
Energy-efficient MAC for Broadcast Problems in
Wireless Sensor Networks

Lisa DiPippo, David Tucker, Victor Fay-Wolfe, Kevin L Bryan, Tiegeng Ren, William Day, Matthew Murphy,
Tim Henry, Shaun Joseph

University of Rhode Island, Kingston, RI, USA
{tucker, dipippo, wolfe, bryank, rentg, wday, murphym, henry, joseph}@cs.uri.edu

Abstract - This paper describes a medium access control
protocol for wireless sensor networks designed for broadcast
communication. The RI-MAC (Random Interference Medium
Access Control) protocol uses random slot assignment in each
MAC frame, along with knowledge of neighbors’ transmission
schedules to mitigate some of the energy wasting problems
with existing MAC protocols. RI-MAC conserves energy,
transmits messages fairly among the nodes in the system, and
is adaptive to changes in the topology. Preliminary evaluation
tests indicate that RI-MAC uses less energy than CSMA. *

I. INTRODUCTION

Energy is a major concern in the development of
wireless sensor network applications. On one hand, many
sensor networks are expected to function for several months
without maintenance. On the other hand, each sensor node
has minimal energy resources, typically in the form of a pair
of AA batteries. Furthermore, the energy costs of radio use
are particularly high, not only for transmission and
reception, but also for idle listening [1]. Thus the design of
energy-efficient network protocols is key to successful
deployments.

In this paper, we discuss the design of a medium access
control (MAC) protocol that optimizes for energy
conservation. A MAC protocol mediates use of the radio
channel among several nodes; it says who is allowed to
transmit when. In addition to energy conservation, MAC
protocols usually have several other goals. The protocol
should be fair: each node should have equal opportunity to
communicate with other nodes. The protocol should allow
for high bandwidth utilization: the radio channel's time
should not be wasted. The protocol should be adaptive to
changes in network topology, either due to irregular signals
or node mobility.

In addition to the energy challenges described above,
protocols must also account for the unstable nature of the
radios. Studies have shown that even for immobile nodes,
link quality can be poor, can vary with time, and may have
irregular propagation patterns (asymmetric links are
common) [2].

We take a novel angle on MAC protocol design in
deeming energy conservation, fairness, and adaptiveness to
be more important goals than bandwidth utilization. This
decision reflects the nature of many sensor network
applications -- they are long-lived with low duty cycles, and
aim to monitor the environment over an extended period of

* This work is supported in part by NSF grant # CNS041030.

time. To support long lifetimes, energy conservation is
crucial.

We introduce RI-MAC, the Random Interference
Medium Access Control protocol. Unlike many MAC
protocols for sensor networks, ours is not general-purpose,
but restricted to a single traffic pattern: multihop broadcast.
This restriction enables us to create a MAC protocol that
saves more energy. Multihop broadcast has many
applications in sensor networks, often in distributing query
or code updates from a base station to the entire network [3,
4]. We do not dictate any specific network layer above RI-
MAC, except to assume that it is attempting to move data
using multihop broadcast, and that all nodes have equal and
relatively high throughput. For example, code update
applications may need to send many code packets
throughout the network. Even though not every node will
relay every packet, nodes will be evenly loaded with
transmissions and have high throughput.

The rest of the paper is organized as follows. Section 2
describes related work in MAC protocol development and
indicates the benefits of RI-MAC over existing protocols
for the multihop broadcast traffic pattern. Section 3
describes the details of the RI-MAC protocols, with several
examples to illustrate. Section 4 presents a description of
our implementation of the RI-MAC protocol for TinyOS in
the TOSSIM simulation environment. This section also
describes several tests that we performed to evaluate RI-
MAC against a CSMA protocol. We finish in Section 5
with conclusions about our work and discussions of future
work.

II. RELATED WORK

In this section, we review related work on MAC
protocols, and discuss the sources of energy waste in
multihop broadcast scenarios. We can divide the sources of
energy waste into four categories: (a) transmissions when
no node is listening, (b) listening when no node is
transmitting ("idle listening"), (c) collisions due to multiple
simultaneous transmissions, and (d) protocol overhead --
the exchange of control messages that do not contain
application data.

MAC protocols can roughly be divided into contention-
based and scheduled protocols. Most contention-based
protocols are a variant of CSMA; for example, S-MAC [1]
and B-MAC [5]. One problem with CSMA protocols for
sensor networks is idle listening. B-MAC supports Low
Power Listening (LPL), which aims to overcome the idle
listening problem by requiring potential receives to

periodically wakes up briefly to listen for activity on the
radio channel. The implementation of LPL is tightly
integrated with the hardware, and is not currently available
for most platforms. Under the high throughput broadcast
scenario that we are considering, nodes will usually be
either receiving or sending. Under this scenario, CSMA is
susceptible to the hidden terminal problem -- and thus many
messages will collide. Increasing CSMA backoffs can
alleviate this; however, the idle listening factor then comes
back into play. Other contention-based protocols, such as
S-MAC [1] and T-MAC [6], use a request-to-send / clear-
to-send handshaking protocol to reduce collisions.
However, this scheme is appropriate for point-to-point
communications rather than broadcast.

