SCHEDULING WITH TEMPORAL AND LOGICAL CONSTRAINTS
BY
GREGORY B. JONES

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
IN
APPLIED MATHEMATICAL SCIENCES

UNIVERSITY OF RHODE ISLAND
1998

DOCTOR OF PHILOSOPHY DISSERTATION
OF
GREGORY B. JONES

APPROVED:

Dissertation Committee

Major Professor

Major Professor

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND
1998

Abstract

The scheduling of tasks in a real-time system requires that, in addition to existing
logical constraints, temporal constraints must also be met. We consider real-time
systems where timing constraints are imposed on tasks through a function of multi-
ple deadlines with cumulative penalties for missing deadlines. Logical constraints are
enforced through the partial ordering of tasks, and penalties are assessed for violating
these precedence constraints. We propose a bi-criteria scheduling approach in which
tasks are scheduled to meet both logical and temporal constraints without preference
to either. When both logical and temporal constraints cannot all be met simulta-
neously, a mechanism for trading off performance in one measure for performance
gains in the other is developed. We use a frontier of possible solutions to express the
relative merits of schedules that perform well in each performance measure. Branch
and bound algorithms plus heuristic methods are proposed to solve several different

classes of related problems.

Acknowledgments

In my progress as a student, I quickly came to realize that the work presented here
was not due to my efforts alone. Without the help, guidance and encouragement of
many others, I never would have reached this plateau.

First, I would like to thank my two major professors, Dr. Manbir S. Sodhi and
Dr. Victor Fay-Wolfe. I am indebted to them for the many hours they devoted to
helping me with this research. The technical issues and concepts presented here were
a result of their efforts and collaboration. More than this, they joined me in this
journey as faculty advisors, and in the end became my friends.

I also would like to express my appreciation to my employer, the Naval Undersea
Warfare Center of Newport RI (NUWC). I never would have attempted such an
undertaking without their support. At NUWC, I would especially like to thank my
immediate supervisor, Dr. James Meng, for his support and encouragement. In
addition, I thank Dr. Richard Nadolink and Mr. Frederic White for their support
as well.

A number of faculty members at URI encouraged and assisted me in pursuing
this degree, I am especially thankful to, Dr. Agnes Doody, Dr. Richard Scholl, Dr.
Russ Koza, Dr. Alan Humphrey, Dr. Joan Peckham and Dr. Lisa DiPippo.

In these last several years I have asked much from my family—and they have always
responded with encouragement and understanding. My wife, especially, provided
loving encouragement and support. To my children Stephanie and Kevin, I've been
a student longer than they can remember. Watching them grow, I learned just how
exciting learning can be.

Finally, I want to acknowledge my Mom and Dad. Throughout my life, they’ve

111

been a constant source of unquestioning love and support, and more importantly,

they believed in me at times when few others did.

v

Contents

Abstract

Acknowledgments

Table of Contents

List of Tables

List of Figures

1 Introduction

1.1

1.2
1.3
1.4

Motivation
1.1.1 Real-Time Databases
1.1.2 Scheduling Jobs for a Flexible Manufacturing System
1.1.3 Mission Planning for Undersea Vehicles
1.1.4 Other Applications
Goal of Research
Approach
Dissertation Outline

2 Related Work

2.1
2.2

2.3

RTSORAC
Real-Time Computing
2.2.1 Scheduling
2.2.2 Imprecise Scheduling L.
2.2.3 Multi-Criteria Scheduling
2.2.4 Value-Based Scheduling
Concurrency Control
2.3.1 Non-Serializable Concurrency Control
2.3.2 Epsilon Serializability 0L
2.3.3 Precedence Ordering

ii

iii

viii

o

O 00 =] O U N = =

2.3.4 Real-Time Concurrency Control

3 Methodology

3.1 Incremental Approach
3.2 General Scheduling Model,
321 Tasks.
3.2.2 Metric Space
3.23 Schedule
3.24 Bi-Criteria Scheduling
3.2.5 Trontier
3.2.6 Problem Model
3.3 Formal Model
3.3.1 Restrictions to the Temporal Function
Model: Makespan versus Precedence
4.1 Restrictions to the General Model
4.2 Formulation for Makespan Problem
4.3 Example
Independent Transactions with Deadlines
5.1 Restrictions to the General Model
5.2 Formal Model
5.3 Heuristic Solution
5.4 Simulation

Tasks with Multiple Deadlines

6.1 Temporal Constraints
6.1.1 Model
6.1.2 Example

6.2 Branch and Boundo
6.2.1 Branching Rule00
6.2.2 Upperbound
6.2.3 Lower Bound
6.24 Pruning Rule 0000
6.2.5 Termination Conditions
6.2.6 Branch and Bound Results

6.3 Heuristic

6.4 Computational Results,

vi

33
33
35
35
37
38
40
42
44
46
47

48
48
50
51

61
61
63
64
67

7 Tasks with Temporal and Logical Constraints 102

7.1 Tasks with Logical Constraints 103
711 Modelo 103

7.2 Alternate Criteria Approach for Tasks with Temporal and Logical
Constraints 107

7.2.1 Schedule Tasks to Minimize Deadline Penalty such that all
Precedence Constraints are Met 109

7.2.2 Schedule Tasks to Minimize Precedence Violation Penalties,
such that Deadline Penalties are Minimal 110
7.3 Tasks with Multiple Deadlines and Precedence Constraints 110
731 Model 111
7.4 Branch and Bound Approach for Finding the Frontier 112
7.5 Heuristic Based Construction of the Frontier 117
7.6 Enhancements to Branch and Bound 120
8 Conclusions 124
9 Future Work 129
9.1 Delay Schedules 129
9.2 Non Feasible Schedules 130
9.3 Requirement to Execute all Tasks 130
9.4 Generalized Penalty Functions 131
9.5 Bound on Processing Time for Branch and Bound Algorithm 132
9.6 Dynamic Scheduling 133
9.7 Repetitive Taskso o 134
9.8 Stochastic Scheduling 135
9.9 Future Applications 135
References 137
A Heuristic to Schedule with Temporal Requirements 141

B Heuristic to Schedule with Temporal and Logical Requirements 148

Bibliography 156

vil

List of Tables

4.1 Example Task Definitions 51
4.2 Example Precedence and Penalties, 52
4.3 Frontier Points For Sample Problem 59
5.1 Task Set Attributes 68
6.1 Example Job Deadlines 7
6.2 Unscheduled Tasks for Branch and Bound 84
6.3 Penalty Table for Lower Bound Calculation 86
6.4 Random Distribution of Task Attributes 97

viii

List of Figures

2.1
3.1
3.2
3.3
4.1
4.2
4.3
5.1
5.2
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
7.1
7.2
7.3
7.4
7.5
7.6

Hierarchy of Concurrency Controls 27
Logical vs. Temporal Constraints in Scheduling 40
Relaxing Logical and Temporal Constraints 42
A Typical Frontier Plot 44
Precedence Constraint Network Diagram for Sample Problem 53
Several Stages in Dynamic Programming Procedure 56
Frontier Plot for Example Problem 58
Histogram to Show Heuristic Performance 69
Simulation Results: Task Size vs. Heuristic Error 70
Typical Set of Penalty Functions 73
Processing Times for LINGO Solutions 78
Example Penalty Functions for Lower Bound Calculation 85
Branch and Bound Processing Time 89
Simplified Penalty Functions 91
Interpolated Penalty Functions 94
Simulation Flowchart 000 98
Histogram, Heuristic Accuracy 100
Network Diagram for Logical Constraints 106
Frontier of Solutions 107
Search Space Regions 113
Penalty Benefit for Task Exchange 118
Enhancements to Pruning L. 122
Expansion to Include All of Frontier 123

1X

Chapter 1

Introduction

Scheduling tasks is an activity that is characterized in many applications as being
NP-hard. Nevertheless, real-time systems still require tasks be scheduled to achieve
optimal or near-optimal performance.

The focus of this research is the relationship between task scheduling and prece-
dence constraints in applications where temporal and logical consistency constraints
can be quantified. We have developed techniques and algorithms that maximize
the utility of a system through maximizing both temporal and logical consistency.
Techniques of task scheduling are relevant to database transactions, the scheduling
of jobs in a manufacturing system, and other scheduling applications that operate

under similar constraints.

1.1 Motivation

There are a number of applications that can utilize the work described here. We
will draw primarily from three applications which will be used for motivation and

example.

1.1.1 Real-Time Databases

Database scheduling and concurrency control seeks to produce schedules that meet
some correctness or goodness criteria. A correctness criteria is a requirement that
must be met, a goodness criteria is a goal. The transaction manager in a real-time
database attempts to schedule transaction tasks such that both these constraints are
met. However, it is often the case that both concurrency requirements and timing re-
quirements cannot be met. The goals of scheduling algorithms that seek to maintain
temporal consistency requirements such as timing constraints, or synchronization,
can have fundamental conflicts with the goals of concurrency control techniques,
which seek to maintain logical consistency requirements, like serializability. Typical
database management systems have separate scheduling algorithms and concurrency
control, and if temporal consistency is met at all, if is only after the requirements of
logical consistency are met.

Consider an aircraft tracking and control system. A database is maintained of
track and attribute information related to air traffic in the sector being monitored.
Data from radar sensors is used to update aircraft information. Tracking algorithms
process the raw data to associate the new sensor information with existing aircraft
tracks, and thus update that data. Display consoles are updated with new track
data to show the relative positions of aircraft in the sector. In this example, a real-
time database is used to store the relevant information. The processing of tracking
algorithms must be performed with system defined deadlines in order to provide
timely information to air traffic controllers. Deadlines are based on several factors,
including the speed of aircraft and their proximity to other aircraft. Up to date
information is crucial to air traffic controllers in order to move aircraft efficiently
and safely through the sector. In periods of overload, it may be necessary to reduce

the time required to process tracking data so that a reasonably up to date display

can be maintained.

Typically, database-scheduling algorithms enforce some sort of concurrency con-
trol that preserves logical consistency, often by ensuring serializable schedules. In
addition, the schedule may also attempt to maximize average throughput of trans-
actions as a temporal goodness criterion. However, in a real-time database [Ram93|,
ensuring temporal consistency by meeting timing constraints is a correctness criteria.
As we have seen in the previous example, transactions to determine the positions
of aircraft may have to be performed by a deadline to be correct. In addition to
transactions, data in such a real-time database may also be time constrained. For
instance, the database’s recorded position of a tracked aircraft may be constrained
such that data more than several seconds old is no longer valid, and cannot be used.

Transaction scheduling in most real-time databases seeks to maintain temporal
consistency by meeting as many transaction deadlines as possible, while scheduling
tasks as required by the concurrency control mechanism. These concurrency control
techniques enforce logical consistency, but are not cognizant of temporal consistency.
Even proposed real-time database concurrency control techniques have only limited
support for temporal consistency|YWLS94|.

Although an individual scheduling technique can support temporal consistency
and an individual concurrency control technique can enforce logical consistency, when
the techniques are combined, often one form of constraint must be sacrificed for the
other. In typical databases, logical consistency is enforced absolutely, while temporal
consistency is secondary or ignored. This policy occurs in nearly all applications, as
logical constraints are nearly always considered inviolate. Consequently, temporal
goals are usually the secondary goal after temporal goals. A unified approach to
scheduling and concurrency control, where both constraints are considered together,
is rarely attempted.

The synthesis of database scheduling and concurrency control is complicated by

the fact that, although they both seek to establish schedules of operations, their
goals are usually not the same. In fact, there can be a fundamental conflict be-
tween a concurrency control technique’s goal of maintaining logical consistency, and
a scheduling algorithm’s goal of maintaining temporal consistency. That is, maximiz-
ing performance for logical constraints may result in the deterioration of temporal

performance.

1.1.2 Scheduling Jobs for a Flexible Manufacturing System

A second application for this work relates to manufacturing systems, and specifically
for an FMS (Flexible Manufacturing System). An FMS has the capability to process
a number of different parts with minimal setup time in between parts of different
types. An FMS provides the automation advantages of an assembly line with the
flexibility of a job shop.

An FMS refers to a set, or cell, of automated machines that are serviced by an
automated material handling system. The FMS is typically controlled by a processor.
Each machine usually holds a magazine of several tools. In this manner material
delivery, as well as machine setup, is automated. Depending on the tools loaded into
the machine, several machines can perform the same operation, providing a choice
of which machine to route each part to. With the flexibility to route parts based
on machine loading as well as machining requirements, the issue of scheduling tasks
becomes more complicated.

Parts in manufacturing are usually processed in a predefined order of operations.
Partial orderings may be required or may be used for convenience, indeed in a flow
shop or assembly line the ordering of operations is not easily changed. However, it
may be technically possible to perform operations out of order with or without some

degradation of quality. When out-of-order processing is possible, a penalty function

can be used to specify the feasibility of performing specific operations out of order.
The flexibility of the FMS motivates the notion of out of order processing. Performing
operations in an alternate order may allow deadlines to be met, or production to be
increased.

Consider a part that requires a set of machining operations. Under periods of
overload, it becomes difficult, if not impossible, to meet deadlines. By performing
some operations out-of-order, that is, violating precedence constraints, it may be
possible to process parts more quickly. Thus, in an FMS system, penalties for out-
of-order processing may be acceptable when considered conjunction with deadlines
met or increased production. With the availability of an FMS, it now becomes
possible to make this trade-off, but it also becomes a challenge to schedule work
for the FMS. Without proper production planning, the advantages that FMS can

provide are lost.

1.1.3 Mission Planning for Undersea Vehicles

Unmanned Undersea Vehicles (UUV), commonly used for military exercises provides
vet another application for this work. The UUV is an self-propelled submersible
vehicle that, once launched, must meet pre-defined mission goals without further hu-
man intervention. This requires on-board processing suflicient to plan and re-plan to
meet mission goals. Such systems are attractive since they greatly increase the range
and capability of a ship or submarine at lower cost and reduced risk. UUV’s have
a number of possible missions, including payload delivery, search, surveillance and
others. Often, such vehicle may have multiple mission goals and subgoals. However,
UUV’s have limited operational duration due to limited propulsion power. In some
missions, a deadline may also be imposed on one or more goals. During the course

of the mission, both external and internal situations may develop which change the

goals or deadlines. Given this scenario, mission planning becomes a scheduling prob-
lem, similar to the scheduling problem for a real-time database or FMS. The need
for a UUV to meet goals within a certain time frame must be balanced against the
need to perform all mission tasks. In the more difficult case, not all goals can be
met within the time allotted, and either some goals must be sacrificed, or deadlines
missed. The ability to solve this problem such as to maximize the UUV’s utility is a

measure of the intelligence built into the vehicle.

1.1.4 Other Applications

There are numerous other applications from fields such as combat control systems,
finance, multimedia, target tracking, and automobile traffic monitoring in intelligent
highway systems, where the goals of temporal consistency are in conflict with logical
consistency goals. While it is usually the case in these applications that tasks are
scheduled to meet temporal requirements only after logical consistency is achieved,
it is feasible to consider both logical and temporal consistency simultaneously. When
conflicts between these requirements arise, the scheduling system must be capable
of addressing both sets of requirements. This project develops a unified approach to
scheduling and concurrency control that can trade-off logical and temporal consis-
tency requirements.

The techniques that will be investigated through this research will be relevant
to any application where there is a necessity to trade-off logical and temporal con-
straints. However, this work is not applicable to those applications where the vi-
olation of temporal constraints (or, alternatively, logical constraints) constitutes a
failure of the system. Also this research is not applicable in situations where it is fea-
sible to permit a trade-off between logical and temporal constraints, but the trade-off

cannot, be explicitly specified.

One common thread that ties all these applications together is the requirement of
strong timing constraints, that is, failure to meet a deadline causes a measurable re-
duction in the quality of service provided by the system. It is with this understanding
that we contemplate the violation of logical constraints.

In the scheduling of tasks there are several assumptions that we make. First,
we assume that there exist several measures of performance against which success is
determined. Second, by changing the scheduling order, the system performance will
change in these measures. Third, penalties due to the incorrect ordering of tasks are
related to a metric space. Fourth, and perhaps most importantly, performance in
one measure can be traded off for better performance in another, and the value of
the trade-off is understood.

The problem described by this research is the natural extension of previous re-
search in the field. At The University of Rhode Island (URI), the problems of both
scheduling and real-time databases have been extensively been studied [PDPW94].
However, up to this time, the concept of a trade-off between logical and temporal con-
sistency has not been fully exploited. Previous research has built a solid foundation

for the need to relax logical constraints in light of temporal requirements.

1.2 Goal of Research

The goal of this project is to produce results that lead to the unification of trans-
action scheduling and concurrency control in real-time systems such as real-time
databases and FMS’s. These results will lead to a better general understanding of
the relationship between these two crucial scheduling issues in a real-time system.
Through the results of this work, we have developed scheduling techniques rel-
evant to a wide range of applications. Using examples, we suggest how these tech-

niques can be applied to several applications. More specifically, we seck to apply the

notion of penalty function to describe temporal requirements and generalize logical
constraints using precedence requirements. We then seek to establish a model for the
characterization of real-time tasks in applications where a trade-off between temporal
and logical constraints is possible. We seek to develop a theoretical understanding
of this trade-off and show that these two performance measures can be controlled
through the scheduling of tasks. Finally, we seek to develop algorithms and heuris-
tics to maximize both logical and temporal requirements and validate these methods

through simulation.

1.3 Approach

The problem of scheduling tasks has been widely studied in both the fields of Op-
erations Research and Computer Science. Scheduling can be a difficult problem,
and indeed, such problems as the Traveling Salesman Problem (TSP) [LLKS85| are
known to be N'P-hard. The TSP cannot be optimally solved in polynomial time. If
an enumerative technique is used to find a solution, then for a problem of size n, the
search space includes n! possible sequences which must be considered. On the other
hand, scheduling problems that require a partial ordering of tasks are usually consid-
ered easier, since the imposition of additional constraints reduces the search space,
that is, a number of sequences are not viable. A set of tasks is partially ordered if it is
required that some tasks be performed prior to some other tasks, for example: a < b.
We will formalize the notion of partial ordering in §2.3.3. In the problems that we
are considering, however, we relazr the constraint imposed by partial ordering. Thus,
rather than reduce the size of the problem, it actually is larger. The issue of search
space size is important in this work and will be discussed at length in Chapter 6.
We used an incremental approach to this problem. We first start out with a sim-

plified problem, but one that embodies the concepts of trading off temporal for logical

requirements. This first problem models the total processing time or makespan, with
precedence ordering between tasks. The model requires the deletion of tasks, with
penalty, if precedence violations occur. The reduction of makespan for violations
of precedence ordering forms the basis of a trade-off. The solution to the simple
problem leads to results that are useful in several applications. More importantly,
the solution to this problem validates the central concept of our work and we will
continue with this concept to solve problems that are more difficult.

The model of the second problem extends the results of the first model to include
transactions. In this model, transactions have individual deadlines. Transactions
are modeled to include several subtasks and a final, or commit, task. Precedence
constraints relate all subtasks to a single commit task. As in the first model, tasks
that violate precedence constraints are deleted with penalty. While this model is
still rather limited, it does allow individual deadlines for transactions. The solution
to this problem is provided by a heuristic, which does not necessarily result in an
optimal solution. Simulation is used to assess the effectiveness of the heuristic.

The third and final problem is the most general. This problem is modeled such
that all tasks have timing constraints, expressed through a series of deadlines each
with an increasing penalty if missed. Partial ordering between tasks is permitted,
with penalties for precedence violations. A number of solutions for this model, both
exact and non-exact are explored.

The sequence of models considered begins with the simple, restricted model and
leads, in subsequent models, to the general model. The restrictions assumed in
the first model are incrementally removed to provide a more complex problem. In
all cases, we first seek formal definition of the problem. Problems are formulated
as Integer Program (IP) problems, which leads to possibility of their being solved
optimally with commercial software packages. This, however, is not suitable for most

applications because these packages do not take advantage of the unique structure of

the problem leading to processing times that are much longer than can be obtained
by other means.

