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Abstract - This paper describes a medium access control 
protocol for wireless sensor networks designed for broadcast 
communication.  The RI-MAC (Random Interference Medium 
Access Control) protocol uses random slot assignment in each 
MAC frame, along with knowledge of neighbors’ transmission 
schedules to mitigate some of the energy wasting problems 
with existing MAC protocols.  RI-MAC conserves energy, 
transmits messages fairly among the nodes in the system, and 
is adaptive to changes in the topology.  Preliminary evaluation 
tests indicate that RI-MAC uses less energy than CSMA. * 

I. INTRODUCTION 

Energy is a major concern in the development of 
wireless sensor network applications.  On one hand, many 
sensor networks are expected to function for several months 
without maintenance.  On the other hand, each sensor node 
has minimal energy resources, typically in the form of a pair 
of AA batteries.  Furthermore, the energy costs of radio use 
are particularly high, not only for transmission and 
reception, but also for idle listening [1].  Thus the design of 
energy-efficient network protocols is key to successful 
deployments. 

In this paper, we discuss the design of a medium access 
control (MAC) protocol that optimizes for energy 
conservation.  A MAC protocol mediates use of the radio 
channel among several nodes; it says who is allowed to 
transmit when.  In addition to energy conservation, MAC 
protocols usually have several other goals.  The protocol 
should be fair: each node should have equal opportunity to 
communicate with other nodes.  The protocol should allow 
for high bandwidth utilization: the radio channel's time 
should not be wasted.  The protocol should be adaptive to 
changes in network topology, either due to irregular signals 
or node mobility. 

In addition to the energy challenges described above, 
protocols must also account for the unstable nature of the 
radios.  Studies have shown that even for immobile nodes, 
link quality can be poor, can vary with time, and may have 
irregular propagation patterns (asymmetric links are 
common) [2]. 

We take a novel angle on MAC protocol design in 
deeming energy conservation, fairness, and adaptiveness to 
be more important goals than bandwidth utilization.  This 
decision reflects the nature of many sensor network 
applications -- they are long-lived with low duty cycles, and 
aim to monitor the environment over an extended period of 
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time.  To support long lifetimes, energy conservation is 
crucial.  

We introduce RI-MAC, the Random Interference 
Medium Access Control protocol.  Unlike many MAC 
protocols for sensor networks, ours is not general-purpose, 
but restricted to a single traffic pattern: multihop broadcast.  
This restriction enables us to create a MAC protocol that 
saves more energy.  Multihop broadcast has many 
applications in sensor networks, often in distributing query 
or code updates from a base station to the entire network [3, 
4].  We do not dictate any specific network layer above RI-
MAC, except to assume that it is attempting to move data 
using multihop broadcast, and that all nodes have equal and 
relatively high throughput.  For example, code update 
applications may need to send many code packets 
throughout the network.  Even though not every node will 
relay every packet, nodes will be evenly loaded with 
transmissions and have high throughput. 

The rest of the paper is organized as follows.  Section 2 
describes related work in MAC protocol development and 
indicates the benefits of RI-MAC over existing protocols 
for the multihop broadcast traffic pattern.  Section 3 
describes the details of the RI-MAC protocols, with several 
examples to illustrate.  Section 4 presents a description of 
our implementation of the RI-MAC protocol for TinyOS in 
the TOSSIM simulation environment.  This section also 
describes several tests that we performed to evaluate RI-
MAC against a CSMA protocol.  We finish in Section 5 
with conclusions about our work and discussions of future 
work. 

II. RELATED WORK 

In this section, we review related work on MAC 
protocols, and discuss the sources of energy waste in 
multihop broadcast scenarios.  We can divide the sources of 
energy waste into four categories: (a) transmissions when 
no node is listening, (b) listening when no node is 
transmitting ("idle listening"), (c) collisions due to multiple 
simultaneous transmissions, and (d) protocol overhead -- 
the exchange of control messages that do not contain 
application data. 