Scheduled protocols tend to reduce collisions, but waste
energy in other ways. TDMA protocols often require 2-hop
neighbor information to establish schedules. For example,
TRAMA [7] uses random access signaling slots to exchange
neighbor and schedule information. The messages involved
in this create energy waste through overhead. Furthermore,
TDMA protocols usually require time synchronization,
another source of overhead. This overhead is exacerbated
by the irregular and unreliable radio links that are typical of
many sensor networks. The Z-MAC protocol is a
TDMA/CSMA hybrid. Under high contention, as our
broadcast scenario tends to be, Z-MAC acts similarly to
TDMA, and thus has many of the problems discussed
above. Finally, TSMA protocols [8] are also scheduled,
and while they don't ensure collision-freedom, they
guarantee certain quality of service. This approach is
similar to our RI-MAC work, except that it still requires
time synchronization, and doesn't specify sleeping
schedules.

III. THE RI-MAC PROTOCOL

We introduce RI-MAC, which eliminates many sources
of wasted energy for broadcast problems, while allowing
fair channel access for all nodes. Like TDMA, RI-MAC
divides time into frames, and frames into slots. We will
first explain RI-MAC assuming that all nodes are time-
synchronized, and then later relax this assumption.

A. Transmission Schedule

In RI-MAC, each node chooses a random slot in each
frame for transmission. Figure 1 shows an example of five
nodes (A through E), where each frame has six slots, and
the nodes have picked their transmission slots in each frame
(marked with T). We assume that each node knows its one-
hop neighbors, and the transmission schedules for those
neighbors. For this example, we will use the topology in
Figure 2. Given the knowledge of its neighbors'
transmission schedules, each node fills out its remaining
slots as either listening slots (L) or sleeping slots (S)
according to the following rules. If exactly one neighbor
transmits in a slot, then listen. If no neighbors transmit in a
slot, then sleep. If two or more neighbors transmit in a slot,
also sleep, as there will only be radio interference.

The resulting schedule can be seen in Figure 3. Notice
that in the first frame, node B sleeps during slot 3 because
its neighbors A and D both transmit. Also note that a node

transmits even if a neighbor is scheduled to transmit in the
same slot; for example, both B and C transmit during slot 2
of the second frame.

B. Protocol Specifics

Let us address several specific aspects of the protocol
and its implementation.

Neighbor Transmission Schedule. We assumed that a
node knows each neighbor’s transmission schedule. In each
packet, we include two data from the sender: its address,
and a sequence number indicating where it is in its pseudo-
random number sequence. Since a node seeds its own
pseudo-random number generator with its own address,
these two data can be used by its neighbors to predict the
node's transmission schedule. Therefore, once a node hears
one packet from a neighbor, it knows that neighbor’s entire
transmission schedule. To allow nodes to learn its
neighbors, RI-MAC has a setup phase of unscheduled
listening before entering the main schedule.

Clock Synchronization. Initially we assumed that all
clocks were synchronized, and thus frames and slots were
aligned. In fact, the RI-MAC protocol and its
implementation do not require aligned slots. This changes
the rules only slightly: a node only listens if a neighbor's

TTE

TTD

TTC

TTB

TTA

654321654321

TTE

TTD

TTC

TTB

TTA

654321654321

N
O
D
E
S

Slots in Frame 1 Slots in Frame 2

Figure 1 – Example Transmission Schedule

A

E

D

C

B

Figure 2 – Example Topology

A

E

D

C

B

A

E

D

C

B

Figure 2 – Example Topology

LSSSLTTSSLLSE

TSSSLLLLSTSSD

SLSSTLLLSLTSC

LLSSTSSTSSLSB

STSSSSSLSTLSA

654321654321

LSSSLTTSSLLSE

TSSSLLLLSTSSD

SLSSTLLLSLTSC

LLSSTSSTSSLSB

STSSSSSLSTLSA

654321654321

N
O
D
E
S

Slots in Frame 1 Slots in Frame 2

Figure 3 – Example Schedule

transmission is not overlapped by some other neighbor's
transmission. In each transmission from a neighbor, a
timestamp is included, so a node will know the offset of its
own slots with its neighbors’ slots. Thus, it will be able to
predict the overlap of its neighbors’ transmissions.