We develop heuristics to obtain solutions the problems we describe. Such heuris-
tics have the advantage of being able to solve the problem quite quickly, although in
general, the solution is not optimal. Exact solutions are possible with enumerative
techniques such as branch and bound. Branch and bound can be tailored to the
application by using the unique structure of the problem. However problem size is
still limited and performance (time to solution) can not be guaranteed. Both exact
and heuristic solutions have advantages and and limitations; these considerations are

discussed in depth.

1.4 Dissertation Outline

The chapters that follow in this dissertation are organized as follows. We begin
in Chapter 2 with a discussion of literature related to this work and how we will
expand on this literature. In Chapter 3 we provide a detailed statement of the
problem and provide additional motivation. In Chapter 4 we discuss in detail the
first simplified problem, a problem which illustrates the concepts and further defines
the nature of the more general problem. Chapter 5 defines a more difficult problem
and its solution. In Chapter 6 we discuss the problem of scheduling with penalty
functions. In Chapter 7, we then include precedence constraints. This is the most
general problem and we provide several solution strategies. In Chapter 8 we present
a summary and conclusion of our work and in Chapter 9 we suggest additional work

that might be performed to extend this work.

10

Chapter 2

Related Work

In this chapter, relevant work from closely related fields is reviewed. We consider
previous work performed at the University of Rhode Island and the application of
those results to our work. We also examine work in the fields Computer Science
and Operations Research from which we draw from for work in real-time computing,
concurrency control and scheduling.

Since our proposed project involves synthesizing database scheduling and concur-
rency control by handling both logical and temporal consistency, we focus on work in
those areas. In particular, we examine work on real-time task scheduling with value
or penalty functions, and on concurrency control techniques that allow some logical
imprecision by relaxing serializability.

In the next section, we review work from the University of Rhode Island RT-
SORAC real-time database system. Specifically, we extend the RT'SORAC project
results in scheduling transactions to meet deadlines while allowing some imprecision.
We also review work done in scheduling and real-time computing, including value
based scheduling and multi-criteria scheduling. From these areas, we will develop the
basic concepts for task scheduling which supports a trade-off with logical constraints.

The second major issue related to this work is the enforcement of logical consistency.

11

We review work in concurrency control which leads to the more specific topics of
serializability, non-serializable concurrency control, epsilon serializability, similarity,
precedence ordering and work related to real-time concurrency control.

The work reviewed here builds a solid foundation for the work that follows. Using
concepts from scheduling and concurrency control, we have been able to develop the

theory and practice of scheduling to meet timing and logical constraints.

2.1 RTSORAC

In research conducted at URI, a semantic concurrency control technique has been de-
veloped for RTSORAC (Real-Time Semantic Objects and Constraints), a real-time
object-oriented database model and system [PDPWO94|. This technique allows the
database designer to relax logical consistency for each object such that greater tem-
poral consistency might be achieved. The amount of logical imprecision introduced
by this technique can be bounded under certain general conditions. This result leads
to the conclusion that logical consistency can be relaxed with the consequence of
greater imprecision. Implicit in this concept is that a schedule could take advantage
of relaxed logical consistency to provide better temporal performance. However,
without a scheduler that seeks to exploit this idea, enhanced temporal performance
is not assured. What is required is to explicitly define this trade-off through the
implementation of a scheduler that maximizes both temporal performance and logi-
cal consistency. In our goal to develop a unified scheduling and concurrency control
technique, we seek to exploit the trade-off between temporal and logical consistency.
The RTSORAC system is strongly object-oriented where objects have both data and
methods associated with them. The goal is to schedule methods in such a way as to
maintain an object’s logical consistency, but to also meet deadlines on method com-

pletion. By relaxing the constraints imposed by logical consistency, more schedules

12

are logically feasible and thus, the chance that a schedule exists that will meet both
logical and temporal requirements is increased. Logical consistency is enforced in a
number of ways, including locks, semantic locking, similarity and other techniques
[IBHG86]. RTSORAC relaxes logical constraints with a semantic method that uses a
compatibility function. Method invocations may interleave, and may even access the
same data object. The compatibility function is a table that defines the possibility
of conflict between methods depending on the type of object access being consid-
ered. Using less restrictive forms of concurrency control allows more schedules to
be considered. However, RTSORAC also permits an additional relaxation of logical
constraints resulting in imprecise results. Normally, a concurrency violation is the
illegal access of shared data objects, which may result in erroneous data being stored
or output from the system. In the work of DiPippo [DiP95], potential concurrency
violations are mapped to an increase in precision. Based on the value of the data
being accessed and the type of access planned, the potential error in the data can
be determined. This potential error is then a bound on the imprecision of the data.
An upper bound on the imprecision is set as a matter of system policy, prior to
a transaction that might increase imprecision, the system limit is checked. If the
transaction does not exceed the bound, it is permitted. This system then provides
a means of trading off imprecision with the ability to meet deadlines. This work
will form the basis for much of our work here. The notion of violating concurrency

controls to permit better temporal performance is core to our work.

2.2 Real-Time Computing

Real-time tasks are tasks that have an associated timing constraint as part of the
task definition. For a system to be considered real-time, the system must provide

a mechanism to handle timing constraints in a predictable way. This more precise

13

definition is commonly used in the field [Sta88], and differs from the notion of “fast”
processing. Faster processing certainly improves processor throughput and can help
to meet required timing constraints. However, in our work here, we are primarily
interested in the case where the system, for whatever reason, cannot meet the re-
quired timing constraints. Timing constraints imposed on a task may include start
times, end times, duration or synchronization with other tasks. Frequently, timing
constraints are expressed as deadlines, which in turn, can be categorized as hard,
soft or firm. While some authors suggest that failure to meet a hard deadline leads
to catastrophic results, or unrecoverable failure, it suffices to say that failure to meet
a hard deadline is a failure of the system [Jen96|.

Hard real-time requires predictable execution and a prior: guarantees, which
places hard real-time outside the scope of this work, since hard deadlines preclude
the possibility of missing deadlines in order to meet logical consistency requirements.
With a soft timing constraint, there may still be some benefit in completing the
task outside of the timing constraints-although this value likely decreases with time.
Meeting a firm timing constraint is not a necessary condition for correctness, but
there is no value in executing the task outside of its firm timing constraints. In this
dissertation, we are primarily interested in soft and firm real-time.

An important implication of real-time computer processing is that the scheduling
process must often execute concurrently with the tasks to be performed, that is,
the overhead of the scheduling algorithm must be considered. This is especially
true for soft and firm deadlines where, unlike hard deadlines, dynamic scheduling
is an option. The overhead required for scheduling is of more or less importance
depending on the domain. In a real-time database, for example, the time required
to schedule transactions is time that could have been used to actually perform the
transactions. In the worst case, transactions performed in some arbitrary order

meet more deadlines than transactions in an order determined by the scheduler.

14

Scheduling systems for processor tasks must be efficient to be useful, that is they
must impose low overhead on the system. Some systems provide a separate processor
for scheduling, however, this barely sidesteps the question of whether it would be
more efficient to apply the additional computing power to processing transactions.

Considering the processing time for other applications, such as in an FMS (flex-
ible manufacturing cell), a computer-based scheduler would normally execute much
faster than the actual manufacturing operations. Thus, the use of a more sophisti-
cated scheduler can be justified by the improvement in overall temporal performance
without too much concern about the overhead of the scheduling processor. The
advances in computer technology suggest that faster computers will be available in
the future, however, machining operations are less likely to show a similar improve-
ment in processing time. This allows the use of increasingly sophisticated scheduling
algorithms.

We are not particularly concerned with scheduler processing time in this work,
although we do address the issue for algorithms developed. We are looking to find
feasible ways to schedule tasks, implementing the methods proposed in an efficient
scheduler is work left for future investigations. Algorithm complexity has important
implications for, since this determines the required processing time as task set size
increases. Where the processing time to create a schedule is an issue, it may be
possible to construct various schedules in advance for “typical” or expected cases.
These schedules, or schedule templates, can then be used when needed while greatly

reducing the scheduling overhead.

2.2.1 Scheduling

Scheduling is the process of ordering tasks for execution. In spite of all the complex-

ities involved with scheduling, the result can be summarized in the simple question:

15

“what task goes next?” The output of the scheduler is simply a list of tasks with
start times. If the scheduler has introduced no idle time between tasks, then the
scheduler output is simply a list of tasks in the order they are to be executed.

Scheduling algorithms usually create an ordered list of tasks by allocating shared
resources to maintain some correctness or goodness criteria. Typically, a scheduling
algorithm assigns priorities to tasks. These priority assignments establish a partial
ordering among tasks. Whenever a scheduling decision is made, the scheduler selects
a task with the highest priority to use the resource. Some algorithms are preemptive
so that the highest priority task gets the resource immediately. Some scheduling
algorithms, such as earliest deadline first, and least slack time have been proven
to produce an optimal schedule for specific performance measure and under certain
assumptions [L1.73]. Other scheduling heuristics provide good performance under
less restrictive assumptions, but will not be optimal [Pin95].

Schedules may be characterized as delay or non-delay. A delay schedule is sched-
ule that can be improved by adding idle time between tasks to delay the start of
a successor task. In the work presented here, we assume that all schedules are
non-delay, that is, the addition of idle time will not improve the schedule in the rel-
evant performance measure. Alternatively, we can say that for any delay schedule,
a non-delay schedule exists with equal or better performance. With the appropriate
restrictions on penalty functions, we will show in Chapter 6 that delay schedules are
not necessary.

Scheduling is central to this research. We build on scheduling algorithms and
methods to use them for our work. Some specific areas of scheduling which have

direct relevance to our work are discussed in the following sections.

16

2.2.2 Imprecise Scheduling

Two techniques applicable to real-time scheduling are proposed by Lin, et. al.
[LLST91]. In order to meet deadlines, they suggest that an #mprecise computation
be performed. The advantage of using such a computation is that the imprecision
will allow a shorter processing time. In situations where there is not sufficient time
to calculate a precise result, an imprecise result may be acceptable. There are two
methods suggested to accomplish this. First, the sieve method requires the operating
system to select from one of several algorithms to perform the necessary calculation.
Ideally, each algorithm provides a trade-off between precision and processing time. If
the time available is known, then the operating system can select the algorithm that
executes in the available time and produces an result with acceptable imprecision.
A second approach, the milestone method is applicable where the computation can
be performed in an iterative fashion, such as successive approximations. With each
iteration, the result becomes more precise. The operating system can terminate the
process when either the result reaches an acceptable level of precision or there is no
time remaining for processing.

The sieve and milestone methods each have several advantages and disadvantages.
The sieve requires that several algorithms be available that can perform the necessary
calculations. Furthermore, algorithms with longer processing times must produce
results of greater accuracy. More importantly, the available time for processing
must be known in advance of the selection so that the operating system can choose
the appropriate algorithm. The milestone method, by contrast, does not require
that the available processing time be known in advance. However, it does require
that the algorithm be iterative in nature. That is, the algorithm must provide
an approximate result quickly, and then, increasingly more accurate results as the

algorithm continues. These methods suggest the notion of trading off precision with

17

processing time, a concept that is important to our work. We propose algorithms,
some of which are fast but imprecise, others more precise but slow. The work of
[LLST91] provides a framework in choosing among algorithms depending on the
requirements of the application.

In addition to the work cited above, Lin et. al. have also proposed several algo-
rithms for scheduling tasks when imprecision can be permitted. In these algorithms,
tasks are decomposed into a mandatory part and an optional part. The mandatory
part is considered to have a hard deadlines, the optional part is considered to have
a soft deadline. These algorithms attempt to schedule all mandatory parts of tasks
and to schedule optional parts to minimize some error metric. The error metric in-
dicates the consequences of not executing an optional part. The authors also discuss
several error metrics, each with a different scheduling algorithm that minimizes it.
For instance, in systems with task importance levels, error might be weighted by
each task’s importance. In an accompanying algorithm, a method to schedule the
optional parts of higher importance tasks is presented. This suggests a bi-criteria

approach, which is discussed next.

2.2.3 Multi-Criteria Scheduling

In this paper we focus on bi-criteria scheduling where we seek to maximize two goals:
temporal and logical constraints. Lawler observes that if tasks are partially ordered,
that is, they have logical constraints, then the solution space is reduced and the
problem is often easier to solve [Law78|. However, since we consider that logical
goals are not necessarily met, the solution space is not reduced—and consequently
the problem may not be easier.

In general, there are several ways that two goals can be maximized. One is the

secondary criteria approach where the secondary criteria is maximized, subject to

18

meeting the primary criteria. For example, a tardy task is one that completes after
its deadline. If several tasks are tardy, the measure of mazimum tardiness (or max
tardy, refers to the most tardy task. Consider a set of tasks to be scheduled with the
secondary criteria: “minimize the number of tardy tasks subject to minimizing the
maximum tardiness.” In other words, from the set of schedules for which maximum
tardiness is the minimum possible, choose the schedule that has the least tardy tasks.
This is a common approach to bi-criteria scheduling, particularly where the primary
criteria are due to logical constraints. Note that the secondary criteria approach
only attempts to actually meet one of the two criteria, performance in the secondary
criteria may be poor.

As an enhancement to the secondary criteria approach, the primary criteria can
be relaxed so that the set of all schedules meeting, or “nearly meeting,” the primary
constraints is enlarged. With this change, it is expected that there is a likelihood of
improved performance in the secondary criteria. The problem with this approach is
that it is not clear just how much the primary constraint should be relaxed. It might
be the case that a schedule with the same performance in the secondary criteria could
have still been found, even if the primary constraint had not been relaxed as much.
Alternatively, there is no way to know if, by relaxing the constraint just a little bit
more, a schedule with much better performance in the secondary criteria could have
been found.

A second approach to bi-criteria scheduling is the alternate criteria approach.
In this approach, we seek to find the best schedule in the measures of both criteria
without bias toward either. In this way we explicitly make the trade-off between the
two measures and select a schedule which meets, or comes close, to meeting both
|CLB94].

Hariri and Potts [HP94], propose a solution to a scheduling problem that is

somewhat related to our work and that of Locke [Loc86]. Hariri and Potts consider a

19

problem of scheduling tasks on a single machine. Each task has a due date by which
time the task is expected to complete. Each task also has a deadline by which time
the task must complete, although with some penalty. Hariri and Potts propose both
a dynamic programming algorithm and a branch and bound algorithm. This penalty
function is similar to the notion of a value function, which specifies the consequences
of completing at various times. We discuss an extension of this simple step function
to a function of several steps later in this work.

A solution to the bi-criteria scheduling problem is discussed by [VCY95], a branch
and bound algorithm is proposed to minimize the total tardiness of a job set keeping
the number of tardy jobs to a minimum. That is, for the set of schedules that
produces an optimal solution with respect to total tardiness, the secondary goal to
find a schedule that results in a minimum number of tardy jobs. Branch and bound
provides a useful basis for heuristic, and we propose to use branch and bound as a
possible solution method.

The trade-off between performance measures in the bi-criteria problem leads nat-
urally to the notion of a frontier. French suggests a frontier to conceptualize the
orthogonal goals arising from independent performance measures [Fre82|. Given a
set, of n tasks, there are a number of possible schedules and, for each possible sched-
ule, there are two measures of performance. If each of these measures is plotted, with
each axis representing one measure, then the resultant plot is a scatter diagram. The
envelope of this scatter diagram defines the frontier. More precisely, of the set of all
possible schedules, a schedule is on the frontier if there does not exist a schedule that
is at least as good in both measures and strictly better in one. French refers to such
schedules on the frontier as efficient. Although we may refer to a single point on the
frontier, this point may actually represent many schedules. The frontier described

by French provides a strong motivation for our work, however, French only discusses

20

a trade-off between two temporal measures, he does not discuss the possibility of re-
laxing precedence constraints. The frontier plot is further described and illustrated
in §3.2.5.

The concept of a frontier is the mechanism that we will use to formalize the
trade-off between temporal and logical consistency. The characteristics of the frontier
depend on the actual problem, however in the general case, a trade-off can be made.
The notion of a frontier can easily be extended to the multi-criteria problem where

there are m measures of performance and the frontier is m dimensional.

2.2.4 Value-Based Scheduling

Of interest to our work is value-based scheduling developed by Locke [Loc86]. In
this model, rather than define a single temporal attribute (i.e. deadline) for a task,
a function is defined that indicates the relative value of completing a task at some
instant of time. The scheduler then attempts to schedule tasks in such a way that
the total system value—that is, a combination of the values attained by each task—
is maximized. In general, a value function can be any function of value vs. time.
With value functions, both the urgency and importance of the tasks deadline can be
defined as well as utility of completing the task after the deadline has passed. Thus,
value functions can capture more general temporal consistency requirements than a
single deadline can express.

An advantage of value-based scheduling is that a single performance measure
need not be chosen for the system. Performance measures such as deadlines missed,
average lateness and average tardiness are not, in general, all optimal for the same
schedule. Furthermore, a performance measure that is suitable for some transactions
may not capture the performance goals of all transactions. Value-based scheduling,

by contrast, allows each task to specify its unique performance goals through the

21

value function. By scheduling to maximize the total system value as the sum of the
value attained by each task, the performance goals of each transaction can also be
maximized.

The total value to the system is achieved by some combination of the value
attained by each task. Usually that combination is simply the sum of all task values.
Another choice might be the mazimum value attained by all tasks. Through the
specification of task value function and how task values are combined to form total
system value, many commonly used performance measures can be modeled.

Locke developed a scheduling heuristic called a best-effort scheduler that sought
to maximize value. In his model, Locke derived deadlines from value functions and
used earliest-deadline-first (EDF)! to determine if the system could schedule the
tasks to meet all deadlines. If EDF failed, his scheduler would determine which
tasks not to schedule based on the amount of value that they would impart to the
system [Loc86].

Value based scheduling is not without problems however. Scheduling using value
functions can be a difficult problem. At the very least, value functions must be
restricted, such as to one of several classes—which is the approach of Locke. Most
commonly used performance measures, such as max-tardiness, number of deadlines
missed, act as a prozy for a value function. A proxy is an easily measured performance
characteristic that represents the true characteristic. For example, a deadline is
a proxy for a value function. The deadline is a single point measure of timing
requirements that captures only a small part of the value function, but it is easier
to understand and use. By using the proxies, the scheduling problem becomes more
readily solvable, and in the aggregate, the desired scheduling performance can often

be achieved. Yet, using a proxy prevents the scheduler from considering more aspects

In Operations Research, the term Earliest Deadline Due (EDD) is used instead of EDF, the
two are used interchangeably here.

22

of timing requirements and instead imposes a “one size fits all” methodology on the
task timing requirements. Using a proxy, all transactions or tasks are optimized to
the same measure.

Locke made several assumptions about the form of value functions that enabled
the development of an effective heuristic. For example, all tasks were assigned dead-
lines so those tasks could initially be scheduled by EDF. For many functions, the
deadline is obvious, but in others, the assignment of a deadline is somewhat sub-
jective. But, in any case, it is clear that the use of arbitrary value functions makes
developing a reasonable heuristic unlikely.

Locke did not consider concurrency control of other shared resources or bounding
the logical imprecision that his scheduler’s preemption might induce. Nevertheless,
Locke’s work forms a strong basis for flexible treatment of temporal consistency in
scheduling tasks. However, to be used here in a unified scheduling technique, it
needs to be augmented to also handle logical consistency of other shared resources
and data required in a database as well as augmented to handle the inevitable trade-
off between the two forms of consistency.

In addition to the work of Hariri and Potts, the work of Clark is also related to
the work of Locke. Clark extends the work of Locke to include precedence order-
ing, although he does not consider the possibility of violating precedence ordering
[Cla90]. Clark proposes that the value of completing a task includes not only the
value of completing that task, but also the values contributed by predecessor tasks.
In this way, the values of predecessor tasks are combined with the successor tasks.
Task importance is calculated to include the precedence chain rather than just the
final task. Clark, however, does not consider the possibility of violating precedence
constraints.

Some of the work here will use a notion similar to value functions. We refer to

these functions as penalty functions. Through this penalty function, we will define

23

multiple deadlines for a task and then associate a penalty to be assessed for missing

each deadline. Penalty functions will be discussed in detail in Chapter 6.

2.3 Concurrency Control

Concurrency control seeks to uphold a logical consistency correctness criterion. Con-
currency control insures that tasks processed concurrently do not interfere with each
other such that an incorrect result is obtained. In the context of this work, we use
the term concurrent to refer to tasks that are interleaved or time-shared.