MAC protocols can roughly be divided into contention-
based and scheduled protocols.  Most contention-based 
protocols are a variant of CSMA; for example, S-MAC [1] 
and B-MAC [5].  One problem with CSMA protocols for 
sensor networks is idle listening.  B-MAC supports Low 
Power Listening (LPL), which aims to overcome the idle 
listening problem by requiring potential receives to 



periodically wakes up briefly to listen for activity on the 
radio channel.  The implementation of LPL is tightly 
integrated with the hardware, and is not currently available 
for most platforms.  Under the high throughput broadcast 
scenario that we are considering, nodes will usually be 
either receiving or sending.  Under this scenario, CSMA is 
susceptible to the hidden terminal problem -- and thus many 
messages will collide.  Increasing CSMA backoffs can 
alleviate this; however, the idle listening factor then comes 
back into play.  Other contention-based protocols, such as 
S-MAC [1] and T-MAC [6], use a request-to-send / clear-
to-send handshaking protocol to reduce collisions.  
However, this scheme is appropriate for point-to-point 
communications rather than broadcast.  

Scheduled protocols tend to reduce collisions, but waste 
energy in other ways.  TDMA protocols often require 2-hop 
neighbor information to establish schedules.  For example, 
TRAMA [7] uses random access signaling slots to exchange 
neighbor and schedule information.  The messages involved 
in this create energy waste through overhead.  Furthermore, 
TDMA protocols usually require time synchronization, 
another source of overhead.  This overhead is exacerbated 
by the irregular and unreliable radio links that are typical of 
many sensor networks.  The Z-MAC protocol is a 
TDMA/CSMA hybrid.  Under high contention, as our 
broadcast scenario tends to be, Z-MAC acts similarly to 
TDMA, and thus has many of the problems discussed 
above.  Finally, TSMA protocols [8] are also scheduled, 
and while they don't ensure collision-freedom, they 
guarantee certain quality of service.  This approach is 
similar to our RI-MAC work, except that it still requires 
time synchronization, and doesn't specify sleeping 
schedules. 

III. THE RI-MAC PROTOCOL 

We introduce RI-MAC, which eliminates many sources 
of wasted energy for broadcast problems, while allowing 
fair channel access for all nodes.  Like TDMA, RI-MAC 
divides time into frames, and frames into slots.  We will 
first explain RI-MAC assuming that all nodes are time-
synchronized, and then later relax this assumption.  

A. Transmission Schedule 

In RI-MAC, each node chooses a random slot in each 
frame for transmission.  Figure 1 shows an example of five 
nodes (A through E), where each frame has six slots, and 
the nodes have picked their transmission slots in each frame 
(marked with T).  We assume that each node knows its one-
hop neighbors, and the transmission schedules for those 
neighbors.  For this example, we will use the topology in 
Figure 2.  Given the knowledge of its neighbors' 
transmission schedules, each node fills out its remaining 
slots as either listening slots (L) or sleeping slots (S) 
according to the following rules.  If exactly one neighbor 
transmits in a slot, then listen.  If no neighbors transmit in a 
slot, then sleep.  If two or more neighbors transmit in a slot, 
also sleep, as there will only be radio interference. 

The resulting schedule can be seen in Figure 3.  Notice 
that in the first frame, node B sleeps during slot 3 because 
its neighbors A and D both transmit.  Also note that a node 

transmits even if a neighbor is scheduled to transmit in the 
same slot; for example, both B and C transmit during slot 2 
of the second frame. 

B. Protocol Specifics 

Let us address several specific aspects of the protocol 
and its implementation. 

Neighbor Transmission Schedule.  We assumed that a 
node knows each neighbor’s transmission schedule.  In each 
packet, we include two data from the sender: its address, 
and a sequence number indicating where it is in its pseudo-
random number sequence.  Since a node seeds its own 
pseudo-random number generator with its own address, 
these two data can be used by its neighbors to predict the 
node's transmission schedule.  Therefore, once a node hears 
one packet from a neighbor, it knows that neighbor’s entire 
transmission schedule.  To allow nodes to learn its 
neighbors, RI-MAC has a setup phase of unscheduled 
listening before entering the main schedule.   

