25] states that the 
current standard handles end-to-end scheduling by 
scheduling each node independently. Our DS service can 
support globally-sound scheduling (specified as future 
work by the RTC 1.2 standard document) where possible 
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by analyzing entire end-to-end chains and scheduling 
individual nodes accordingly. 

The majority of real-time computing research has 
focused on the scheduling, analysis and resource allocation 
for real-time systems whose timing properties and 
execution behavior are known a priori. However, open 
DRE systems must execute in highly dynamic 
environments, thereby precluding accurate characterization 
of the applications’ properties by static models. In such 
contexts, temporal and execution characteristics can only 
be determined accurately by empirical observation or 
experience.  

Our approach addresses these issues and removes key 
limitations. End-to-end real-time performance 
requirements drive resource allocation decisions, and a 
posteriori resource demands are used in allocation analysis. 
Our effort differs from [19], which performed end-to-end 
allocation, but assumed average case workloads for servers; 
in contrast, we use monitors that provide more accurate 
resource usage profiles.  More importantly, our integrated 
approach enables fine-grain collaboration between the 
scheduling and resource management services so that the 
scheduler and the resource manager always work together 
and do not make decisions that may counteract or 
undermine each other’s actions. 

6. Conclusions 
 
In conclusion, our research on distributed scheduling, 

resource management, and group scheduling, once fully 
integrated, has the potential to overcome many of the key 
shortcomings of previous layered QoS management 
solutions. We have demonstrated performance 
improvements of a simulated DRE application controlled 
by the integrated distributed scheduling and resource 
management services through controlled experiments. The 
experiment results showed that the integrated services 
further improved the application performance beyond the 
improvement achieved by our resource management 
service alone.  

In addition, the group scheduling approach also shows 
potential advantages when integrated with distributed 
scheduling and resource management. The integration of 
endsystem group scheduling with the integrated DS and 
DRM services is the next stage of our research effort.  

We also plan to further improve the current DS / DRM 
service integration. For example, the total management 
response time of the joint DS / DRM service management 
may be reduced by increasing parallelism. For example, 
making the rm_reactive() method a one-way call so 
that the DS service and the DRM service can work at the 
same time. This improvement may be particularly 
significant when the DS service and the DRM service run 
on different host computers. 
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