There have been many concurrency control mechanisms developed for databases
[BHGS86]|. Concurrency control techniques typically work by limiting the degree of
concurrency among tasks. However, this can have the undesirable effect of eliminat-
ing some benefits of concurrency. Thus, in any concurrency control mechanism, a
trade-off must be made between the complexity of the algorithm and the restrictive-
ness of the controls. For example, a simple concurrency control such as two-phase
locking may guarantee correct results but may limit access to shared data. Overly
restrictive access to shared data may reduce transaction throughput to unacceptable
levels. More complex concurrency algorithms attempt to permit greater access to
shared data by examining more closely the nature of the data contention to see if
shared access is possible. These controls may provide better database throughput
for certain types of data but are more difficult to implement and may require high
processing overhead.

Another class of concurrency control protocols is optimistic concurrency control.
This control seeks to maximize throughput by placing no restrictions on planned
operations under the assumption that conflicts are unlikely to occur. Instead of
attempting to decide whether a transaction should proceed in advance, optimistic

concurrency control simply allows the transaction to proceed, but then analyzes the

24

result to see if a conflict did occur which led to incorrect results. In the rare case an
error occurred, the transaction must be aborted. If the transaction has committed a
rollback will be required [BHG86]. Even if a rollback is not required, the transaction
may be initiated several times before it is finally committed successfully, wasting
valuable time. However, if the assumption of limited conflicts holds, then optimistic
concurrency control systems can perform quite well, as they trade the overhead of
checking for conflicts prior to each transaction to simply correcting problems when
they occur. Rollback, if required, puts the system in the state of a prior instant in
time, but in a real-time system it is often not possible to “go back” in time. Sensor
inputs and other real-time events cannot be rolled back and it is often not possible to
re-create older states. During transaction rollback, time is moving forward—making
it even more difficult to meet future deadlines.

We do not consider the use of optimistic concurrency control here because of
the issues of re-submitting or rollbacks. Instead, we assume that the system or
database will continue operation and either accepting or compensating for any errors

introduced by violations of concurrency control.

2.3.1 Non-Serializable Concurrency Control

A simple method to avoid interaction between operations ready to be performed at
the same time is to simply execute them serially, that is, begin the second task only
after the first completes. This, however, leads to unacceptable delays in processing
while transactions waiting for external events, stall all pending transactions. By
allowing concurrent, or simultaneously executing transactions, this delay is practi-
cally eliminated, but this raises the possibility that transactions will conflict with
each other. A transaction interleaving is serializable if there exists a serial order-

ing of transactions which produces the same result. Thus, serializable transactions

25

cannot produce errors due to interleaving. Most concurrency schemes are based on
serializability.

Serializability is not the only way of maintaining logical consistency. Work in
non-serializable concurrency control includes techniques that use the semantics of the
application to gain information about allowable interleaving of transactions. Garcia-
Molina [GMS83], classified transactions into semantic types based on what they do
in the database. For each type, a compatibility set is defined to identify which
other types are compatible with, i.e., may interleave with, the given type. Instead of
serializability, compatibility sets determine correctness. The work of Garcia-Molina
is expanded by both [Lyn83] and [FO89]. The Real-time Semantic Objects and
Constraints (RTSORAC) model [PDPW94] incorporates features that support the
requirements of a real-time database into an extended object-oriented model.

Concurrency is enforced though allowable concurrent actions within a relation-
ship, defined between two or more objects. This concept is based on the semantic
data modeling notions [PMS8S§].

RTSORAC uses ad hoc correctness criteria and therefore any imprecision that
results may be unbounded. Other concurrency control techniques have been devised,
based on more formal correctness criteria, that are designed to bound imprecision
explicitly. In Kuo and Mok [KM92| similarity is defined as a correctness criterion that
allows data that are “close enough” to be considered the same. The Similarity Stack
Protocol (SSP) described by [KM93] defines similarity of data based on the time at
which the data is written, i.e., two data items are considered to be similar if their
timestamps are within a specified bound. Transactions are placed on a scheduling
stack according to their priorities. Read/write events of different transactions may

swap positions on the stack as long as they are similar.

26

Schedules that meet
Timing Constraints

All Schedules

Figure 2.1: Hierarchy of Concurrency Controls

Figure 2.1, proposed in [DiP95], shows the benefits of non-serializable concur-
rency control as the set of schedules that are acceptable with respect to logical re-
quirements is enlarged. As concurrency controls are relaxed, there are more schedules
available, thus increasing the possibility that one of those schedules also meets tem-
poral requirements. Enlarging the set of logically consistent schedules also increases
the probability that the set will include a greater number of temporally consistent

schedules.

2.3.2 Epsilon Serializability

Several concurrency control techniques have been designed to maintain Epsilon Seri-
alizability. Ramamritham and Pu suggest that allowed concurrency errors in a linear
data space result in a predictable error in the data [RP]. By placing a limit on the

allowed error, transactions can proceed in spite of concurrency controls so long as the

27

error limit has not been reached [WYP92|. In this way, the errors are predictable and
bounded. Concurrency control techniques are described by [WYP92] in which read-
only transactions need not be serializable with other update transactions, but update
transactions must be serializable among themselves. The techniques are variations
of two-phase locking, timestamp ordering and optimistic concurrency control. The
work in [RP] suggests that imprecision can be bounded and ultimately corrected.

Epsilon serializability was used in [DiP95] as a way to relax logical consistency
with the hope that temporal consistency could be met. Figure 2.1 shows the expected
increase in temporally consistent schedules through the use of less stringent concur-
rency control methods. However epsilon serializability differs significantly from the
other concurrency control methods. While the other methods all provide greater
concurrency over serializability, they all require that the concurrency control rules
be followed and in return, the integrity of the database is maintained. Epsilon se-
rializability, by contrast, permits violation of the concurrency mechanism in return
for bounded imprecision in the data. Thus, the benefit of epsilon serializability is
not fixed, but controlled by the imprecision allowed.

Epsilon serializability requires that the database data space be a metric space.
The values of all data in a database define the state of the database. For the data to
be a metric space, several conditions must be met. First, a distance function must
be defined such that absolute value of the difference between the precise value of a
data item and the recorded imprecise value can be measured. Second, the distance
is symmetric, the distance from the recorded value to the actual value is the same as
the distance from actual to recorded. Hence, the distance ¢ = |V, — V,.| > 0 (where
V,, is the actual or precise value, and V, is the recorded or imprecise value). Finally,
the triangle inequality must hold so that the distance from one object to a third is
no greater than the sum of the distances from the first object to the second and

the second to the third or, £;p10; < 1 + 3. The consequence of these conditions is

28

that the increase in imprecision due to multiple violations of logical constraints is
no greater than the sum of such increases for each violation individually. This is
important since it guarantees that errors in the database (or system) do not increase
in a non-linear fashion. If the conditions of a metric space are not met, then the
logical constraint violations cannot be made since there would be no way to measure
the accumulated penalty. Imprecision may be imported into the system from the
introduction of imprecise results being used to update a data item. Imprecision may
also be exported. This occurs if imprecise results are provided as a result of a query.
Exported imprecision is the easier to deal with since it has no lasting effect on the
database. Imported imprecision remains in the database and can propagate through
the database with successive transactions.

In our work, we will require that the data form a metric space. The possibility
that the consequences of logical concurrency violations can be measured, and possibly
bounded, allows us to propose such violations. Epsilon serializability, moreover, sets
an upper bound on the error thus created, any violations that would cause that limit
to be exceeded are not permitted. In the work presented here, we do not set an
explicit bound. Such a bound would always be in jeopardy of being violated. Indeed
given a large enough penalty for missing a deadline, almost any logical constraint
would fail. In our case, a bound, if set would be used to signal the system that
corrective action must be taken as proposed by [WYP92|. Nevertheless, epsilon
serializability provides some assurances, that, given certain assumptions are met,
violating logical constraints does not lead to unbounded error. We also apply the
concepts of a metric space and epsilon serializability to non-database operations.

Using the techniques reviewed here, we plan to generalize concurrency control to
an enforcement of logical consistency that is expressed as precedence orderings among
task or transaction operations. Relaxations of logical constraints are permissible as

they lead to bounded levels of imprecision in the database. These violations are the

29

embodiment of the trade-off to gain temporal consistency.

2.3.3 Precedence Ordering

The effect of a concurrency control technique on a system is the enforcement of
a set of operation orderings that are a subset of all possible orderings. Thus, all
pessimistic concurrency control systems can be modeled by constructing a set of
partial orderings that restrict operations or tasks from executing during times that
the concurrency control technique prohibits. By completing tasks in a permissible
order, the concurrency requirements are met. In our work, we permit the selective
violation of precedence constraints. We use the notion of penalty to capture the
imprecision that accrues as a result of violating a precedence constraint. An example
of a typical concurrency control technique’s set of permissible orderings is the set of
orderings representing serializable schedules. All possible schedules of transaction
tasks, and therefore all permissible schedules, can be expressed as a partial ordering
of tasks [BHG86].

Partial ordering is commonly used to express ordering among objects or tasks. A
partial order < on a set is transitive and irreflerive relation defined on some ordered
pairs of elements. Thus if ¢ < y and y < 2z then z < 2z but * < y and y < =
cannot both hold [Bol90|. Unfortunately, precedence constraints cannot express all
possible orderings of objects. For example, consider a requirement where only two
orderings are permissible: ¢ — b — c or ¢ — a — b2. Any set of precedence
constraints to specify this ordering would require that both a < ¢ and ¢ < a, which
is not permissible. For a generalized tree structure, which is necessary to capture all
orderings, a different notation is required. Such a notation has been described by

previous work by [JS95] and may prove to be useful here. However, we will continue

2We use ¢ — b to denote an instance of a sequence The notation a < b denotes a constraint.

30

to refer to partial orderings by the conventional notation with the assumption that
a more complete notation could be used in applications that require it.

We have chosen partial ordering as our primary control over logical consistency
since partial ordering can be used to specify any arbitrary ordering. Since all pes-
simistic concurrency controls ultimately define an acceptable ordering of tasks, such
an ordering can also be specified using partial ordering. Thus, if our work is valid
for partial ordering, it must be valid for any other pessimistic concurrency control
mechanism. In practice, the methods described in this work could be easily modified
to use the concurrency control mechanism most appropriate to the application rather

than partial ordering.

2.3.4 Real-Time Concurrency Control

In a real-time system, concurrency control cannot ignore temporal consistency re-
quirements. Instead, concurrency control must take into account both logical con-
sistency and temporal consistency of data and operations. Several real-time concur-
rency control techniques have been proposed that apply real-time scheduling concepts
to traditional concurrency control protocols, such as two-phase locking [YWLS94|.
Other research in real-time concurrency control has found that the serializability
requirement is too restrictive. By relaxing this restriction, and therefore increasing
concurrency, there is a possibility of meeting more timing constraints as shown in
Figure 2.1. A comprehensive survey of real-time concurrency control techniques is
presented in [YWLS94|. The notion of relaxing logical constraints to improve tem-
poral performance is similar to our work. However, as we have seen, this relaxation
approach cannot guarantee better temporal performance. Instead it simply enlarges
the solution space with the hope that a better solution can be found. Our work seeks

to explicitly make the trade off between logical and temporal performance.

31

Logical consistency can be mapped to a penalty table that expresses the penalty
to be assessed if a violation of the required task ordering occurs. In a database sys-
tem, the required orderings are often imposed by serialization orderings. Pessimistic
concurrency control schemes impose a subset of allowable task orderings on the set
of all orderings, which is equivalent to imposing partial orderings on tasks. In an
applied setting, use of a more conventional concurrency control scheme might be de-
sirable. Thus, a trade-off between temporal and logical constraints can be achieved

independent of the pessimistic concurrency control method selected.

We have described the work of other researchers that is relevant to our work.
We have developed a scheduling technique that uses a combination of penalties for
violating temporal constraints with penalties for violating logical constraints. By
scheduling tasks such that total penalty is minimized, the system meets, as closely

as possible, the logical and temporal requirements imposed.

32

Chapter 3

Methodology

3.1 Incremental Approach

In the chapters that follow, we develop a unified scheduling technique that synthesizes
scheduling and concurrency control to handle both logical and temporal consistency
in a database or other task processing system. Our approach is to incrementally
work towards this goal by first considering a simplified model, then exploring models
that are more complex. The first models will serve to illustrate the basic problem
and verify the legitimacy of a trade-off between logical and temporal constraints.
The simple models also have the advantage being easily solved and lead to relatively
fast algorithms that provide optimal solutions. The simple models are also useful
in solving real problems in situations where the limitations placed on the model
are valid. Models that are more complex will be developed which relate to general
scheduling problems. For these models, algorithms that guarantee optimality are not
so easily constructed. We propose to extend our simple models in small steps so that
results from one model can be applied to the next.

In formalizing each incremental model, we have followed a similar procedure.

First we describe the model, then provide a formal definition using a notation that

33

expresses the problem as an [P (Integer Programming) problem. An IP is an linear
optimization problem (LP) in which some or all of the variables must be nonnegative
integers [Win93]. An IP can be solved using one of several commercially available
software programs, such as LINDO [lin94a| or CPLEX [cpl94]. While LINDO or
CPLEX will find an optimal solution to the IP, this method is generally not suitable
for real-time scheduling due to the protracted processing time required. However,
solving the IP formulation provides valuable insights into the problem and provides
optimal solutions—at least for reasonable sized problems—against which any heuris-
tic can be judged.

For practical solutions to the scheduling problems discussed here, we develop
heuristics that are capable of finding a schedule quickly, but without any guarantee
of optimality. In many cases, it is desirable to have several heuristics available,
each tailored to the specific needs of the application for which it will be used. It
is generally true that the performance of a heuristic for complex problems such as
these cannot be mathematically proven. Instead, a heuristic is evaluated using one
of three methods |[LLKS85]. Performance can be determined using analysis by worst
case, probabilistic or empirical measures.

Worst case analysis provides a lower bound guarantee on heuristic performance,
but often, the worst case is both unlikely to occur and may be dismally poor. A
worst case analysis provides a mathematically correct proof the worst case, but for
complex problems, this proof may be difficult to construct. A probabilistic approach
attempts to overcome the problem of the worst case analysis by providing an average
or expected level of performance. Probability distributions are used in the analysis to
find the expected performance of the heuristic. However, the validity of probabilistic
predictions depends on assumptions about probability distributions, which may not
be well known. Actual results may vary significant from probabilistic predictions

if the distributions assumed are not correct. Finally, empirical testing can provide

34

useful measures of heuristic performance using typical problems for which the heuris-
tic will be used. Empirical analysis can make no guarantee of the general accuracy
of the heuristic. The accuracy of the empirical analysis depends completely on the
similarity of the simulated data to the actual that will be used by the heuristic. This
problem-specific data will vary from problem set to problem set. However, empirical
analysis has a strong advantage in that it is relatively simple to implement simula-
tion, even for very complex heuristics. If the data sets are similar to the actual data,
then the results are indicative of the results that will be achieved with real data.
For this work, we use an empirical approach to measuring heuristic performance.
Simulation is used with randomly generated task or transaction sets and the results
tabulated.! Simulation results will be analyzed against theoretical results and we will
determine the usefulness of the heuristic in specific applications. The results from
simulation are not, in general, valid for applications that differ in task characteristics.
We have attempted to generate tasks set in a most general manner so as not to bias
the results. However, simulation of heuristic performance and tuning of heuristics
must be performed for each application. This is a major limitation of simulation

analysis.

3.2 General Scheduling Model

3.2.1 Tasks

Our scheduling model consists of non-preemptable units of processing that we refer
to as tasks. Tasks are common in various applications, such as a complete operation
performed on machined part, or a maneuver of an underwater vehicle. In a database

system, sets of tasks to respond to user request are referred to as transactions.

L ATl simulation testing conducted in the course of this work was performed on a Pentium 200
MMX class personal computer

35

In our work, we consider a transaction to be a set of partially ordered tasks, but
otherwise ignore the transaction designation. Associated with each task is a known
and fixed processing time. In scheduling, we assume both temporal and logical
constraints. The temporal constraints require that tasks conform to some measure
of timeliness, for example—they meet a deadline. Logical constraints require that
tasks be processed in a certain sequence. We will consider the possibility of relaxing
constraints in order to optimize performance.

An optional temporal penalty function is provided to capture temporal consis-
tency. This penalty function consists of some number of deadlines and a positive
penalty associated with each deadline such that the penalty is assessed if the dead-
line is not met. The penalty function considered here is a multiple step function and
we assume it is non-decreasing. Penalty functions are discussed and illustrated in
Chapter 6.

Tasks may also be related to other tasks through a precedence relationship. The
total of these precedence relations imposes a partial ordering on all tasks in the
system. For each precedence pair, there is a positive precedence penalty defined,
which is assessed if the precedence ordering is violated in the schedule. We use the
notation a < b to express the logical constraint that task a precede task b in any
schedule. Since we have assumed non-preemtable tasks on a single processor, a < b
implies that task a completes before task b begins. We consider this precedence
ordering to be transitive, that is if a < b and b < ¢ then a < ¢. However, we do
not consider penalties to be transitive. The implication is that all penalties must
be specified explicitly. The reason for this is that there is not a clear way to assign
penalties through transitivity. For example, if the penalty for a < b is 10 and the
penalty for b < ¢ is 15, then consider the sequence of tasks b — ¢ — a. Clearly,
the constraints a < b is violated, for which there is a penalty of 10. By transitivity,

a < c is also violated, but it is not clear what this penalty should be. If a is a

36

predecessor task to ¢, that is, ¢ in some requires a in order to be correct, then some
penalty should apply. If ¢ does not explicitly require a then no penalty is necessary.
Not only is the necessity of a penalty unclear, but even if we agree that a penalty is
justified, what that penalty should be is not obvious. Thus, we require that penalties
be specified explicitly for all precedence pairs.

Precedence transitivity is specific to the application, and some applications may
lend themselves to a more general rule. If, for a specific application, a rule exists
for assigning penalties, then this rule can provide a shortcut to specify all transitive

penalties.

3.2.2 Metric Space

Using precedence constraints to model logical consistency, we assume that for all
precedence constraints the conditions for a metric space hold, as defined in §2.3.2.
That is, for all precedence violations we assume that the error introduced is mea-
surable. We also assume that the error is symmetric, that is the error introduced is
the same whether viewed as the error added to give the imprecise result or the error
subtracted to give the correct result. Finally, we assume that the triangle inequality
holds. This final assumption is the most difficult to meet and it requires that the
total error due to multiple precedence violations are not greater than the sum of the
individual errors.

Consider an FMS system to illustrate the importance of a metric space. Assume
that a part requires several machining operations, some of which are partially or-
dered. We require that if an operation occurs out of order, then the error introduced
is measurable, for example, an increase in the reject rate. We also require that if a
second operation is performed out of order, the resulting error can be added to the

error from the first precedence violation, and the sum of the two is no less than the

37

total accumulated error introduced (the triangle inequality). This is often the case
in practice. For example, if a finish hole is drilled without first drilling the pilot hole,
a penalty related to increased tool wear may be imposed. If a second hole is also
drilled without a pilot hole, then the total tool wear is no greater than the sum of
the wear caused by each hole taken alone.

If the conditions of a metric space do not hold, then violations of precedence
order may not be tolerable. To continue with the FMS example, consider an out
of order operation resulting in a part that cannot be completed. An initial milling
operation, if skipped, may make it impossible to continue with the machining of the
part. For practical applications we can handle this condition by using an arbitrarily
large penalty such that a schedule that does not have the milling operation scheduled
first is infeasible. Similar examples can be constructed for database systems, mission
planning or other applications.

For the models that follow, we assume that the conditions of epsilon serializability
hold. We do not require that the imprecision resulting from violations of logical
concurrency controls be limited to a predetermined bound, but we do require that

imprecision be bounded and known.

3.2.3 Schedule

We consider a schedule to be a sequence of all tasks known to the scheduler. An
optimal schedule for a given regular performance measure is a schedule for which
the aggregate performance measure for all tasks is less than or equal to any other
schedule. A regular measure of performance (R) is defined as a measure that is non-
decreasing in the completion times. Thus if R is a function of C'y, Cy, ... C,, such that
O <0, Oy <, . Cp <O then R(C, Oy, ... C) < R(C],Ch, ... CF) [Fre82.