Clock Synchronization.  Initially we assumed that all 
clocks were synchronized, and thus frames and slots were 
aligned. In fact, the RI-MAC protocol and its 
implementation do not require aligned slots.  This changes 
the rules only slightly: a node only listens if a neighbor's 
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transmission is not overlapped by some other neighbor's 
transmission.  In each transmission from a neighbor, a 
timestamp is included, so a node will know the offset of its 
own slots with its neighbors’ slots.  Thus, it will be able to 
predict the overlap of its neighbors’ transmissions. 

We do not expect clock drift to be a major problem 
because of the course-grained nature of our scheduling (we 
need accuracy on the millisecond level).  Studies show that 
clock drift on mica2 motes, for example, is on the order of 1 
millisecond over the course of seven hours [9].  However, 
we do account for clock drift as follows:  every time a node 
receives a message from a neighbor, it updates its internal 
record of that neighbor’s schedule in accordance with the 
timestamp of that receipt.  Therefore, the accuracy of a 
neighbor’s schedule is with respect to the most recently 
received message from that neighbor. 

Energy Conservation.  Let’s consider the protocol in 
terms of wasted energy.  When a node is sleeping, 
obviously no energy is wasted.  When a node is listening in 
RI-MAC, no energy is wasted because it will receive a 
message.  The only sources of waste are transmission when 
a neighbor is not listening, and overhead.  Sometimes a 
sending node’s neighbor will not listen if it knows that 
another of its own neighbors will be sending at the same 
time.  Overhead in RI-MAC occurs through the setup phase 
when nodes are discovering their neighbors.   

C. Analytical Comparison 

We can compare RI-MAC with typical TDMA 
protocols [10] given our three goals: energy efficiency, 
fairness, and adaptability.  RI-MAC is more energy-
efficient, because the overhead involved in RI-MAC 
neighbor discovery is significantly less than the 2-hop 
neighborhood information required by other TDMA 
protocols.  Further, RI-MAC does not require synchronized 
clocks, which can be very energy intensive.  TDMA 
protocols can result in unfair schedules due to irregular 
radio links.  As [2] shows, asymmetric links can lead to 
schedules that are not collision-free.  Since TDMA 
schedules are typically static, a node with a bad schedule 
may never get channel access.  In RI-MAC, the random 
schedules, chosen in each frame, ensure that all nodes have 
equal opportunity, regardless of the radio irregularity.  
Finally, RI-MAC is more adaptive to changing conditions 
than TDMA because it requires only 1-hop information for 
its scheduling algorithm, and thus a node can more easily 
learn about new neighbors and adjust its schedule 
accordingly. 

IV. IMPLEMENTATION AND EVALUATION  

We have implemented RI-MAC for TinyOS and tested 
it using TOSSIM (the TinyOS Simulator) [11] and its 
extension for energy profiling, PowerTOSSIM [12]. 
TOSSIM provides discrete event simulation of TinyOS 
programs, and includes an implementation of the radio 
stack for the mica2’s CC1000 radio.  TOSSIM simulates 
radio behavior at a low level and implements a CSMA 
protocol similar to B-MAC for medium access control.  We 
use this as both a point of comparison as well as a basis for 
our MAC implementation. 

A. RI-MAC Implementation Environment 

TinyOS’s CC1000 radio stack provides two interfaces 
for sending and receiving messages: 

interface BareSendMsg { 
    command result_t send(TOS_MsgPtr msg); 
    event result_t sendDone(TOS_MsgPtr msg,  

result_t success); 
} 
 
interface ReceiveMsg { 
    event TOS_MsgPtr receive(TOS_MsgPtr m); 
} 

The user process can call a send() command, and 
must handle a receive() event. Commands are initiated 
by the user process, whereas events are initiated by the 
library (in this case, the radio stack) and handled by the user 
process.  The RI-MAC implementation is built on top of the 
CC1000 radio stack with several modifications.  First, 
backoffs used by CSMA were removed. Second,  because 
RI-MAC is scheduled, priority was given to sends over 
receives (i.e., the stack sends a packet right away even if it 
is in the middle of receiving another packet).  And third, the 
scheduling layer on top of the CC1000 radio stack 
determines send and receive periods, and notifies the user 
process of them.  We preserve the ReceiveMsg interface, 
but provide a different interface for sending messages: 

interface BareSendMsgScheduled { 
    event TOS MsgPtr sendNow(); 
    event result_t sendDone(TOS MsgPtr msg, 

      result t success); 
  } 

Instead of calling a send() command, the user process 
handles a sendNow() event when the stack needs a packet 
to send.  The user process can alternatively return NULL to 
indicate there is no message to send.  In terms of control, 
the radio stack, rather than the user process, decides on the 
send schedule. 