We do not expect clock drift to be a major problem
because of the course-grained nature of our scheduling (we
need accuracy on the millisecond level). Studies show that
clock drift on mica2 motes, for example, is on the order of 1
millisecond over the course of seven hours [9]. However,
we do account for clock drift as follows: every time a node
receives a message from a neighbor, it updates its internal
record of that neighbor’s schedule in accordance with the
timestamp of that receipt. Therefore, the accuracy of a
neighbor’s schedule is with respect to the most recently
received message from that neighbor.

Energy Conservation. Let’s consider the protocol in
terms of wasted energy. When a node is sleeping,
obviously no energy is wasted. When a node is listening in
RI-MAC, no energy is wasted because it will receive a
message. The only sources of waste are transmission when
a neighbor is not listening, and overhead. Sometimes a
sending node’s neighbor will not listen if it knows that
another of its own neighbors will be sending at the same
time. Overhead in RI-MAC occurs through the setup phase
when nodes are discovering their neighbors.

C. Analytical Comparison

We can compare RI-MAC with typical TDMA
protocols [10] given our three goals: energy efficiency,
fairness, and adaptability. RI-MAC is more energy-
efficient, because the overhead involved in RI-MAC
neighbor discovery is significantly less than the 2-hop
neighborhood information required by other TDMA
protocols. Further, RI-MAC does not require synchronized
clocks, which can be very energy intensive. TDMA
protocols can result in unfair schedules due to irregular
radio links. As [2] shows, asymmetric links can lead to
schedules that are not collision-free. Since TDMA
schedules are typically static, a node with a bad schedule
may never get channel access. In RI-MAC, the random
schedules, chosen in each frame, ensure that all nodes have
equal opportunity, regardless of the radio irregularity.
Finally, RI-MAC is more adaptive to changing conditions
than TDMA because it requires only 1-hop information for
its scheduling algorithm, and thus a node can more easily
learn about new neighbors and adjust its schedule
accordingly.

IV. IMPLEMENTATION AND EVALUATION

We have implemented RI-MAC for TinyOS and tested
it using TOSSIM (the TinyOS Simulator) [11] and its
extension for energy profiling, PowerTOSSIM [12].
TOSSIM provides discrete event simulation of TinyOS
programs, and includes an implementation of the radio
stack for the mica2’s CC1000 radio. TOSSIM simulates
radio behavior at a low level and implements a CSMA
protocol similar to B-MAC for medium access control. We
use this as both a point of comparison as well as a basis for
our MAC implementation.

A. RI-MAC Implementation Environment

TinyOS’s CC1000 radio stack provides two interfaces
for sending and receiving messages:

interface BareSendMsg {
 command result_t send(TOS_MsgPtr msg);
 event result_t sendDone(TOS_MsgPtr msg,

result_t success);
}

interface ReceiveMsg {
 event TOS_MsgPtr receive(TOS_MsgPtr m);
}

The user process can call a send() command, and
must handle a receive() event. Commands are initiated
by the user process, whereas events are initiated by the
library (in this case, the radio stack) and handled by the user
process. The RI-MAC implementation is built on top of the
CC1000 radio stack with several modifications. First,
backoffs used by CSMA were removed. Second, because
RI-MAC is scheduled, priority was given to sends over
receives (i.e., the stack sends a packet right away even if it
is in the middle of receiving another packet). And third, the
scheduling layer on top of the CC1000 radio stack
determines send and receive periods, and notifies the user
process of them. We preserve the ReceiveMsg interface,
but provide a different interface for sending messages:

interface BareSendMsgScheduled {
 event TOS MsgPtr sendNow();
 event result_t sendDone(TOS MsgPtr msg,

 result t success);
 }

Instead of calling a send() command, the user process
handles a sendNow() event when the stack needs a packet
to send. The user process can alternatively return NULL to
indicate there is no message to send. In terms of control,
the radio stack, rather than the user process, decides on the
send schedule.

RI-MAC maintains the following 14 to 18 bytes of state
information for each neighbor as well as for the mote itself:

• Id: [2 bytes] Id of the neighbor mote.

• Time of Next Packet: [4-8 bytes] World clock time of the
neighbor’s next predicted transmission.

• Next Slot Number: [2 bytes] Slot in which neighbor will
transmit. Computed from the neighbor’s random number
mod frame size.

• PRNG Sequence Number: [2 bytes] Neighbor’s count in
the pseudo-random number generator’s sequence.

• PRNG State: [4 bytes] Saved state of PRNG based on
neighbor’s sequence count. This prevents re-initialization
of neighbor’s PRNG in order to arrive at the current
random number in sequence.

Using this data, RI-MAC determines when the mote
should sleep and when it should wake for sending or
listening. RI-MAC updates each neighbor’s PRNG state
upon packet reception, or on timeouts after missed packets.

B. CSMA Implementation

We use the CSMA implementation provided by
TinyOS, modified so that we can adjust the backoff values.
By default, when a mote decides it must transmit, it waits an
initial backoff of 7 to 33 milliseconds and then listens to the
channel to determine if another mote is transmitting. If the
channel is clear, the mote sends its message. If a neighbor
is transmitting, the mote performs a congestion backoff of 7
to 115 milliseconds before trying to resend the message.