As a consequence of our assumption of non-decreasing time penalty function, there

38

exists an optimal non-delay schedule if an optimal non-delay schedule exists. Thus,
we will not further consider delay schedules. For this model, we have defined two
performance measures: deadline (temporal) penalty and precedence (logical) penalty.
These two measures are orthogonal since the value of one measure is unrelated to
the value of the other.

The orthogonality of the measures requires additional consideration for schedul-
ing purposes. There are two approaches to this problem and both require an equiv-
alence between the two measures. The equivalence is an expression of the relative
importance of meeting deadlines or performing tasks in the correct precedence order.
The equivalence can only be specified by the user with knowledge of the application
and the specific optimality required. Thus, the equivalence between temporal per-
formance and precedence performance is assumed to be an input to the scheduling
process. Note that the penalty values to be specified for deadlines and precedence
ordering are entirely arbitrary in absolute magnitude. Since we do not specify the
relative magnitude of temporal and logical penalties, it is up to the user to supply
this information. As mentioned above, there are two approaches to using this equiv-
alence information. First, the equivalence can be specified as a single value. For
example: say a temporal penalty of value “10” is equivalent to a precedence of value
“6.” Using this information, the scheduler can find an optimal sequence of tasks re-
flecting this equivalence. A shortcoming of this method is that although the schedule
is optimized for this single value, the user has no way of knowing if a “better” sched-
ule exists with a equivalence just slightly different then the equivalence specified—for
example, a schedule with much better temporal performance with just slightly less
logical performance. This limitation leads to the second approach: the formulation
of a frontier. The frontier, as introduced in Chapter 2, is the set of points that define
schedules for which there are no other schedules better in both measures. From this

set, of points, a single schedule can be chosen based on the trade-off between the two

39

measures. With the frontier, the user can see the implications of this choice, and the
range of optimal schedules available. In the next section, the frontier is discussed in
greater detail.

We use the frontier to express the optimality between two performance measures.
This concept is easily extended to m performance measures. The optimal schedules

lie on the m-dimensional surface defined as the frontier.

All Schedules

Temporally
Consistent
Schedules

Logically
Consistent
Schedules

Figure 3.1: Logical vs. Temporal Constraints in Scheduling

3.2.4 Bi-Criteria Scheduling

In our research, we are concerned with the scheduling of tasks where there are two,
or possibly more, performance criteria. This multi-criteria measure complicates the
scheduling problem, especially where the criteria conflict with each other. The bi-
criteria scheduling problem (that is, two criteria) where both measures relate to

time, has been studied extensively in Operations Research. For example, finding a

40

schedule among tasks with deadlines that minimizes maximum tardiness while also
minimizing the number of deadlines missed is both representative and commonly
discussed, for example see [CLB94| or [VCY95|. However, the possibility of using
bi-criteria scheduling where one measure is logical constraints is not considered in
the literature. Note that in this work, logical constraints and temporal constraints
can be relaxed; that is, they are not absolute requirements.

We consider the bi-criteria scheduling problem where one measure relates to time
and the second relates to logical constraints. These measures can conflict, such that a
schedule that performs well in one measure does not perform well in the other. On a
single machine, assuming a non-delay schedule, there are n! possible ways to schedule
n tasks. Of the set of all possible schedules, there is a set of schedules that meet
timing constraints and another set of schedules that meet all logical constraints. This
is illustrated in Figure 3.1. If sets of temporally consistent schedules and logically
consistent schedules are not empty and they overlap, then the intersection of these
two sets contains the set of optimal schedules. These sets may not overlap however,
and thus there will be no schedules that meet both criteria.

Figure 3.2 presents this more difficult condition. Here, the sets of logically con-
sistent and temporally consistent do not intersect, and thus there is no schedule that
meets both constraints. If, however, we could relax each set of constraints slightly,
as shown by the dashed lines, then the two sets would overlap. This provides a
method of scheduling to meet both logical and temporal constraints, since from the
viewpoint of the scheduler, an optimal schedule does exist. In reality, neither logical
nor temporal constraints are strictly met by a schedule in the overlapping region,
however each constraint is almost met. If it were possible to control the size of each
area outlined by the dashed line, then we could control the trade-off between the two

constraints.

41

Almost
Logically
Consistent

Temporally
Consistent
Schedules

Figure 3.2: Relaxing Logical and Temporal Constraints

3.2.5 Frontier

As we discussed in Chapter 2, the set of best schedules are defined by a frontier.
This frontier is the outer edge of schedules on an x-y scatter plot that score high
in both measures of performance. The frontier represents the trade off between the

measures of performance and gives the user the option of choosing which schedule

embodies the desired trade off.

Assume we can evaluate a schedule of tasks by two measures of performance. In
the work presented here, we use one measure that relates to temporal performance
and one to logical performance. If we enumerate all schedules and evaluate each
for both measures, a set of (x, y) points is obtained. By plotting the points on a
two dimensional plane, the resulting scatter diagram illustrates the frontier, and is

shown in Figure 3.3. The points marked a, b, ¢, d, e, and f define the frontier.

42

That is, for each point on the frontier, there is no point better or equal in one
measure and strictly better in the other [Fre82]. Thus, the optimal schedule can be
chosen from among the schedules represented by the frontier. Points on the frontier
represent schedules that are better than any other in some measure or combination
of measures. The actual point to be chosen depends on the desired trade-off between
logical and temporal performance. This choice of schedule from other schedules
on the frontier is fundamental to this work. The choice must be made based on
the requirements of the user, but in reality, it is more complex. In advance, we
can propose a relative importance of temporal versus logical requirements. From
this implied equivalence, it is relatively easy to choose the frontier point that most
closely embodies this equivalence. Asis seen in Figure 3.3, point ¢ might most closely
match the pre-determined equivalence between logical and temporal requirements.
However, consider point d, this point provides much better performance with respect
to temporal performance with only minimal loss of logical performance, and in spite
of the pre-determined equivalence, point d might actually better meet the scheduling
requirements. Thus, not only must the equivalence between logical and temporal
constraints be known, but also the shape of frontier is necessary in order to make
the best decision.

We seek to find a method to determine the frontier points, that is, to find sched-
ules that correspond to the frontier points. Strategies include enumerative methods
such as branch and bound or heuristic methods. Branch and bound performs a tree
search for all schedules, by either following a branch to the leaf, or pruning branches
that clearly cannot lead to an optimal solution. This pruning is important since
for n tasks, the number of possible schedules grows as n!. Enumerative methods
are generally limited by the problem size, but through pruning, larger problem sizes

can be accommodated. Branch and bound algorithms will be discussed in detail in

43

Chapters 6 and 7. Heuristic methods are also developed that solve this schedul-
ing problem much faster, and are not limited by task set size. However, heuristic
solutions presented here do not guarantee a solution within a bounded distance of
optimal. We use simulation to measure the performance of heuristics for randomly

generated task sets.

— [+ schedules |
w frontier

Logical Walue
=
#

] 2 4 g B i i2 14 18 14
Time Farfarmancs

Figure 3.3: A Typical Frontier Plot

3.2.6 Problem Model

In the sections to follow there are several assumptions that apply to all models and

will be discussed here.

44

Single machine. We assume all processing is performed on a single processor or

machine. Furthermore, tasks being executed are not preemptable.

Static scheduling. We assume a static scheduler. That is, all tasks are known
to the scheduler prior to the execution of the first task. All task times and penalty
functions are also known. The scheduler finds the best schedule or schedules for
this set of tasks. If it is necessary to reschedule after some tasks have executed or
more tasks are entered into the system, then a dynamic scheduling system might be

considered. This is discussed further in Chapter 9.

Non-delay schedules. For the models to follow, we consider only non-delay sched-
ules. A non-delay schedule is one that does not benefit by the addition of idle time
between tasks. This assumption places strong restrictions on the penalty functions
that can be considered. Scheduling where delay schedules might be optimal requires
very different techniques. For example, enumerative search methods are ineffective.
Define a penalty function to be non-decreasing. Thus for deadline dy > d; penalty
Ty > 1. We propose the following lemma:
Lemma 1: Assume a set of tasks to be processed on a single machine. Assume each
task as a known processing time and penalty function. If the penalty function is
non-decreasing, then there exists for any delay schedule, a non-delay schedule with
equal or better performance for any regular measure of performance.
Proof: Assume a delay schedule with idle time o,, after task n. Setting o,, to zero,
will cause all successor tasks to n to complete earlier than they would with o, > 0.
Since all tasks have a non-increasing penalty function, the penalty (m,) for task n
completing at time C, must be less than the penalty (7)) for that task completing
at time C’ if €' < . Thus, the sum of all task penalties with no delay must be less

than or equal to the total penalty with delay. 0O

45

Hard vs. Soft Deadlines. We assume that all deadlines specified are soft dead-
lines, and hence can be missed—albeit with penalty. Hard deadlines, on the other
hand must, by definition, be met. A failure to meet a hard deadline can be consid-
ered a failure of the system [Jen96]. Since the trade-off between temporal and logical
consistency is core to our work, we assume that any deadline is a candidate for being
missed. Hard deadlines can not be accommodated by the methods we present here.
This is not a significant restriction however. Hard deadlines are a special case outside
the continuum of soft to firm deadlines. In nearly all applications, the notion of firm
deadline is sufficient. A task with a firm deadline imparts no value to the system if it
misses its deadline. A substantial penalty is usually sufficient to insure that the firm
deadline task is scheduled to meet its deadline. Typically, in a hard real-time system,
worst case analysis is used to insure sufficient resources are available to guarantee
that deadlines can be met. In a hard-deadline system, it is wise to dedicate the

system to only hard tasks. Tasks with soft deadlines should be processed elsewhere.

3.3 Formal Model

The above description introduces parts of the model in a somewhat informal way.
Here we now define a formal description of our model.

The model consists of a sequence of partially ordered tasks, 1,2,...,N. Then,
for every task i there is a temporal penalty function f;(C;), where C; represents the
completion time of task 7. We restrict this penalty function as appropriate in the
models to follow. Each task ¢ also has an associated set S; of successor tasks. For
every task j € 5;, there is a §; that represents the logical penalty incurred if j is
scheduled before ¢. Also for every j € S;, there is an associated decision variable, z;;
that takes the value 0 if 7 is scheduled before j and 1 if j is scheduled before i. Given

this model, the scheduling goal is to minimize total temporal penalty and minimize

46

total logical penalty. That is:
N N N
n/1//min Z fi(Cy), min Z Z T4
i=1 i=1 =1

where the notation n/m/A/B is used to classify scheduling problem of n tasks on
m processors with A task flow pattern between machines, if any, and B performance
measure [Fre82|. The bi-criteria goal is to both minimize temporal penalty and min-
imize penalties for logical constraints violations. This goal is accomplished through
the selection of the decision variables, x;;, subject to the appropriate constraints.
The IP constraints of this model and the IP models to follow are not relaxed, unlike
the temporal and logical constraints of our scheduling problem.

This problem is formulated as an objective function to be minimized. The bi-
criteria objective, temporal and logical penalty, is a function of the sequence of
scheduled tasks. For each sequence, a measure of temporal performance and logical
performance can be calculated. These logical/temporal performance pairs define the

frontier from which an optimal schedule can be selected.

3.3.1 Restrictions to the Temporal Function

In this work, we use a temporal penalty function that specifies for each task the
penalty for missing a deadline. The penalty function is a multiple step function,
where the penalty for missing a deadline is constant until the next deadline is reached.
A very large penalty for completing the task after some deadline implies a non-feasible
schedule, such that any precedence violation would be acceptable to allow this task

to complete prior the final deadline.

47

Chapter 4

Model: Makespan versus Precedence

We first focus upon the problem of generating a frontier for a scheduling problem
where a common deadline is shared by all tasks. That is, for temporal performance
we are only interested in the makespan, which is the total time to complete all tasks.
Logical constraints are met through precedence ordering between tasks, such that
tasks scheduled out of order are not performed. The model to be discussed here can
be considered the general model presented in Chapter 3 with certain restrictions. In
the following paragraphs, we list the restrictions to the general model that apply

here.

4.1 Restrictions to the General Model

1. The total makespan is the measure of temporal performance. The
measure of temporal consistency for this model is the total time it takes to
process all tasks. In this model individual tasks do not have deadlines or func-
tions to represent the temporal requirements of a task. Instead, the measure

of temporal performance is the time is takes to complete the task set.

48

2. Processing times are reduced for tasks executing out-of-order. Tasks
that are scheduled to execute after their successor tasks have their processing
time reduced by a “time advantage” factor. For the example presented later in
this chapter, we will further assume that only tasks that execute after all suc-
cessor tasks have their processing time reduced, and furthermore, the reduction

is to zero (i.e., the task is deleted).

Consider a partially ordered sequence of tasks, 1,2,..., N. For each task i, there
is a (possibly empty) set of successor tasks S; such that task i precedes task j for
all 7 € S;. Furthermore, for each successor task there is a penalty §;; > 0 if task 7 is
scheduled after task j.

Each task has a nominal processing time, ¢; > 0. In addition, for each task 7,
a time advantage 7;; > 0 is deducted from the nominal processing time, if task ¢
is scheduled after task j. We assume that > ;.q 75; < {;, that is, the total time
advantage possible for a task cannot be greater than the processing time for the

task. The maximum time required to complete all tasks is >.'=V ¢;, and the minimum

JES;

Also, the maximum penalty possible is

processing time required is

=

i=

=
—

i > &

i=1 jes;
and the minimum penalty is zero.
This problem can then be stated as follows: given a common deadline T by
which all tasks must be completed, it is necessary to determine the set of precedence
relations that will have to be violated to meet this timing constraint. That is, if a

task is scheduled to execute after a successor tasks then its processing time is reduced

49

possibly to zero. The precedence violation results in a penalty, however the reduced

task processing time results in a shorter makespan. This is the basis for the trade-off.

4.2 Formulation for Makespan Problem

This problem can be formulated as an [P (integer program) optimization problem:
N
i=1jes;

subject to:

> (ti - (- 931‘]')7@:7‘)) < T (4.2)

vy € {0,1} (4.3)

The binary decision variable z;;, if set to zero, indicates task ¢ is executed before
task 7, and set to one otherwise. The objective function, inequality 4.2 is to be
minimized by setting the decision variables to zero or one, subject to the constraint
of equation 4.1 being met.

This problem is a knapsack problem, and a variety of techniques can be found in
the literature tyat provide a solution. The knapsack problem is A/P-hard and thus a
polynomial time solution is not available. Pseudo-polynomial time solutions do exist
however, and we will utilize them when appropriate [SM90].

For generating the frontier, it is necessary to solve this problem for all knapsacks
of size 0 to >2'= ¢;, where size in this instance is the total processing time allocated.
A particular approach, using dynamic programming, for solving the knapsack problem
with the largest possible knapsack will result in the generation of the entire frontier.
Define P(t) as the minimum penalty that results from constraining the makespan to

S=ENE —t, and 7;; is the temporal benefit earned by violating the precedence i < j.

50

| Task | Description | Time |
1 Read; 4
Read,
Update,
Reads
Read,
Updates
Updates

=1 O O =~ W N
DO Lo = Lo DD DD

Table 4.1: Example Task Definitions

If there are no precedence violations, then makespan is maximized and ¢ = 0. Thus,
P(0) = 0. Then,
P(t) = min{&; + P(t — 7))
17]

That is, the solution for any fixed makespan can be found by a previous solution(s)
plus some additional task precedence violation. Thus, the process of computing P(t)

fort =0,1,...3=Y t; can be used to efficiently generate all points on the frontier.

4.3 Example

Problem. As an example, consider a set of real-time database tasks including
reads and updates. Each task has an associated execution time, and some of them
are constrained by precedence relationships. Table 4.1 lists each task in the example
along with its execution time. We will simplify the example with the assumption that
the time advantage for any task 7; = t; if ¢ > j, Vj € S;, S; # 0, that is, there is no
time advantage for task 7, unless it executes after all successor tasks, and if there is
a time advantage, it equals the nominal processing time. Note that there can be no
time advantage for a task with no successor tasks. In other words, tasks executing

after all successor tasks are effectively deleted. Table 4.2 displays the precedence

51

| Precedence | Penalty |

1<3 10
2<3 8
3<4 4
4=<6 4
4=<7 5
5=<T7 5

Table 4.2: Example Precedence and Penalties

orderings and associated penalties. To graphically depict the dependencies defined
by the precedence constraints, Figure 4.1 shows a network representation of these
tasks. Each numbered node is a task. The directed arcs connecting the nodes specify
the order in which tasks must be performed. So, for example, task 7 should not be
performed until tasks 4 and 5 are complete. As was discussed in Chapter 3, we do
not assume that penalties for precedence violations are transitive. The only penalties
that can be assessed are those shown in Table 4.2. Thus, in this example, if task 3
were to complete last, there would be a penalty of 4 due to task 3 completing after
task 4. There would be no penalty for task 3 completing after tasks 6 or 7, even
though a penalty might be implied by Figure 4.1.

The precedence constraints and associated penalties defined for this example are
based on the semantics of the application. For instance, Read, and Reads are both
specified to occur before Update;. We have assumed for this example that Update,
involves writing data read by Read; and Reads. Because for both of these read tasks,
Update, is the only successor task, if either read is scheduled after the update, it
will not be executed. The penalties associated with the two precedence constraints
are different to reflect the fact that Read; is more important to execute (i.e. less
likely to be removed from the schedule) than Reads. The user might specify an

overall deadline by which the schedule must be completed, or wait until the frontier

52

is generated to choose the best point.

Figure 4.1: Precedence Constraint Network Diagram for Sample Problem

Solution. By the assumptions of the example, any tasks that are scheduled to
execute after all successor tasks will be processed in zero time, i.e. those tasks will
be deleted. If we consider all possible schedules, we can calculate, for any given
sequencing of tasks, the sum of penalties as a result of tasks executing out of order.
We can also calculate, for any sequence, the total time of execution, (makespan)
of the schedule, which is obviously affected by out of order tasks that may not be
executed.

In the knapsack problem [SM90|, we seek to fill a container (knapsack) of limited
capacity (weight) with a series of objects (“stones”). Each object has a weight and
a value. The goal is to fill the knapsack such that total value is maximized without
exceeding the capacity. If we begin with a schedule in which all tasks are scheduled
after their successor tasks, then all such tasks are effectively deleted (i.e. an empty

knapsack). This schedule has the shortest makespan, but also the highest penalty.

53

If we accept a slightly longer makespan, the question arises as to what task or tasks
of the deleted set should be executed (by scheduling it prior to all its successor
tasks). Tasks are added such that the resulting makespan is less than or equal to the
longer makespan, and the reduction in penalty is maximized. We then again increase
the allowable makespan, and again choose tasks to fill the time with the maximum
reduction in penalty. Through this process, we are solving successive knapsacks,
each of a slightly larger size. While at first, this appears to be unacceptably tedious,
dynamic programming provides a solution to a knapsack of given size by using the
solutions of smaller knapsacks. Thus, by using dynamic programming to solve the
problem for the maximum makespan (all tasks included), we will solve the problem
for all shorter makespans (some tasks excluded) in the process, and hence define the
frontier.

The dynamic programming algorithm provides an optimal solution to the knap-
sack problem by starting with a knapsack of size 0 (ignoring for the moment, tasks 6
and 7). Assume a schedule such that all precedence constraints are violated. All tasks
(which have successor tasks) complete after their successor tasks, and are therefore
deleted (processed in zero time). These tasks form the set of deleted tasks. For this
knapsack size of zero, the solution is simply the null set of tasks. All tasks that have
successor tasks are scheduled to violate their precedence constraints, so that all these
tasks are deleted. For our example, this means that only tasks 6 and 7 are sched-
uled. These tasks have no successor tasks, and thus cannot violate any precedence
constraints. Figure 4.2 stage 1, shows the situation. Makespan is 5, but the penalty
is 36.