RI-MAC maintains the following 14 to 18 bytes of state 
information for each neighbor as well as for the mote itself: 

• Id: [2 bytes] Id of the neighbor mote. 

• Time of Next Packet: [4-8 bytes] World clock time of the 
neighbor’s next predicted transmission. 

• Next Slot Number: [2 bytes] Slot in which neighbor will 
transmit. Computed from the neighbor’s random number 
mod frame size. 

• PRNG Sequence Number: [2 bytes] Neighbor’s count in 
the pseudo-random number generator’s sequence. 

• PRNG State: [4 bytes] Saved state of PRNG based on 
neighbor’s sequence count.  This prevents re-initialization 
of neighbor’s PRNG in order to arrive at the current 
random number in sequence. 

Using this data, RI-MAC determines when the mote 
should sleep and when it should wake for sending or 
listening.  RI-MAC updates each neighbor’s PRNG state 
upon packet reception, or on timeouts after missed packets. 



B. CSMA Implementation 

We use the CSMA implementation provided by 
TinyOS, modified so that we can adjust the backoff values.  
By default, when a mote decides it must transmit, it waits an 
initial backoff of 7 to 33 milliseconds and then listens to the 
channel to determine if another mote is transmitting.  If the 
channel is clear, the mote sends its message.  If a neighbor 
is transmitting, the mote performs a congestion backoff of 7 
to 115 milliseconds before trying to resend the message.  

C. Testing Parameters and Metrics 

We performed various experiments to test how well the 
RI-MAC protocol meets the goals stated in this paper.  Due 
to space limitations, we discuss one specific test here.  
Other results will be published in the future.   

For this test, we used a simple all-to-all network 
protocol that distributes all of the data to all of the motes.  
We considered the following questions: 

• How does the RI-MAC protocol affect power usage for 
all-to-all data distribution in a wireless sensor network 
compared to TinyOS’s default CSMA? 

• How does the RI-MAC protocol affect the time 
required to provide all-to-all data distribution 
compared to CSMA? 

This experiment focused on fine-tuning the RI-MAC 
parameters in order to achieve distribution of data so that 
each node received at least two thirds of the data values 
generated by the network.  The graph in Figure 4 shows the 
average power consumption in simulation. RI-MAC was 
able to achieve nearly as wide a distribution while using a 
third the power of CSMA. In terms of time, the RI-MAC 
execution time exceeded that of the CSMA version by a 
factor of 4. We consider this tradeoff of time for energy to 
be consistent with the goals of many wireless sensor 
network applications.  

 
Figure 4 – Experimental Results 

V. CONCLUSIONS AND FUTURE WORK 

RI-MAC is a MAC protocol designed for broadcast 
communication in wireless sensor networks.  We have 
shown that it wastes less energy than CSMA when frame 
size is chosen properly.  We have further discussed, 
analytically, the benefits of RI-MAC over TDMA.   

Future work on RI-MAC will address how to compute 
the frame size at run time.  This will allow nodes to adjust 
their frame sizes based on the number of neighbors they 
discover, thus positively impacting the energy, time, and 
reliability tradeoffs.  The current implementation of the 
protocol does not adapt to nodes entering or leaving the 
network.  For nodes exiting, such as when a node fails or is 
destroyed, the protocol should decide when to stop listening 
for the particular neighbor.  The protocol does not detect 
when a new node has entered, such as during a second 
deployment wave.  A possible solution is to have regular 
period where nodes listen and reset their local neighbors 
connections.  Adjusting to nodes entering and leaving the 
system will be much simpler than in TDMA schedules that 
require 2-hop neighbor information.  Other future work will 
involve further testing using metrics that can illustrate the 
fairness, and adaptability of the RIMAC protocol.   
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