C. Testing Parameters and Metrics

We performed various experiments to test how well the
RI-MAC protocol meets the goals stated in this paper. Due
to space limitations, we discuss one specific test here.
Other results will be published in the future.

For this test, we used a simple all-to-all network
protocol that distributes all of the data to all of the motes.
We considered the following questions:

• How does the RI-MAC protocol affect power usage for
all-to-all data distribution in a wireless sensor network
compared to TinyOS’s default CSMA?

• How does the RI-MAC protocol affect the time
required to provide all-to-all data distribution
compared to CSMA?

This experiment focused on fine-tuning the RI-MAC
parameters in order to achieve distribution of data so that
each node received at least two thirds of the data values
generated by the network. The graph in Figure 4 shows the
average power consumption in simulation. RI-MAC was
able to achieve nearly as wide a distribution while using a
third the power of CSMA. In terms of time, the RI-MAC
execution time exceeded that of the CSMA version by a
factor of 4. We consider this tradeoff of time for energy to
be consistent with the goals of many wireless sensor
network applications.

Figure 4 – Experimental Results

V. CONCLUSIONS AND FUTURE WORK

RI-MAC is a MAC protocol designed for broadcast
communication in wireless sensor networks. We have
shown that it wastes less energy than CSMA when frame
size is chosen properly. We have further discussed,
analytically, the benefits of RI-MAC over TDMA.

Future work on RI-MAC will address how to compute
the frame size at run time. This will allow nodes to adjust
their frame sizes based on the number of neighbors they
discover, thus positively impacting the energy, time, and
reliability tradeoffs. The current implementation of the
protocol does not adapt to nodes entering or leaving the
network. For nodes exiting, such as when a node fails or is
destroyed, the protocol should decide when to stop listening
for the particular neighbor. The protocol does not detect
when a new node has entered, such as during a second
deployment wave. A possible solution is to have regular
period where nodes listen and reset their local neighbors
connections. Adjusting to nodes entering and leaving the
system will be much simpler than in TDMA schedules that
require 2-hop neighbor information. Other future work will
involve further testing using metrics that can illustrate the
fairness, and adaptability of the RIMAC protocol.

REFERENCES

[1] W. Ye, J. Heidemann, D. Estrin, An Energy-Efficient MAC
Protocol for Wireless Sensor Networks, Proc. of 2002 IEEE
InfoCOM, 2002.

[2] G. Zhou, T. He, S. Krishnamurthy, J. Stankovic, Impact of
Radio Irregularity on Wireless Sensor Networks, Proc. of the 2nd
Int. Conf. On Mobile Systems, Apps. and Services, 2004.

[3] S. Madden, M. Franlin, J. Hellerstein, W. Hong, The Design
of an Acquisitional Query Processor For Sensor Networks, Proc
of ACM SIGMOD/PODS 2003 Conference, June 2003.

[4] P. Levis, N. Patel, D. Culler, S. Shenker, Trickle: A Self-
Regulating Algorithm for Code Propagation and Maintenance in
Wireless Sensor Networks, Proc. Of 1st Symposium on Network
Systems Design and Implementation, 2004.

[5] J. Polastre, J. Hill, D. Culler, Versatile Low Power Media
Access for Wireless Sensor Networks, Proc. of SenSys 2004.

[6] T. Van Dam, K. Langendoen, An Adaptive Energy-Efficient
MAC Protocol for Wireless Sensor Networks, Proc. of SenSys
2003.

[7] V. Rajendran, K. Obraczka, J.J. Garcia-Luna-Aceves, Energy-
Efficient, Collision-Free Medium Access Control for Wireless
Sensor Networks, Proc. of SenSys 2003.

[8] I. Chlamtac, A. Farag´o, and H. Zhang, Time-spread
multipleaccess (TSMA) protocols for multihop mobile radio
networks, IEEE/ACM Transactions on Networking, vol. 5, no. 6,
pp. 804–812, December 1997.

[9] M. Marti, B. Kusy, G. Simon, and A. Ledeczi, The flooding
time synchronization protocol, Proc of SenSys 2004.

[10] W. Ye, J. Heidemann, Medium Access Control in Wireless
Sensor Networks, USC/ISI Technical Report ISI-TR-580, October
2003.

[11] P. Levis, N. Lee, M. Welsh, and D. Culler, TOSSIM:
accurate and scalable simulation of entire TinyOS applications,
Proc. of SenSys 2003.

[12] V. Shnayder, M. Hempstead, B. Rong Chen, G. W. Allen,
and M. Welsh, Simulating the power consumption of large-scale
sensor network applications, Proc. Of SenSys 2004