In the general dynamic programming algorithm, there is assumed to be an un-
limited number of “stones” of each size to fill the knapsack. In our case, we have a

3

list of available “stones,” and perhaps only one of any given size. This requires that

some additional bookkeeping to track which tasks have been scheduled so they will

54

not be considered at the next stage. Obviously, once a task is scheduled it cannot
again be considered. When combining “knapsack” solutions from smaller knapsacks,
it is possible that each of the smaller knapsacks have scheduled the same task—so
again, we must keep track of the tasks included in each solution to verify each task
is scheduled only once.

We begin with an empty knapsack, which corresponds to as many tasks as possible
being deleted from the sequence. We then fill it to a successively greater weight
limit (makespan), that is, we add tasks to the schedule. At each stage, we seek to
maximize total value (penalty) so that only precedence violations with low penalty
remain deleted. Since there is no penalty for tasks that are in the schedule, we
seek to get the “high penalty” tasks scheduled first. Thus, for a knapsack of size 1,
choose from the set of deleted tasks with processing time of 1 (or less), the single
task associated with the greatest penalty. In our example, no task can be found, so
the solution for 1 is the same as for 0.

For a knapsack of size 2, we consider a solution using either of the two previous
solutions (knapsacks of size 0 and 1) and use the best one. Both are the same so

either can be chosen. Next, add a single task such that:
1. The task hasn’t been used in the previous solution,

2. The resulting makespan is equal or less than the specified deadline K (knapsack

size), and

3. If more than tasks meets the above criteria, then chose the task with the

greatest logical penalty.

For a knapsack of size 2, the situation is shown in Figure 4.2 stage 2. In this case

there is one and only one task with processing time 2 so it is scheduled prior to

task 6.

55

gl 7

Stage 1, Makespan=%, Penalty=35 T

B B -~

ad
s

Z |EER 7

Stape 2, Makespan=7, Penalty=28 T
HEPIEERTE

Stage 11, Makespan=23, Penalty=0 &

Figure 4.2: Several Stages in Dynamic Programming Procedure

In general, for knapsack of size Ky, we try to combine two smaller knapsacks such
that the total weight is equal to K, that is: Ko+ Ky, Ki+ Ky 1, Ko+ Ky o, ...
Next add a single task which meets conditions above. Of these possibilities, choose
the best one (that is, the one that results in the lowest penalty). If no solution
can be found for K, then the solution for K is the same as the solution for Ky _;.
Figure 4.2 stage 11, shows the final stage: all tasks are scheduled so the penalty is
zero, but makespan is 23.

The graph of Figure 4.3 shows the solution points for all possible schedules of
the tasks in our real-time database example found by enumeration. Each point
represents a makespan and penalty for one or more schedules. Of specific interest
are the points connected by a series of lines; these points define the frontier. From

the enumeration of all schedules, the frontier is easily found as was described in

56

§3.2.5. Dynamic programming however, finds the frontier points directly, without
enumerating all schedules.

The frontier describes a set of schedules from which an optimal schedule can be
chosen. Any point on the frontier is better than any other point on the frontier in
some way. Only with a specified equivalence between the two performance measures
can a single schedule be chosen. The specification of the equivalence is determined
by the application for which the frontier is specified. Along with setting penalties, it
is also necessary to choose the point on the frontier that meets the scheduling goals.
Alternatively, it is possible to quantify the equivalence between logical and temporal
requirements prior to scheduling, which then leads to selection of an optimal schedule
directly. However, if an equivalence is defined at the start of the scheduling process,
the choices for trade-off will not be evident.

In our example, if we require that all tasks be completed by a time of 10, then the
subset of frontier points that can be chosen are (10,24), (9,26), (7,28), and (5,36).
While these points meet the deadline, they suffer in database precision as evidenced
by the high penalties. If the database user requires exact precision in the database,
then he must be willing to wait for the entire schedule to complete, and miss the
specified deadline. Table 4.3 shows the frontier points of our example, and gives a
possible schedule of tasks which results in the shown performance measures. Recall
that each frontier point can be generated by several different schedules. For purposes
of illustration, we show only one schedule for each point, and indeed schedules with

the same performance measure are equivalent.

While the restrictions described by this version of the model may seem to be
rather limiting, there are real applications for which this model is sufficient. For ex-
ample, consider the mission planning problem we introduced in §1.1.3 for autonomous

undersea vehicles. A typical mission might include several high level goals supported

o7

10

15 +

Penalty
=]

25

35

40 T T T T
25 20 15 10 5 1

Makespan

Figure 4.3: Frontier Plot for Example Problem

by lower level goals. For example, a “search” goal might be preceded by a “initialize”
goal to properly orient and calibrate the necessary sensors used in the search. Thus,
there are precedence constraints between tasks, with a penalties for out-of-order exe-
cution. In this example, failure to initialize the sensors prior to the search operation
might degrade the quality of the data. Once the search is completed however, there
is no need to initialize the sensors. If there is a deadline by which the mission must
be completed, it is clear that by scheduling the search prior to calibration, the mis-
sion can be completed sooner. Thus, we have a trade-off: the accuracy of the search

data versus the timeliness of the mission completion. This example illustrates the

58

Schedule Makespan | Penalty
(1234567) 23 0
(1243567) 20 4
(12346705) 19 5
(12436705) 16 9
(125674 3) 15 13
(1236745) 14 14
(126743D5) 11 18
(23167405) 10 24
(16743205) 9 26
(2674315) 7 28
(67431205) 5 36

Table 4.3: Frontier Points For Sample Problem

trade-off that must be made between logical consistency and temporal consistency
in the context of this restricted model.

Other applications can also benefit from this model, including the other exam-
ples that have been used throughout this work. The basic assumption is that the
predecessor tasks have no relevance once successor tasks have been executed. This
is often the case, as it is in the above example. Clearly, it is unnecessary to initialize
the sensor once the search is complete. It is unnecessary to drill the pilot hole once
the finish hole has been drilled. It is unnecessary to read a database item once the
update has committed. In each case, the time to perform the complete set of tasks
is less since one or more tasks are deleted. However, by deleting a preliminary task,
the final goal is met with less accuracy, less precision, or with greater risk.

The dynamic programming algorithm we have formulated to solve this problem
provides an exact solution to the problem. Since the knapsack problem is known to
be NP-hard, we cannot guarantee that this algorithm will execute in a reasonable

time. However, since dynamic programming executes in pseudo-polynomial time

59

thus, it generally executes faster than enumeration. [Win93|.

The frontier calculated by dynamic programming must agree with the frontier
calculated by enumerative search. This does not imply however, that the same
schedules are found by each. Since enumerative search finds all schedules, it therefore
finds all schedules on the frontier. Dynamic programming by contrast finds only the
points on (or close to) the frontier. Associated with each point found, one or more
schedules can easily be constructed, however, finding all schedules associated with a
single frontier point is not guaranteed by the dynamic programming algorithm. Of
course, in practice, only one schedule is necessary, since all schedules with the same

logical and temporal performance are considered equally useful and interchangeable.

60

Chapter 5

Independent Transactions with Deadlines

In the previous model of Chapter 4 we schedule a set of tasks to meet an overall dead-
line or makespan. In this chapter, we consider a more general problem, where tasks
are modeled as transactions. We assume a model that allows deadlines on transac-
tions and some precedence constraints within the tasks that make up a transaction.
However, this model does not allow any precedence constraints between transactions.
The restrictions that this model places on the general model presented in Chapter 3

are listed below.

5.1 Restrictions to the General Model

1. Temporal penalty functions express a single deadline only. The mea-
sure of temporal consistency for this model is the mazimum tardiness of tasks.
Max tardiness is found by computing the tardiness for each task; that is the
amount of time each task is late in meeting its deadline. If a task meets, or is
early for its deadline, its tardiness is zero. The maximum of the tardiness for
all tasks is the maz tardiness (1,4,) for the schedule. This measure was chosen

because an earliest deadline due (EDD) priority assignment scheme is known to

61

be optimal for minimizing maximum tardiness. Accordingly, penalty functions
are restricted to a unit step function: penalty 0 prior to (or at) deadline and

value 1 after. The penalty function models the timing constraint as a single

task deadline.

2. Only the final task in a transaction has a deadline. While transactions
are made up of several tasks, only the final task of the transaction has a dead-
line. This equates to a total deadline on the entire transaction, which is often

the case in many real-time database applications.

3. Precedence orderings can only be expressed between the deadline
task and the non-deadline tasks within a transaction. Furthermore, a
non-deadline task may only be expressed as a predecessor to a single deadline
task. This restriction enforces independence among transactions. Thus, there

are no precedence constraints between tasks from different transactions.

Transaction tasks consists of a final task—the commit task—and a set of prede-
cessor tasks. Unlike the model of Chapter 4, it is not necessary to delete tasks that
violate precedence constraints however. If a predecessor task is placed at the end of
the schedule, it has no effect on maximum tardiness.

By permitting deadlines on individual transactions, this model brings us closer
to the more general model than the previous restricted model of Chapter 4. Con-
sider several transactions, each with an independent deadline. Each transaction is
composed of one or more tasks, and these tasks can interleave in such a way that
maximum tardiness is minimized. When there is not enough time to execute all
tasks, low value predecessor tasks can be moved to the end of the schedule so that
transactions can meet deadlines—but at the cost of executing the predecessor task
out of order. Alternatively, transaction deadlines can be missed to allow some or all

predecessor tasks to execute.

62

5.2 Formal Model

Formally, the model consists of a set of partially ordered tasks, 1,2,... N where
each task © = 1,2,... N has an associated processing time t;. There is a subset of
these tasks, D, representing the commit tasks where the number of tasks in D is
M < N. Each task i € D has an associated deadline, d;. Another subset of tasks,
P, represents the set of predecessor tasks to task ¢ € . For each task j € P, there
is a penalty &;; for scheduling task j before task . Also associated with each task
J € P is an indicator variable z;; which takes the value 0 if 7 is scheduled before j
and 1 otherwise.

The set of deadline tasks D and the predecessor task sets P, are disjoint. That

is we have:
DNP =0, VYieD
Also, no task is a predecessor of more than one deadline task:
PNP =0, Yi#j
Finally, we assume that the tasks of D are ordered by their deadlines, that is d; < d;
if1<j.
Let ¢; be the completion time of task i. Let d; be the deadline of task j € D. For
any schedule we measure the maximum tardiness: 7}, = max{0, (¢; —d;)} Vi € D.

Given a maximum tardiness, (7},4.), the problem now is the determination of a

sequence which minimizes the total penalty. This problem can be formulated as:

min Z Z 2;5&i; (5.1)

i€P jeD

subject to:
Ci_1 + tl < dl + Tmax, VZ < D (53)

63

=0 (5.4)

Gp=¢p—Cp1—t,, YR ED (5.5)
N N
DG =D il — i) (5.6)
k=1 k=11i€ Py
zi; € {0,1} (5.7)

The expression (5.3), constrains the completion time of each task based on EDD
ordering and some T},,,. Constraint (5.5) computes the size of the gap that im-
mediately precedes each deadline task. Constraint (5.6) accounts for the total time
required by tasks to fill each gap (G). That is, each gap k prior to deadline task
k can be filled with only as many tasks that fit, and furthermore those tasks must
be predecessors to task k or greater. This model is an integer programming formu-
lation. A minimum value of T},,, can be achieved by scheduling no tasks prior to
their successor tasks—that is, the EDD schedule of deadline tasks alone. Optimally
scheduling the predecessor tasks in the gaps prior to their successor tasks reduces
the penalty for precedence violation, and if 7T},,,, is not allowed to increase, the first
frontier point can be found. Increasing 7,,,, allows additional tasks to be scheduled.
When all tasks are scheduled to meet precedence constraints the maximum value of

Taz 18 achieved and the last point on the frontier is obtained.

5.3 Heuristic Solution

We first consider the commit tasks (i € D) alone. These tasks must be scheduled and
cannot be deleted. Since the commit tasks each have a deadline and we are using max
tardiness as the performance measure, an EDD sequence will yield the best schedule.
This first scheduling attempt gives us the value of max tardiness, T,,,,, which we can
then use a basis for the next schedules. We schedule each deadline task to complete

late as possible, but no later than the task deadline plus 7T,,,,. This results in a

64

schedule with the minimum value of Max Tardiness, but with “gaps” between tasks
such that predecessor tasks can execute. By placing tasks in these “gaps” such as to
minimize precedence violation penalties, we can find a set of schedules.

This problem can be viewed as an embedded knapsack problem where the tasks
of each distinct transaction must fit into a time frame delimited by the deadline of
the transaction. Each of the gaps described above must be filled with tasks that are
predecessor to the commit task that ends the current or later gap. A heuristic to
solve this problem is an extension of the heuristic to solve the Makespan Problem of

Chapter 4.

The heuristic is as follows:

e Step 1: First schedule all deadline tasks (that is, the final task of each trans-
action) such that they complete at their deadline. If the schedule contains a
conflict between any two tasks, that is two tasks overlap in time, then sched-
ule the task with the earlier deadline just prior to the conflicting task. This
procedure must be repeated for each conflict, starting with the last task in the

schedule and working to the first.

e Step 2: It is possible that, after Step 1, the first task will be scheduled before
the starting time (time = 0). If this is the case, then add an equal amount of
time to each task’s start time such that the first task begin at time zero. This

step will fix the lower bound of 1,,,, for the frontier.

e Step 3: As a result of Steps 1 and 2, we have all the final tasks of each trans-
action scheduled with possible time gaps between tasks. We also have a set of
tasks, without deadlines, but with precedence constraints, that must be sched-
uled. Starting with the final task NV, consider the gap just prior to this task
(Gy). It can be filled (without penalty) only with tasks for which task N is

65

the final transaction task, that is tasks (j) with the precedence relationship
j < N. Using the dynamic programming algorithm of the Makespan problem
described in §4.2, fill the gap prior to task N with predecessor tasks of V.

e Step 4: For any gap (G;) just prior to task 7, fill GG; with tasks (j) with prece-
dence relationships of the form j < i,j < (i4+1),...7 < N, that is all tasks (j)
which can be scheduled without violating their precedence constraints. This

gap is filled using the same procedure as described in the previous step.

e Step 5: Repeat step 4 for all GG; for decrementing values of ¢ until the first
gap is filled 7 = 1. At this point, t,,q, is still at the minimum, which is the
best schedule in the measure of temporal consistency. However, it is the worst

schedule in logical consistency.

e Step 6: To create the frontier of solutions, consider the gap prior to task 1,
(&;. Increase the size of this gap by one unit and attempt to again fill it with
any unscheduled task. This increases T,,,, by one and reduces the penalty if
any additional tasks can be scheduled. Repeat this step, by repeatedly increas-
ing the gap by one until all tasks are scheduled. In a manner similar to the
makespan problem of Chapter 4, a frontier is defined. This frontier describes
the trade-off between temporal and logical consistency in the measures of 1,4,

and penalty (see §3.2.5).

While our solution to the first problem in Chapter 4 generates a set of good
solutions, this procedure does not make such a guarantee. Instead, this solution
provides a reasonable solution in a reasonable amount of time. Not only does this
procedure not produce an optimal solution, but it is not possible to place a bound

on the error. To validate this procedure, we instead use simulation.

66

5.4 Simulation

The heuristic has been simulated for a large number of randomly generated problem
sets of approximately 100 tasks each. Each task set was generated randomly, but
such that an optimal schedule exists, that is, a schedule with both 7},,, = 0 and
penalty = 0. For each case then, it is possible that the heuristic could find the
optimal solution. Knowing that a single optimal solution does exist gives us a way
to assess the performance of the heuristic. Simulation results show that if the task
sizes are small, then optimal solutions are likely to be found. If task sizes are large,
then it is less likely that an optimal schedule can be found.

Each simulation run consisted of 200 problem sets generated. In creating a sched-
ule the attributes of each task were assigned a value chosen randomly. The task
attributes are listed in Table 5.1. In the table, the notation U(a — b), means that the
random values for this attribute are distributed uniformly from a to b. F(¢) means
that this attribute is a fixed value of ¢. Two sets of tasks were created, deadline
tasks and predecessor tasks. To create a task set, deadline tasks where scheduled by
EDD. Task deadlines were increased if necessary so that the schedule was feasible.
Predecessor tasks with random processing times were then created to fit in the gaps
between deadline tasks, such that the gaps were completely filled. This requires that
the time of the final task of a predecessor set might be truncated so as not to exceed
the time available. Finally, each predecessor task was randomly associated with a
deadline task such that no predecessor task completed after its deadline task.

The number of predecessor tasks depends both on the processing time assigned to
these tasks and the amount of processing time available for them. As mentioned, the
schedule is generated such that all tasks meet deadlines and precedence constraints.
For each task set generated, the heuristic computes a schedule. The frontier for the

test set, as generated, is a single point, (0,0). The heuristic generates a frontier

67

| Task Attribute | Distribution |

Maximum total processing time (sec) F(100)
Number of Deadlines U2 -11)
Task Deadline U(1 - 100)
Deadline Task Processing Time U(1 - 6)
Predecessor Task Processing Time U1 -17)

(

Penalty for Precedence Violation (each predecessor task) | U(1 —11)

Table 5.1: Task Set Attributes

of one or more points. The error is calculated as the minimum distance from any
frontier point to the optimal (0,0). For simplicity, the distance between two points
(21, 11), (72, y2) was taken as the rectilinear distance, D = |z7 — 2| + |y1 — yo|. As
is usually the case, the results of the simulation are only valid for applications that
have a similar probability distribution of task attributes. In addition, we assume
that performance of the heuristic is not biased by the fact that an optimal solution
does exist for each problem set. Indeed the heuristic does not use the existence of an
optimal solution in any way, and furthermore we require the knowledge of an optimal
solution to measure the heuristic performance.

Twenty-five simulation runs of 200 problem sets each were performed. For each
run, task size, T’, was varied from 1 to 25. Figure 5.1 shows the results for five of
these runs. Each line represents the distribution of errors, plotted as the number
of schedules with a given error for each value of error. The plots show that the
heuristic generally performs such that in most cases the error is zero or very small.
Figure 5.2 shows the effect of varying the task processing time. The average error
was calculated for each run, and this is plotted for maximum task size (7). From this
plot is clear that the heuristic performs best with small task sizes. This is because it

is easier to “fit” many small tasks into a limited space, than one or two large tasks.

68

120
100 - -
Max Task Size
il |
ol =
) Il - -.Iu
P ~ -1
= |"-.|' | =3
£ | 2al 25 |
an 4=
20
T Che ™

B 1 2 %3 4 B B T 8 8 10 11 1F 13 14 16 18 17 i@ 18
Error [distance from optimal)

Figure 5.1: Histogram to Show Heuristic Performance

Again, note that while this is not the full general model of real-time database
scheduling and concurrency control, applications exist for which this restricted model
is sufficient. Recall the air traffic control example of §1.1.1. Consider an air traffic
control display, where a single transaction results in the display of a single aircraft.
Each transaction has a deadline to insure the timely display of information, and
each transaction has a number of tasks which precede the final display task. If there
is not sufficient time to complete the display, a predecessor task, such as tracker
processing, could be scheduled after the display task. This results in the tracker
process being moot and thus the calculation of aircraft position must rely on old
heading and speed data. However, the display transaction may now complete by its

deadline. Alternatively, executing the tracker task would result in a more accurate,

69

8.0 -

D'.I:I- T T T T T T T
1 2 3 4 568 T B 9011213141516 171218 20

Max Task Sire (seconds)

AT AUN

Figure 5.2: Simulation Results: Task Size vs. Heuristic Error

but late display. In the case of overload, where more aircraft are present in the sector
or aircraft are clustered closer together than normally expected, some tracker tasks

can be sacrificed in order to maintain an up-to-date, but less accurate, display.

70

Chapter 6

Tasks with Multiple Deadlines

As an extension of the previous problems, we now consider the problem where timing
constraints are given by several deadlines rather than a single deadline. This is a
discrete version of the problem considered by Locke. As discussed in Chapter 2,
Locke uses a value function to express the value to the system of completing a task
at some point in time. Locke permits a general function of time, but then reduces
this to two basic parameters: a critical time, which can be considered a deadline,
and a wvalue density which characterizes the slope of the function after the critical
time. Using these two parameters to specify each task, a schedule is created using
an EDD (Earliest Deadline Due) algorithm and then deleting tasks with low value
density until all remaining tasks are completed by their critical time. The deleted
tasks are then placed at the end of the schedule.

The special case with two deadlines has been considered in Hariri and Potts
[HP94]. Hariri and Potts assess a penalty for completing the task after the first
deadline but prior to the second. All tasks must complete by the second deadline
for the schedule to be feasible. The algorithm proposed by Hariri and Potts assumes
that a feasible schedule exists. We generalize the problem addressed by Hariri and

Potts to include additional deadlines for each task. In addition, we allow, but do

71

not require a final deadline for feasibility. However, imposing a final deadline makes
the search for a solution faster by eliminating infeasible solutions and thus greatly
reducing the search space. Thus, a final deadline is recommended when appropriate
to the application. The penalty function proposed here represents a somewhat more
restricted implementation of the value function proposed by Locke. While this would
seem to be a disadvantage, the multiple deadline function can be considered a piece-
wise linear function representing the continuous value function, albeit in inverted
form.

In previous chapters, we have introduced scheduling problems that include both
temporal and logical constraints. These problems are characterized by rather sub-
stantial restrictions that limit their utility in some applications, but allow the prob-
lems to be more easily solved. This previous work has provided the necessary foun-
dation on which to build this final model. In past problems we have proposed both
exact and approximate solution methods. Here too, we will suggest both a heuristic
which provides a solution but without any guarantee of optimality and an exact so-
lution but without any guarantee of execution time. In general, an optimal solution
would always be preferred over the heuristic; however because of the nature of the
problem, an optimal solution may take a very long time to find. Thus, given a lim-
ited amount of time, as in the case in real-time scheduling situations, or if problem
size is large, a heuristic may be necessary to provide a useful solution in a reasonable
amount of time. In §9.5 we suggest some strategies for using these two methods for
practical applications.

The deadline function expresses the penalty that will result if a task misses one
or more deadlines. Figure 6.1 shows typical penalty functions. Each task has zero
or more deadlines, and for each deadline there is an associated penalty. We further
assume that deadlines are non-negative and non-decreasing in time. We discuss the

implications of these assumptions in §6.1.1. There is no bound on the magnitude

72

of the penalty function. However, for practical considerations, a maximum value at
which the task cannot be feasibly scheduled is defined. That is, if the final deadline
is missed, the schedule is considered infeasible, and a sufficiently high penalty is

assessed to denote this condition.

-]

(o]

LI

Fox | S P
3 Task2 |
o j [r———— :. ________
2 r——--———!——.IEiS‘IEEI
| I
1 | :
| !
0 1 1
i 1 2 3 4 5 5] T]

Completion Time

Figure 6.1: Typical Set of Penalty Functions

In this chapter we examine the problem of tasks with temporal constraints only,

then expand it to include required precedence orderings in Chapter 7.

6.1 Temporal Constraints

To illustrate this scenario, we will use an example from scheduling tasks in FMS
(Flexible Manufacturing System). An FMS can process several different jobs, which
can be performed in batches with minimal setup time in between. Assume that

associated with each job there is a deadline for completion of the batch. As suggested

73

by Hariri and Potts [HP94|, there may in reality be more than one deadline. To see
this, consider the shipping time to the customer. For example, parts can be shipped
by truck at lost cost, but will require perhaps a week to arrive. This imposes a
deadline on the production floor to complete the order. If however, the parts are
shipped by air freight, a later deadline can be tolerated at the factory, but will require
the additional shipping costs—the penalty. Other factors can also lead to additional
deadlines such as other modes of shipment, a customer willingness (or unwillingness)
to accept a late order, or perhaps contractual penalties for late delivery. While Hariri
and Potts propose two deadlines, it is clear that there can be several deadlines, each
with different penalties. In this example, we may have a deadline for shipping by
truck and arriving at the customer on time, shipping by truck arriving one day late,
shipping by air arriving on time, etc. In each case, we can anticipate a penalty, either

in additional shipping costs or in penalty fees for late delivery.

6.1.1 Model

Consider a set of tasks 1,2,..., N. Each task ¢ has processing time ¢; and a set
of deadlines d;;,, for &k = 1,2,...B;. Associated with each d;; is a penalty 7.
We order tasks by deadline such that d;; < dj;+1) and impose a penalty my, if,
for task 4, deadline dy, is missed, but deadline d;g 1) is either met or does not
exist. Furthermore, we assume that m;, < 7). Forcing the penalties to be non-
decreasing with deadline will insure that for any delay schedule there is a non-delay
schedule that is at least as good. To simplicity the model, we have assumed that
all tasks have the same number of deadlines. However, the number of deadlines for
any task can be effectively reduced by specifying successive deadlines with the same
penalty. The problem of determining the best schedule that meets all constraints

can then be represented by the following formulation.

74

Define L;; = 1 if task ¢ completes prior to the k" deadline d;;, and Li; = 1if
task 7 is the immediate predecessor to task j and zero otherwise. Assume M to be

an arbitrarily large number. Then the objective is:

N B;
i=1 k=1
subject to the following constraints:
N
S Iy =1, Vj (6.2)
i
N
i
¢ —cjtp <M —1Ly), Yi#j,j7#1 (6.4)
C1 = 0 (65)
B;
k=1
B;
k=1
I;; €{0,1}, L, € {0,1} (6.8)

The objective (6.1) is to minimize the total penalty incurred by the schedule

by optimal selection of the decision variables [;;. This problem is an instance of

;-
the TSP (Traveling Salesman Problem), and can be formulated as an assignment
problem with additional constraints to eliminate subtours.

The TSP involves the construction of a tour, where each city is visited once and
only once. The tour begins and ends at the same city, that is, the tour is a complete
cycle. Since for our scheduling problem, we need a sequence and not a cycle, a

dummy task (task;) is added with no processing time and no deadlines. Without

increasing the cost of the schedule, this task is used to complete the tour.

75

Equation (6.2) forces each task to be assigned a unique position in the sequence,
and equation (6.3) ensures each position is assigned to a unique task. This is the
basic assignment problem. Inequality (6.4) requires that each task’s completion time
be greater than the predecessor task’s completion time by at least the processing
time of the predecessor task. The dummy variables, ¢;, ¢;, also eliminate sub-tours
by requiring that each task in the sequence, except the dummy task (task), has a
completion time greater than the task scheduled prior to it. Since there is one task in
a subtour that must be both before and after all other tasks in the subtour, subtours
which do not include task; are eliminated. Therefore task; is the only task to com-
plete a tour; there can be no other tours. The usual sub-tour elimination constraint
for the TSP [Win93|[LLKS85] is: w; — u; + N1;; < N — 1 which is mathematically
equivalent to inequality (6.4) (and precisely equivalent if all task processing times:
pi=1).

Finally, equation (6.5) initializes the cumulative processing time to zero. Inequal-
ity (6.6) and equation (6.7) are used to compute L;; which indicates the deadline
first missed by task ¢. The final constraints, equations (6.8) are used to restrict L;;
and /;; to binary variables. All variables are assumed to be non-negative in this IP

formulation.

6.1.2 Example

Consider the following example. A job shop has five jobs waiting to be completed in
an FMS cell. Each job has a deadline required by the customer. However, as is often
the case, the deadlines are not “hard” and may be missed, but with some penalty. As
we have discussed earlier, the penalties may arise for several reasons, but whatever the
source, the company wishes to complete all jobs such that penalties are minimized.

Table 6.1 shows the processing times, required deadlines and corresponding penalties

76

Deadline Processing
Job (Penalty) Time
1 271 32 | 3 8
(8) | (16) | (19)
2 121 15 | 20 5
(4) | (12) | (19)
3 131 18 | 18 4
B) | O |07
4 (12] 13 | 16 3
(4) | (1) | (16)

Table 6.1: Example Job Deadlines

for each job.

Recall this problem is an instance of the Traveling Salesman Problem, which is
known to be N'P-hard [LLIKS85]. There are a number of strategies for solving this
problem; several will be discussed later. Omne possibility is to use one of several
commercial software packages. Using LINGO [lin94b| small instances of the TSP
problem can be formulated and solved in a reasonable amount of time. For the TSP
problem, LINGO can be reasonably used to provide an exact solution for sets of up
to ten tasks. Using LINGO, an optimal solution to the problem defined in Table 6.1
is the task sequence: 3 — 2 — 4 — 1, which has an objective value of 19. Actually
there are 6 optimal sequences out of 4! = 24 possible sequences. However, we require
only one solution and thus LINGO provides a baseline method to solve this problem.
We will use LINGO to judge the performance of the heuristics discussed below. Of
course, this example problem, with only 4 tasks, is very small. The simulation results
discussed in §6.4 refer to problems sets of size 10 to 20 tasks.

The processing time required to solve this problem is an issue as the complexity
of the TSP and this problem is O(n!), and therefore solution time, is proportional

to n!. For this problem of four tasks the processing time is minimal. Figure 6.2

77

shows the processing times for larger problems. As expected, the processing times
increase quickly with problem size, making LINGO unacceptable as a means for

solving anything but the smallest problems.

100000
- Fros lime
10D -ril

@ 0D

=2

[+

1)

@

w

10 1

3 4 L] &8 ¥ B]
Humber of Tasks

Figure 6.2: Processing Times for LINGO Solutions

6.2 Branch and Bound

LINGO and similar programs find a solution to the formulated problem by relaxing
integer constraints, that is, the requirement that some variables assume integer values
is relaxed. The relaxed problem is then solved by LP (Linear Programming), which
finds a solution relatively quickly. A branch and bound technique is applied to find
integer solutions in the vicinity the LP solution. We investigate the use a branch and
bound solution for this problem, but where the search is conducted more efficiently

by using characteristics specific to this problem. This results in a faster algorithm

78

for this special case. Branch and bound is a tree search and this was implemented
as a depth first search (DFS) of the problem space. The DFS provides an exact
solution, however without appropriate methods to reduce or prune the search space,
it is computationally expensive, being of complexity O(n!). Bounds are used to prune
the search tree so that all nodes need not be explored.

In any implementation of branch and bound, several issues must be considered

in order to yield an effective implementation [LLKS85]. These include:

1. The order in which nodes are considered (branching rule).
2. Initial candidate solution (upper bound).

3. The estimate for the objective at any node (lower bound).
4. Pruning Rule.

5. Termination criteria.

The specific form of these rules is application dependent and is discussed below

for this problem.

6.2.1 Branching Rule

The branching rule specifies the next node to be searched from the node currently
being explored. There are two basic branching rules, Depth First Search (DFS)
and Breadth First Search (BFS). DFS is easily implemented using a simple recursive
algorithm. That is, from any parent node, each child node is chosen in a set sequence,
and the DFS is performed on that node. When all child nodes have been explored,
control is returned to the calling node. DFS also has a major advantage in that it
requires that very little information be stored in the course of the search. Only the

incumbent solution and some information related to the state of calling procedure (i.e.

79

the number of the child node currently being explored at each level of the recursion)
must be saved. The branching rule based on BFS may offer some advantages in
pruning since it can compare all partial solutions at the current level. However, BF'S
requires a more complicated algorithm for branching, and also requires a very large
amount of storage. At each stage, information for all nodes must be stored. At
the lower levels of large problems, the storage requirements can become huge. For
example, ignoring the benefits of pruning, only twelve tasks will require storage of
several hundred megabytes of data.

We use DFS, but enhance it with several other strategies in choosing the next
node to explore. Recall that we have assumed the deadline penalty function used is
non-decreasing. For some tasks, the penalty for being processed last in the sequence
can be quite high. This leads to the observation that some tasks placed last in the
schedule will have rather high penalty values, and likely create a poor (i.e. high
penalty) schedule. Since tasks tend to have a low value of penalty if scheduled
early in the sequence, any task can be successfully scheduled at the beginning of
the schedule. Indeed, if we choose any task for the first position in the sequence,
it must have a lower penalty than the candidate (upper bound) solution since that
solution contains all tasks. Clearly, any task placed first in the sequence must have a
penalty lower than the incumbent schedule. Alternatively, consider choosing a task
for the last position in the sequence. By the assumption of non-decreasing penalty
functions, that task alone may have a penalty greater than the incumbent solution.
Thus, that node and all its child nodes can be pruned. By scheduling tasks from last
position to first, large portions of the search space can be pruned early in the search
process. Pruning nodes early in the search has the greatest impact on processing
time, since a node pruned near the top of the tree eliminates all nodes below it from
consideration.

Using a DFS during testing, a task set of less than ten can be searched in a short

80

amount of time on a typical personal computer. However, adding just a few tasks
requires a computer with a speed several orders of magnitude faster to process the
larger task set in the same amount of time. The spectacular growth in the search
space due to combinatorial explosion makes problems with just a few more tasks
unsolvable in a reasonable amount of time.

Prior to initiating the DF'S search, we arrange the tasks according to a heuristic
that ranks tasks with respect to an estimate of importance in the contribution to
the objective function. This heuristic is described in detail in §6.3. The DFS imple-
mentation performs the search on objects. In our case the objects are task numbers,
however, any task can be assigned to any object. Barring any reason not to do so, the
first solution to be explored might be 1 — 2 — ... — n, that is, tasks are assigned to
objects in numerical order. But tasks need not be assigned in this order, and in fact,
we assign tasks in the order of the candidate solution provided by the heuristic. We
“prime” the branch and bound algorithm with this solution so that the branching
rule at any node tracks the sequence suggested by the heuristic. The implications
of this pre-ordering are further explored in §6.2.2. This concept can be extended to
recalculate a candidate solution at any node, and again “prime” the algorithm with
this value. Testing indicates that the additional time required for the re-calculation
is less than the gain it provides, although this is implementation specific. In our
testing, it became clear that the heuristic solution sequence at some lower level node
was not very different than the initial sequence provided by the heuristic. The small
benefit of recalculating the sequence at each node was outweighed by the additional

time to do so.

81

6.2.2 Upper bound

For this problem, the calculation of the upper bound is not nearly as critical as the
lower bound. In fact, a separate calculation is not required since the upper bound is
calculated in the process of examining nodes. Once a branch is completely explored
down to the leaf node, an upper bound is known. The solution becomes the upper
bound if it is better than the current upper bound. The upper bound is used in
fathoming nodes, which will be discussed in the subsequent sections. To get an
initial bound, we can simply explore a branch (any branch) fully. This yields an
upper bound, although a not necessarily a very good one. In fact, we use a heuristic
to obtain the initial upper bound. The heuristic is discussed in §6.3.

As more and more nodes are explored, we will continue to find better upper
bounds. The better upper bound we can obtain, the more efficiently we can prune

non-productive branches. This is most evident at the root of the search tree.

6.2.3 Lower Bound

An essential element of branch and bound is the determination of which nodes should
be pruned. Nodes are pruned when the penalty accumulated at the node; in addi-
tion, an estimate of the penalty for the remainder of the schedule (nodes) is greater
than the upper bound. At any node, the penalty accumulated thus far is a simple
calculation since the completion time of each scheduled task is known. Thus, it is
the calculation of lower bound that determines the effectiveness of pruning. If the
lower bound is a weak lower bound, that is, it is too low, then branches that will not
lead to a solution will continue to be explored. The closer the lower bound is to the
actual solution, the more efficient the search is likely to be.

The calculation of a lower bound is dependent on the structure of the problem.

For the problem discussed here, we propose three methods of calculating the lower

82

bound. All three take advantage of the characteristics of this problem.

e Method 1. A lower bound can be calculated by aggregating the minimum
penalty that may be incurred by each unscheduled task. The minimum penalty
for each task is the penalty it would incur if it were to be scheduled first. Since
no ordering of tasks could result in a lower penalty, this is indeed a lower bound.
However, since only one task will be scheduled first, the actual penalty could

be much higher. An advantage of this calculation is that it is easily executed.

e Method 2. A second calculation for the lower bound is based on a refinement
of the scheme used above. Instead of assuming that all tasks begin execution
at the beginning of the schedule, we use a sequence of tasks which allows us
to calculate a set of completion times. Assuming for a moment that all task
penalty functions are identical, the sequence of tasks that will result in the
lowest penalty is the sequence where shortest tasks are scheduled first. This
allows tasks to complete earlier in their penalty functions. Hence, this sequence
produces a list of most optimistic completion times. Since we do not yet know
the order in which tasks will complete, we simply use the minimum penalty
over all tasks for each completion time. The total penalty is the sum of the
minimum penalties for all completion times. This is a lower bound since no
ordering of tasks could result in earlier completion times and no association
of penalty function to task completion time could result in an lower penalty.
Depending on the actual penalty functions, the same task penalty function may
be used several times, resulting a weaker lower bound. This method provides a
lower bound that may, or may not, be better than the first method. However,

it takes more time to compute.

e Method 3. A stronger lower bound can also be calculated by approximating

the TSP by an assignment problem. Both the previous methods make poor

83

| Task | Processing Time |

1 3
2 2
3 1
4 2

Table 6.2: Unscheduled Tasks for Branch and Bound

assumptions, which we know cannot be true, resulting in a weak lower bound
in either case. For this method, we assume the same SPT (shortest processing
time first) calculation of completion times of the second method. However,
instead of using the minimum possible penalty, we associate a single penalty
function with a single task such that total penalty is minimized. This asso-
ciation of penalties to tasks is solved as the assignment problem (AP). The
assignment problem is an integer problem that is solvable as a linear problem,
and thus it is solvable in a relatively short amount of time. In practice, this
third method performs the best when calculating the lower bound. However,
the gains in pruning more nodes may be offset by the additional time required

for calculating the AP solution.

As an illustration of the third method, assume a set of four unscheduled tasks,

with associated processing times, as shown in Table 6.2. Figure 6.3 diagrams the

penalty functions.

We seek a lower bound on the penalty for scheduling the tasks. The exact solution

of the lower bound is simply a subset of the larger problem, the TSP, so clearly we

do not expect to find an exact solution (if we could, we would have no need for

a lower bound). We seek to solve instead, a simpler problem that will give us a

lower bound. We can calculate best case completion times by arranging the tasks

in order of smallest processing time first. This ordering is tasks: 3 — 4 — 2 — 1,

84

T
]
Taskc 4
5
=4
2 Task 3
a 3
Task 1
2
Task 2
I
1

a 1 2 3 4 5 & 7 B
Completion Time

Figure 6.3: Example Penalty Functions for Lower Bound Calculation

and the corresponding completion times are 1, 3, 5, 8 seconds. We can associate,
with each completion time and task, a penalty should the task complete at that
time. This yields an 4 x 4 matrix where the penalties for all tasks are based on fixed
completion times, independent of task ordering. Table 6.3 shows the resulting matrix
for this example. Each entry is the penalty for task ¢ completing at time ¢. It is an
instance of the assignment problem to choose one unique completion time for each
task such that total penalty is minimized. The assignment problem can be solved
using LINGO, and for this example the assignments that result in the minimum
penalty are enclosed in parenthesis in Table 6.3. The sum of the penalties for this
assignment, 10, is a lower bound for the TSP. The actual minimum penalty for the

TSP of this example is 12, was also obtained using LINGO.

85

Completion Time
Task | 1 sec | 3 sec | 5 sec | 8 sec

1 (0) 2 2 3
2 1 (1) 6 6
3 3 3 1 4)
4 5 5 (5) 7

Table 6.3: Penalty Table for Lower Bound Calculation

6.2.4 Pruning Rule

With upper and lower bound defined, we are now in a position to formally define the
rule used for pruning. This rule is important to this work, since variations of branch
and bound that will be introduced in later chapters depend on modifications to this
rule. Branches are pruned according to the following rule. Define the penalty at any
node as II,,. The upper bound on the optimal solution is U B. It can be determined
by a heuristic solution initially and modified by better solutions found during the
branch and bound process. The lower bound, LB, is the estimate of a solution to

the end of a branch. We then prune if the following condition is met:

I, + LB > UB, (6.9)

Because of the enormous number of nodes that must be considered in all but very

small problems, pruning is necessary for solving this problem efficiently.

6.2.5 Termination Conditions

In the branch and bound algorithm, nodes are explored until they are all fath-
omed, that is all branches are either explored to the leaf node or discarded as non-

productive. If, during the process, a solution is found that is better than the upper

86

bound, this becomes the best solution and thus the new upper bound. When all
nodes have been fathomed, the algorithm terminates with an optimal solution. The
number of sub-optimal solutions found depends on the effectiveness of pruning since
we seek to prune all nodes that will not lead to optimal solutions.

One of the problems with branch and bound is the time it may take to find an
optimal solution. In the worst case, nearly all nodes might have to be explored—
although this is unlikely to occur in practice. However, we can prune additional
nodes by accepting a solution which is within some acceptable distance (¢) of the
lower bound. This leads to an alternate termination condition for which we specify
the distance from the lower bound desired, and then terminate when this is satisfied.

We define ¢ > 0 to be the maximum difference between a lower bound and a
terminating solution. Typically, € is expressed as a percentage of the lower bound,
however in the formulations to follow it is assumed that € has been converted to an
absolute value. We modify the pruning rule of equation (6.9) to prune a node only
if it could lead to a solution that could not be better than the current upper bound
by an amount e.

As before, define the penalty at any node as 11,,, the upper bound U B, and the
LB. We then prune if the following condition is met:

I, + LB+ ¢ > UB where ¢ > 0, (6.10)

Using ¢, the termination condition for the branch and bound algorithm is as
follows. All nodes that cannot lead to a solution better than the upper bound by €

are pruned. The algorithm terminates after all nodes have been fathomed.

6.2.6 Branch and Bound Results

Since branch and bound produces an exact result, simulation is not required to

determine its accuracy. However, we did perform several tests to determine the

87

average time required by the algorithm to terminate. In calculating a lower bound,
method 1 and method 2 (in §6.2.3) resulted in approximately the same number of
nodes being pruned. Because this is so dependent on the specific task set used
however, we did not try to test this hypothesis. Indeed, the result is easily controlled
by the characteristics of the task set used. We did measure the processing time
of method 1 alone, then the processing time for method 1 and method 2 together.
Method 2 required more processing than method 1, so we found that the gains due
to increased pruning where lost to the additional time to calculate the lower bound.
The branch and bound algorithm using method 3 (lower bound by the assign-
ment problem) was found to be better in the number of nodes pruned. The per-
formance gain, with respect to additional nodes pruned was determined through
simulation. Executing the branch and bound algorithm, nodes were tested for prun-
ing by method 1 and method 2, if the node did not meet the criteria for pruning,
then the node was tested using method 3 for finding the lower bound. A count was
kept of nodes that met the criteria for pruning using method 3, but did not meet the
criteria of methods 1 and 2. Results showed that the lower bound using method 3
pruned an additional 0.015% over the other methods. A general algorithm was used
to solve the assignment problem, and no effort was made to optimize the algorithm
itself. Thus we do make any claim about performance with respect to processing
time. This testing was primarily to show the effectiveness of using the assignment
problem for computing the lower bound and the effect on state space reduction.
The time required to perform a branch and bound search is, of course, dependent
on the number of tasks. For a simple enumerative search, we would expect the time to
be non-polynomial and proportional to O(n!). Through pruning, branch and bound
should be significantly better. Simulation was used to measure the effectiveness of
pruning, and as expected, branch and bound, on average, performed much better

than enumerative search. The results are shown in Figure 6.4. The search time is

88

less than n! but greater than n? with respect to the number of tasks (n).

100.00
Epsilon =0
o "
10.00 4
i
E
'_
= L]
£ 100
2 B 7 8 L f 12
g
[+ . - [|
|'J ||:| i - -
| B Simulation
- =l s
® e |—=p"2
0.04 -

Task St Size

Figure 6.4: Branch and Bound Processing Time

The use of epsilon (¢) was used to reduce the search space, with the expectation
that processing time would also decrease. Using € equal to 2% of the optimal objective
value, for example, decreased the search time by about 50% in a simulation of 100
problem sets. Similar results where found when ¢ was increased from 2% to 5%
then to 10%. Beyond that, increasing € to 20% resulted in a smaller improvement in
processing time.

The branch and bound technique, as outlined above, is guaranteed to find the
optimal solution. A limitation of the branch and bound is that the time required to
find a solution is not a polynomial function of task set size. In the worst case, pro-

cessing time is proportional to n!. However, by eflicient pruning of nodes, we found

89

that a solution for task sets of twenty tasks can be found in a short time. Pruning
depends on the accurate calculation of lower bound. We have presented several meth-
ods of doing this, and observed that by solving the AP (assignment problem) more
nodes are pruned. However, an efficient implementation of this method is required

to compensate for the time required to compute a solution to the AP.

6.3 Heuristic

While integer programming and branch and bound provide a method of obtaining
exact solutions, larger problems become difficult to solve in a reasonable amount of
time. Regardless of the enhancements to branch and bound, at some point, the num-
ber of tasks simply becomes overwhelming. For larger problems it is often desirable
to use a heuristic that provides a good solution, but in a greatly reduced amount of
time.

The following heuristic has been developed for this problem. In each step of this
algorithm, a task is selected to fill the last unassigned position in the sequence. There
are several attributes of a task that would make it a candidate to be scheduled last.
This can be more easily seen if we consider several simple cases of penalty functions

which are illustrated in Figure 6.5.

Zero Slope. In this case, all tasks are equally suitable to be scheduled last. If all
tasks have a penalty function which is constant for all completion times (“zero slope”
shown in Figure 6.5), then all schedules will produce the same objective value. This
is true regardless of the value of the penalty function. This is easily proven. Consider
any arbitrary schedule of n tasks and compute the total penalty. Interchanging any
two tasks has no effect on the total penalty, since the penalty for any task is a

constant regardless of completion time.

90

Equal Slope, Same Processing Times. The above result can be extended to
the case if all tasks have the same processing time and all tasks have a linear function
with equal slopes as shown in Figure 6.5. The result is same as above. Choose any
arbitrary schedule and interchange any two tasks. The increase in penalty for one
task is exactly offset by the decrease in the other.

If, however, the processing time for tasks is not equal, then interchanging tasks

will produce a different objective value.

Zero Slopes Equal Slope

Unequal Slope step

Figure 6.5: Simplified Penalty Functions

Equal Slope, Different Processing Times. In the case where the penalty func-
tions have equal non-decreasing slopes (see Figure 6.5), then in the case where pro-
cessing times are different, an optimal schedule can be produced by scheduling the

task with the longest processing time last. As proof, consider any arbitrary schedule

91

of tasks. Exchange any two adjacent tasks. The completion time of the task that
occurs last does not change after the exchange. However, assuming the longer task
is last prior to the exchange, the completion time of the task which occurs first will
occur later after the exchange. Thus, the increase in penalty of the task now last
is less than the decrease in penalty of the task now first. Any exchange of adjacent
tasks that moves the shorter task to a position earlier in the schedule will decrease

the total penalty.

Unequal Slopes, Same Processing Times. Consider linear penalty functions
for tasks where the non-decreasing linear slope of the differs for each task, as shown
in Figure 6.5. If all tasks have an equal processing time, then an optimal schedule
can be formed by choosing the task with the lowest slope last. Again, choose an
arbitrary schedule. Interchange any two tasks such that the slope of the earlier task
is lower than the slope of the later task. Thus, the increase of the earlier task when
moved to the later position will be less than the decrease of the later task when it
is moved to the earlier position since moving a task with a smaller slope results in a
smaller change in penalty. Moving the tasks with the lowest slopes to the end of the

sequence will provide the optimal schedule.

Single Step. We now consider a penalty function which is a single step function,
and again this is shown in Figure 6.5. The step function has a penalty value of
zero prior to the deadline and a non-zero positive value at and after the deadline.
Assume that all tasks have the same value after the deadline, but tasks may have
different processing times. This model is identical to tasks with deadlines where the
performance measure is the number of deadlines missed. Farliest deadline due (EDD)
will create a schedule with zero penalty if such a schedule exists. If no schedule with

zero penalty exists, then a different method is required. Schedule tasks choosing

92

the task with the earliest deadline. If the deadline is met, continue by choosing
the second task in the sequence from the remaining set of tasks with the earliest
deadline. If the task exceeds its deadline, it is then scheduled last [Win93]. This
process is continued until all tasks have been scheduled. If task penalty values after

the deadline are not equal, then this problem is an instance of the knapsack problem.

The purpose of the above classes of penalty functions is to show that different
characteristics suggest different scheduling criteria. Notice that tasks with discon-
tinuous functions (the step function here) must be scheduled differently than tasks
with continuous penalty functions although they appear to be similar to the contin-
uous functions. While not all of these characteristics exactly apply to the multiple
step function that used in this model, however, some of these characteristics can be
inferred.

For the problem that we are considering here, the penalty functions may be com-
binations of the characteristics discussed above. The discrete penalty function that
we propose can be relaxed to approximate a continuous function, which is accom-
plished by linear interpolation between the steps of the penalty function. Figure 6.6
shows how this is done. Such a relaxation has some benefit in scheduling tasks, but
from the above discussion, it is clear that the interpolated function is not equivalent
to the original. While no single approach using simplified functions applies, all can
be used in a scheduling strategy, and we propose to use a combination of several
key criteria. Of course, an optimal solution cannot be found in polynomial time as
the problem as described in §6.1.1 is A'P-hard. Alternatively, any heuristic that
executes in polynomial time cannot guarantee an optimal solution. Such is the case
with our heuristic.

Combining these strategies, we present a composite heuristic. The schedule as-

signs tasks to a position, beginning with the last position in the sequence. A list

93

Penalty Function _

Panalty

*— Interpolated Function

il 1 Z a 4 5 5] T 8
Completion Time

Figure 6.6: Interpolated Penalty Functions

is constructed by ranking all unscheduled tasks based on processing time, penalty
function slope and value at the completion time for the position being scheduled.
Referring to the model given in §6.1.1, we seek to find a sequence of tasks which
minimizes the sum of the penalties for each task.

The heuristic creates a sequence by assigning to tasks to the last unassigned
position in the sequence. In scheduling a task in the next unassigned position in the
sequence, the heuristic uses the sum of three characteristics for each task. These
characteristics are computed for the completion time of the position to be filled.
Tasks are assigned values based on the following characteristics: shorter processing
time, lower slope and lower penalty. In calculating the slope, the step function
penalty function is replaced with a piecewise linear function such that breakpoints of

the function are the penalty values at the deadlines of the original step function (recall

94

Figure 6.6). Using this new function, a slope can be calculated at the completion
time of the position to be scheduled. Tasks are ranked based on the weighted sum
of these three characteristics. The task with the best (lowest in this case) ranking is
assigned to the position.

For this heuristic, we define several additional parameters. Let U be the set of
unscheduled tasks and 7" the total processing time of tasks in U. Initially, U contains
all tasks, that is U = {1...n}

Next, let P, denote the penalty of completing task ¢ at completion time c. A
“relaxed” penalty function P/, is also defined. This function returns a value of penalty
that is a linear interpolation of penalty value for completion times that fall between
deadlines. Again, refer to Figure 6.6 which shows both the actual penalty function
and relaxed penalty function. F,. is normalized by dividing it by the maximum value
of P,. over all unscheduled tasks at each completion time.

A “slope” parameter m; for task 7 is used by the heuristic to consider the change
in penalty for change in completion time. The slope is calculated as the change in
relaxed penalty P/, between the current completion time, and the completion time

less the task processing time. This difference is divided by the task processing time:

P — P

i(e—1t3) ‘
2

my

It is intended to both capture the implied slope of the penalty function in the region

of the current completion time and the task processing time. This is calculated for
each task at each scheduling decision.

A schedule S is created by choosing a task from the unscheduled set, U. Initially,

U contains all tasks, while S is empty. Also, begin with the last task, n = N. The

following is the heuristic to create a schedule S

95

Step 1. To choose the task to be executed next, n, first compute the comple-

tion time as:

Cp — Ztl

icU

Step 2. Rank tasks by the following metric:

V; - aPicn + ﬂSzcn

Step 3. Choose task with lowest value of V;, and place at beginning of sequence

in S. Remove the task from U. Decrement n.

Step 4. Repeat Steps 1 through 3 until U is empty.

The weighting factors, a and § are determined empirically. A more complete

definition of this heuristic is presented in pseudocode form in Appendix A.

6.4 Computational Results

A number of simulations were run to determine the effectiveness of this heuristic.
Task sets were randomly generated; the number of tasks the number of deadlines, the
time of the deadlines, and the penalty associated with the deadline were all chosen
using a random function. The composite heuristic was used to construct a schedule.
For comparison, additional heuristics were also employed. These additional heuristics

focused on one of the characteristics discussed above, for example “slope.”

Random Task Sets. For each solution, a task set is required. A task set was
randomly generated with the characteristics shown in Table 6.4. The bounds, for
example U(6 — 18) are stored in a file, which allows them to be easily changed for
specific tests. As in Table 5.1 the notation U(6 — 18), means that the random values

for this attribute are distributed uniformly from 6 to 18.

96

| Task Attribute | Distribution |

Number of Tasks U(6 - 18)
Number of Deadlines U(2-6)
Task Processing Time U2 -12)
Penalty Increment U2-9)
First Deadline before Completion Time | U(2 — 10)
Last Deadline after Completion Time U(2-10)

Table 6.4: Random Distribution of Task Attributes

The penalty at each deadline was determined by adding the “penalty increment”
to the penalty at the previous deadline (or add to zero for the first deadline). The
times for deadlines are based on the completion time of the task and assume an
arbitrary schedule (a random ordering of tasks). These times are expressed as the
amount of time the first deadline occurs before the completion time, and the amount
of time last penalty occurs after the completion time. Using these attributes and
the random values generated, a unique problem set is generated for the scheduling
simulation.

The flow diagram for the simulation (AP_BAT.EXE) is shown in Figure 6.7. The
program actually spawns three programs, including LP.EXE, a program that generates
an instance of a data set (TSP.LDT) from the specification file (TEST.SPC). A new
test set is generated on each pass. The program LP.EXE then performs a branch and
bound solution and runs four heuristics. The results are appended to the data set file
(Tsp.LDT). LINGO is the second program to run, it reads a model (TSP.LNG) along
with the data (TsP.LDT). LINGO stores the solution objective and sequence in two
files (OBJ.DAT and SOLU.DAT respectively). LINGO is not executed for tasks sets of
greater than 10 tasks. Finally, the third program, STORE.EXE, is run. It reads results
from the three data files: TSP.LDT, OBJ.DAT and SOLU.DAT. Data from these files

is parsed and appended to a comma-delimited file (RESULTS.CSV). RESULTS.CSV is

97

directly readable by the spreadsheet program, Excel'. Excel is used to analyze the
data following the completion of the simulation. Parameters are passed to the high
level program AP_BAT.EXE that specify the number of iterations, the components to
be executed and several other parameters to control the simulation. Typically, our

simulation test runs include at least 1000 iterations.

TEST.SPC
TSPLDT
R

CBJ.DAT
T

RESULTS. CSV

LINGO.EXE

STORE.EXE

Store Results

Figure 6.7: Simulation Flowchart

The randomly generated task set was processed by the branch and bound algo-
rithm discussed above for an exact solution. To keep processing time reasonable,
task sets were limited to fewer than twenty tasks.

For each task set randomly generated, the following results were obtained and

Excel is a registered trademark of the Microsoft Corporation

98

stored as one row in the results file, RESULTS.CSV.
e A listing of the task set.

e The objective value and sequence generated by heuristic #1. This composite

heuristic schedules by the weighted sum of absolute penalty and penalty slope.

e The objective value and sequence generated by heuristic #2. This heuristic

uses a relaxed penalty, then schedules by lowest penalty first.

e The objective value and sequence generated by heuristic #3. This heuristic

uses penalty, then schedules by lowest penalty first.

e The objective value and sequence generated by heuristic #4. This heuristic
uses the slope in the region of the completion time, then schedules by greatest

slope first.

e The objective value and sequence generated by heuristic #5. This heuristic uses
the processing time of each task. Shortest processing time tasks are scheduled

first.

e The objective value and sequence generated by branch and bound. Tasks
are scheduled in accordance with the results of the branch and bound search.
Also listed is the number of cuts or nodes pruned by the branch and bound

algorithm.

The results are shown in Figure 6.8, which shows the distribution of heuristic
errors. For this plot, the minimum objective found by any heuristic was compared
to the optimal objective obtained by branch and bound. The plot of Figure 6.8 is a
histogram which shows the number of occurrences (frequency of tasks) for each value

of error (difference between optimal and heuristic objective value). While in nearly

99

all cases the heuristic performed quite well, there are a small number of cases where it
performed poorly. This is a result of the heuristic using specific characteristics of task
penalties to choose tasks for the sequence. For task sets where these characteristics
do not correlate with the best sequence, the heuristic will not perform well. Thus, we

conclude the heuristic is useful, and as expected, performance cannot be guaranteed.

1%

0%

Tl% o

S0% -

Frequency

1%, P e T T T d =iy .| P — Jro— f—
] s 4% it [1 11% 13% 1%% 109% 18% A% AN A% =0d4%
Distance from Optimal

Figure 6.8: Histogram, Heuristic Accuracy

The results of the simulation are useful only to the extent that the task sets are
representative the actual task sets that will be used by the heuristic. There are no
performance guarantees for the heuristic and if it is to be employed in a specific

application, further simulations are warranted. Indeed, the heuristic includes several

100

weighting factors, and these should be adjusted to fine tune performance for any real
application. The results also show that the combined heuristic was nearly always
better than any of the single criteria heuristics, although it often occurred that one

or two single criteria heuristics should match the combined heuristic.

101

Chapter 7

Tasks with Temporal and Logical

Constraints

In Chapter 6 we explored the problem of multiple temporal deadlines. In this chapter
we consider the effects of additional requirements imposed by logical constraints
between tasks. Typically, the addition of logical constraints would make the problem
simpler by reducing the size of the search space. Unfortunately, this is not necessarily
the case here. We seek a solution that permits the violation of logical constraints, and
therefore we cannot automatically discard portions of the state space that include
logical constraint violations.

We will begin this chapter by examining the scheduling problem where there are
only logical constraints and no temporal constraints. This is a fairly simple problem
under the assumption that there are no cycles in the precedence graph. With this
assumption, an exact solution can be easily obtained. We then discuss the problem of
minimizing deadline penalties as in Chapter 6, but with the additional requirement
that all logical constraints are met. In this case, the problem is simpler due to a
reduction in the search space. Finally, we generalize the problem to allow logical

constraint violations and propose several strategies to solve this problem.

102

7.1 Tasks with Logical Constraints

Prior to considering the problem of tasks with both temporal and logical constraints,
we will first discuss logical constraints only. By comparison to the problem of meeting
temporal constraints, logical constraints can be met with much less difficulty.

As in previous chapters (for example §3.2.1), we model logical constraints using
precedence ordering. Each task may be related to any other task through a partial
ordering, with a penalty associated for task pairs that violate the precedence con-
straint. The magnitude of the penalty reflects the error or imprecision introduced
to the system (or its output) as a result of performing tasks out-of-order. Penalties
are cumulative and, under the assumptions of a metric space, the total imprecision
introduced into the system as a result of precedence violations is bounded by the sum
of imprecision introduced by each violation alone. As in earlier cases, we assume that

penalties are not transitive with respect to precedence constraints.

7.1.1 Model

Consider a set of tasks 1,2, ..., N. Tasks may be partially ordered, that is, a task may
have one or more predecessor tasks. Partial ordering is expressed through precedence
constraint pairs as: @ < b. The relationship is transitive, i.e., if a is a predecessor to
b, and b is a predecessor to ¢, then ais a predecessor to c. We require that there be no
cycles in the partial ordering, that is, a task cannot be contained in its predecessor
set,.

In practical applications cycles rarely exist, thus we do not consider the problem
where cycles may occur. If we assume there are no cycles in the precedence con-
straints, then a schedule with no precedence violations must exist. We make this
assumption for all models described here, but we will revisit this assumption in the

concluding remarks.

103

Partial ordering among tasks reduces the number of possible sequences. For
example, in a set of tasks with no precedence relationships, there are n! possible
sequences. However if ¢ tasks are partially ordered as 1 < 2 < ... < i, then there are
?—,' possible sequences. If there are two partially ordered sequences, i tasks and j tasks
in length, then the number of possible schedules is: % For example, consider a set
of 12 tasks. Assume that four tasks are partially ordered as follows 1 < 2 < 3 < 4
and three tasks are partially ordered as 5 < 6 < 7. The remaining tasks 8...12
are not ordered. The number of possible schedules of tasks is 51,—24" = 3.3 mullion.
This is significantly less than the number of schedules (12! = 480 million) with
no partial orderings. These rules can be used to reduce complex combinations of

precedence chains, but clearly, partial ordering can greatly reduce the number of

possible orderings of tasks.

Formulation. For the set of tasks 1,2,..., N, define z;; = 0 if task ¢ completes
before task j and 1 otherwise. Penalty &;; is assessed if ¢ is scheduled after j. Then the
objective measuring the quality of a schedule with respect to precedence constraints

18:

Mmiifijxij, (7.1)

i=1j=1

The objective is to minimize the total penalty, incurred by a schedule.

Procedure. As discussed previously, the precedence relation is transitive, but
penalties are not. Since an optimal schedule must exist, there is no need to consider
any schedule which results in a penalty, £ > 0. Thus the penalty values assigned
to & may be limited to {0,1}. The following procedure, which is based on a sim-
plified version of Lawler’s Method will find a schedule that contains no precedence

violations.

104

e Step 1. Show all constraints as a directed graph where each task is a single
node, and each constraint is a directed arc. Figure 7.1 is an example of such a

graph.

e Step 2. A task is ready if it is the last node of a set of tasks. That is, if it has
no successor tasks. We will create a sequence starting with the last task. In
Figure 7.1, tasks 3, 4 and 7 are ready and any may be chosen to be last in the

sequerice.

e Step 3. Choose any ready task and place first in the partial sequence (that
is, prior to any tasks already scheduled). When a task is chosen, remove it
from the graph. Its immediate predecessor task (or tasks)now becomes ready
provided they do not have any other successor tasks. In Figure 7.1 if we choose
task 7, then task 6 becomes ready. If we instead choose task 3, task 2 does not

become ready since it is still a prececessor to task 3.

e Step 4. Repeat Step 3 until all tasks are scheduled. Note that any ready
task may be chosen. For the example of Figure 7.1, a valid sequence is then

5—2—=6—1—7—4— 3, among others.

Note that while we have chosen randomly among the ready tasks, Lawler’s
Method provides a basis for choosing among ready tasks through a temporal measure.
We will consider such a technique in later sections.

This procedure finds a schedule that meets all precedence constraints; however,
it finds only one. In future models, we will require not only all optimal schedules,

but all near-optimal solutions as well.

Branch and bound solution. To find all solutions, an enumerative algorithm
is required, and we use the same branch and bound approach used for temporal

constraints in §6.2.

105

Figure 7.1: Network Diagram for Logical Constraints

Define the precedence penalty at any node as =Z; and the maximum allowable
penalty as =Z,,,.. We then perform a branch and bound search for all solutions,

pruning nodes if the following condition is met:

(1

i >

[1]

ma (7.2)

This search will result in all schedules for which the precedence penalty is less
than =,,,,. If 2,0 = 0, then branch and bound will find all optimal schedules,
that is all schedules with no violations. For Z,,,, > 0, all schedules within =,,,, of
optimal will be found. If £ € {0,1} then the objective simply represents the number
of violations permitted. By allowing £ > 0, we can prioritize constraints.

This procedure gives us a method to find all schedules that permit some bounded

(by Z4z) imprecision (or total precedence violation).

106

7.2 Alternate Criteria Approach for Tasks with
Temporal and Logical Constraints

With solutions for the scheduling problems described for timing constraints alone
(§6.2 and §6.3) and logical constraints alone (§7.1), we now focus on problems where

both types of constraints are present, and specifically an alternate criteria approach

to solve it.

0% %% %8 A
2 I
0 x @
o
éﬁ X Heuristic b4 &
Cptimal 1% 4 -
E{?x:ﬂ:!. i

AX x4
Temporal 0

Figure 7.2: Frontier of Solutions

Consider the typical frontier diagram of Figure 7.2. Point A represents a solution
that dominates all other possible solutions, that is, no point can be better than A
in both measures. Of course, such a point may not exist. However, if A does exist
there is no need to consider a trade-off between logical and temporal constraints since
there is a schedule, and possibly several, that meets them both. From our previous

discussions about the frontier (Chapter 2), if point A exists, it is a unique point on

107

the frontier.

If instead, we assume that such a point does not exist, then we are left with the
problem of finding a set of points, which are shown in Figure 7.2. The points shown
as “®” represent the exact solution to the frontier. Points shown as “x” are not
precisely on the frontier.

In this section, we seek to find the frontier of points that are optimal in both
logical and temporal measures. However, we have already discussed methods that
might provide some of these points. We now discuss the points that might be found by
these methods. The solution for tasks with temporal constraints only was discussed
in §6.2. Branch and bound was used to find optimal schedules with respect to
deadline penalties. Points marked €4, C,, C5 and C, represent a sample set of
points that might be found for some set of tasks. These points are optimal for
meeting deadlines, and one (C}) has the lowest precedence penalty of the four points
shown. The heuristic discussed in §6.3 finds one point that has a low value of deadline
penalty. Assume, for example, there are three such points. They are marked FEj,
FEy and Es. The three points are shown to indicate that the point found is without
regard to precedence ordering, the heuristic will find one, and it is not known which
will be the one found.

Similarly, in §7.1, we find points optimal with respect to precedence ordering.
These are shown, also by example, as Fi, F3, Fs, D, B. Branch and bound will find
all these points, the procedure in §7.1.1 will only find one.

In the following two sections, we continue our search for frontier end points

108

7.2.1 Schedule Tasks to Minimize Deadline Penalty such

that all Precedence Constraints are Met

This section describes the alternate criteria approach for solving a problem where
tasks have both logical and temporal constraints. In this section, we seeck to find
the schedule with the least deadline penalty given that all precedence constraints
be met. The concept of alternate criteria was described in Chapter 2. The method
we describe is motivated by Lawler’s method, which is a well known algorithm that
schedules tasks to minimize a regular measure of performance such that all prece-
dence constraints are met [Fre82]. To implement Lawler’s method an algorithm
that optimally schedules tasks with temporal constraints is required. We do not
have such an algorithm. However, we can apply Lawler’s method if we choose tasks
by the non-optimal procedure described in §6.3. This will result in an application
of Lawler’s method that meets precedence constraints, but does not guarantee an
optimal solution with respect to temporal constraints. We propose the following
heuristic:

Consider a set of tasks with known processing times and a penalty function as
described in Chapter 6. Also assume that the tasks are partially ordered. We seek
to find a sequence of tasks such that deadline penalty is minimized, subject to all
precedence constraints being met. The procedure for doing so is the same as described
for the heuristic of §6.3, except only ready tasks are considered at each stage of the
procedure. It is also similar to the procedure described in §7.1.1, except ready tasks
are chosen by a heuristic and not randomly. The result of this procedure is a sequence
that meets precedence constraints and focuses upon minimizing the deadline penalty
as a secondary criteria. Referring to the frontier shown in Figure 7.2, we have found
a point such as). This point, as shown in Figure 7.2 may not actually be on the

frontier, since a better schedule (point B) with respect to deadline penalties might

109

exist. However, the point we have found is a lower bound for B. This will be useful

when we consider an exact solution.

7.2.2 Schedule Tasks to Minimize Precedence Violation

Penalties, such that Deadline Penalties are Minimal

The problem to minimize precedence violations such that temporal performance is
optimal is the reverse of that problem of §7.2.1. This problem is somewhat more
difficult than the previous problem, and although we cannot solve this problem di-
rectly, we can bound the solution such that the result will be useful in algorithms to
follow. Using the heuristic of §6.3, we can find a schedule that ignores all precedence
orderings, this will be one of points F, E5 or Fs in Figure 7.2. This solution gives
the best estimate for temporal penalty, with some arbitrary value for precedence
violations. If we assume that the heuristic point is no worse than the actual frontier
point with respect to precedence penalties, then this heuristic point can be used to

bound an enumerative search for the frontier. We discuss this issue further in §7.6.

7.3 Tasks with Multiple Deadlines and Prece-
dence Constraints

With methods to find, or at least bound, the end points of the frontier, we can now
further refine those methods to find the entire frontier. In this section, we combine
the problems of tasks with temporal constraints and tasks with logical constraints
and apply a bi-criteria solution. This model, introduced in §3.3, is the most general

model that we will consider.

110

7.3.1 Model

Consider a set of tasks 1,2,..., N. Each task 7 has processing time ¢; and a set of
deadlines d;, for k = 1,2,..., B;. Associated with each d;;, is a penalty m;,. We order
deadlines such that djx—1) < d;) and impose a penalty 7y, if, for task i, deadline dj,
is missed, but deadline d;_1) is met (where k > 1). Further, w1y < 7, where
k> 1.

Li; is used to indicate if task i completes prior to the k** deadline, d;,. I;; = 1
if task ¢ is the immediate precedessor to task j, zero otherwise. z;; = 0 if task ¢
completes before task j and 1 otherwise. Precedence penalty &; > 0 is incurred

when task j scheduled before task 7. Then the objective is:

N By

i=1k=1
subject to the following constraints:
N
S L1, Vi (7.4)
iz
N
Sl -1, Y (7.5)
iy
¢ —cjtp <M —1Iy), Vi#jj#l (7.6)
¢, =0 (7.7)
B;
k=1
B;
k=1
N N
i=1j=1
]ij i~ {0, 1},[L‘ij i~ {0, 1},[/1]9 i~ {0, 1} (712)

111

The objective (7.3) is to minimize the total penalty incurred by the schedule.
This problem is again an instance of the TSP and is the same as the formulation
of §6.1.1 but with additional constraints (7.10) and (7.11). These two additional
constraints bound the total penalty to be less than B. This formulation will find
a single frontier point such that the precedence penalty is less then B. To find the
entire frontier, the problem must be solved by iterating on values of B from 0 to the

maximum precedence penalty (or until a deadline penalty of zero is achieved).

7.4 Branch and Bound Approach for Finding the
Frontier

The model presented in §7.3.1 combines both temporal and logical constraints into
a single model. We seek to find bi-criteria solutions for a frontier that are best in
temporal and logical performance as discussed in §3.2.5. In the previous sections, we
have discussed methods to find one or more frontier points. We now extend those
methods to find the complete frontier.

In this section, we describe a branch and bound algorithm to find the frontier.
Recall that since branch and bound is an enumerative method it will find all points
on the frontier. We seek to find methods to effectively reduce the search space so

problems can be solved in a reasonable amount of time.

Search space reduction with temporal constraints. Define 67 > 0 to be a
threshold for pruning nodes with respect to temporal performance. That is, at any
node, if the penalty so far plus the estimate to any leaf node (LB) cannot result
in a solution for deadline penalty better (lower) than é7, the node is pruned. The
pruning threshold (é7) is set to find all optimal plus all sub-optimal solutions that

might be included in the frontier. Thus, é; is set using the value for deadline penalty

112

found in §7.2.1, which is an estimate of the minimal deadline penalty given that all
precedence constraints are met. This is an end point on the frontier. This threshold
reduces the search space, however, it not reduced nearly so much as was done in §6.2,

especially when using the factor € to further reduce the search space. Consequently,

the processing time will increase.

0 IH@
g
?:-:E_
T “x ®3
2
O =
g i ® M
l.{l nH
Z |2
By £ 0
Temporal

Figure 7.3: Search Space Regions

Recall the pruning rule (6.9). This rule is modified to expand the search space
to include the frontier as follows. Define the temporal penalty at any node as 11,
The lower bound from the node to any leaf is LB. We then prune if the following
condition is met:

I, + LB > ér where 67 > 0, (7.13)

The temporal threshold, 67, must be large enough to ensure that the search space
includes the complete frontier, but ideally, no larger. This region is shown as BU

in Figure 7.3. The heuristic of §7.2.1 determines point 1 in Figure 7.3. This point

113

can be used for é7 since its magnitude is at least as great as the magnitude of the
optimal point marked 1’ in Figure 7.3.

With the pruning rule given by the pruning rule (7.13), the search space is reduced
to BUC'. The region of B however, does not include the frontier, so we would prefer

not to search this area either.

Search space reduction with precedence constraints. In §7.1.1 we discussed
the problem of finding an optimal solution with just precedence constraints. The
rule for pruning in this case is given by pruning rule (6.10). In a manner similar to
the treatment for temporal penalties, we modify this rule to expand the search space
to C'U A as shown in Figure 7.3.

Define the penalty at any node as Z,,, and é; > 0 to be a threshold for pruning
nodes with respect to logical performance. The lower bound, LB = 0 is the estimate
of a solution to the end of a branch, note that we can always find a partial solution
(to a leaf node) with no precedence violations. We prune if the following condition

18 met:

=, > 6; where 6; > 0, (7.14)

Again, the choice of 67 is important. The threshold specified by é; must be
large enough to ensure that the search space is sufficiently large to include the whole
frontier. This region is shown as C' in Figure 7.3. The heuristic of §7.2.2 determines
point n in the figure, which is used for ér. If a suitable bound as described in §7.2.2
cannot be found, then the entire state space in respect to precedence violations

(B UC) must be searched.

Search space reduction with logical and temporal constraints. Using 6,
with the pruning rule (7.13), the search space is reduced to the region of Figure 7.3
shown as C'U B. Using §; with the pruning rule (7.14), the search space is reduced

114

to the region C'U A. By using these two rules together, we can further restrict the
search to only region C', which contains the frontier. The pruning rule is as follows.

Define the penalty at any node as II,, for deadline penalties and =, for precedence
penalties. The lower bound is LB; for deadline penalty at any node. (Recall that
LB,, the lower bound for precedence penalties is zero at any node). We then prune

if the following condition is met:
Hn + LBt > 6T OR En > 6L where 6T7 6L Z 07 (715)

The branch and bound algorithms described so far, in this and previous chapters
have had a single objective and consequently, a single pruning rule. By searching
with two objectives, we can prune using two rules. At each node, it is a simple matter
to evaluate the objective function for both temporal and logical measures. Branches
are pruned when the conditions of rule (7.15) are met.

Lemma 2: An enumerative solution over all the solution space will find the frontier.
Proof: By the assumption of non-decreasing deadline penalties we can eliminate
from consideration all non-delay schedules. Thus, an optimal schedule can be rep-
resented by a sequence of tasks. Since enumeration considers all ordering of tasks,
there can exist no schedules better than what is found by enumeration. 0O
Lemma 3: If there exists, in the two dimensional search space of Figure 7.3, a
schedule with minimal precedence penalty given that deadline performance is optimal
(x1,y1) and a second schedule for which deadline penalty is minimal given that all
precedence constraints are met (zo,vys). Then, for each of these points the deadline
penalty and precedence penalty can be calculated, and these two points define a
rectangle which includes the frontier.

Proof: There can be no point, (x,y), outside the rectangle with deadline penalty
less than the minimum (x < ;) since we assume we have already found a schedule

with the minimum penalty. Likewise, there can be no point outside the rectangle

115

with precedence penalty less than minimum penalty (y < y2). There also can be no
point, (x,y), with a deadline penalty less than xy since (z,y) could not be on the
frontier. Similarly, a point (x,y) with precedence penalty y; could also not be on the
frontier. O

Thus, there does not exist a point that is greater in one measure and strictly
better in the other measure than any point on the frontier calculated by branch and
bound. Branch and bound, then, finds the best solution for the frontier where tasks
that have both temporal and logical constraints. The frontier is a set of points, from
which an optimal point can be selected. As with previous applications of branch
and bound algorithms discussed in this dissertation, an exact solution is found, but
processing time increases rapidly with task set size. The complexity of branch and
bound is O(n!), which can lead to very long processing times.

Pruning of non-productive branches typically reduces that time significantly, but
without guarantee. The use of the factor, ¢, in the branch and bound rules increases
the processing time over pruning when limited to optimal solutions. Simulation was
performed to measure the effect of 6. For each data set, the full enumerative solution
was found. The search space was then limited to the maximum value temporal
penalty, the task set again solved and the time recorded. With this pruning limit,
the region that includes the complete frontier will be searched. The pruning limit
was then changed to reduce the space by 50%, that is, the limit was set to the average
of the optimal and worst case frontier points with respect to deadline penalty. The
reduction in search time was approximately 62% in a simulation of 20 task sets. If
the points were distributed uniformly in the region, we would expect a reduction of
one half. In the region of the frontier, we would expect points to be distributed in
only the lower left corner of the region.

The branch and bound algorithm we describe finds all points on the frontier in

no particular order. We begin the algorithm with two points that bound the frontier

116

(0,0),(6r,61). At each stage of processing, the computed frontier is a lower bound
on the actual frontier. The longer the algorithm processes the better the solution.
This continues until the algorithm terminates with an optimal solution.

In the next section, we explore a heuristic for solving this problem. It too, is
based on an algorithm from previous sections, and like the previous algorithm, it

cannot guarantee an optimal result.

7.5 Heuristic Based Construction of the Frontier

Since branch and bound cannot guarantee reasonable processing times for anything
but small task sets, it is useful to have a heuristic that can provide a solution with less
processing time, that is, in polynomial time. Such a heuristic has been developed,
but as is usually the case, we cannot either guarantee the optimality of the result,
nor can we guarantee that the heuristic will be acceptable for all applications. If
the processing time to be allocated to the heuristic is limited, and we are willing to
“fine tune” the heuristic for the specific application, this heuristic approach may be
acceptable.

The heuristic here is based on the heuristic of §7.2.1. Recall that heuristic sched-
uled tasks to minimize deadline penalty such that all precedence constraints were
met. We now wish to permit precedence violations, but such that deadline penalties
are still minimized. We do this by allowing, or forcing, certain precedence violations
to occur.

Beginning with no precedence violations we use the heuristic to find a schedule
with minimal deadline penalty by the procedure described in §7.2.1. We then allow
certain precedence violations to occur, but only so many as to cause a precedence
violation penalty of 1. We then iterate this procedure to allow a precedence penalty

of 2,... M, where M is the penalty for all precedence violations.

117

The key to the success of this heuristic is the selection of precedence constraints
to violate. Choosing a set of precedence violation to result in a given penalty is
an instance of the knapsack problem and very similar to the problem considered in
Chapter 4. In the makespan problem of Chapter 4, tasks were selected for a knapsack
based on a “weight” expressed as penalty, and a “value” measured by the processing
time. Here, the weight is still the penalty, but the “value” is something more com-
plicated. In fact, the value of violating a precedence constraint is proportional to the

decrease in temporal penalty that would result if the tasks were to be scheduled out

of order.

P Y

T=k

Penaity
I
|
i
|
L

of, o,
Complsetion Time

Figure 7.4: Penalty Benefit for Task Exchange

We define a heuristic measure of the advantage of scheduling two tasks in a prece-
dence relation out of order. We shall refer to this value as the Temporal Benefit Value
(I'BV). TBV,; is the temporal value obtained by relaxing the ¢ < j constraint and
processing task j before i. Figure 7.4 shows graphically how the T'BV is calculated.

A slope for each task deadline penalty function is calculated using the point

118

(0,0) and the time and penalty at the final deadline for the task. These are shown
in Figure 7.4 as df; for task 1 and dfs for task 2. The slope values are subtracted,
depending on the precedence ordering. If precedence ordering requires task, < tasks
with some penalty, then take the Temporal Benefit Value as T'BV) 5 = slope, —slope,
or 0 which ever is greater. If there is no precedence ordering specified, then T'BV is
set to 0, and there is no temporal benefit to violating the precedence relationship.
But if TBV; 5 > 0 then there is an advantage to violating the precedence ordering
tasky < tasks. At the start of the heuristic, the T'BVj; is calculated for each task
pair as slope; — slope; to create a matrix of T'BVj; values. T'BV; is used as the

“value” in finding a knapsack solution. Observe that if T'BV;; > 0 then T'BV}; = 0

Procedure:

e Step 1. For a precedence penalty target to B = 0 (see model 7.1.1), perform
the heuristic of §7.2.1. The solution is a candidate frontier point. Add this

first point to the frontier.

e Step 2. Increment B by 1. Using dynamic programming (as described in
Chapter 4) find the best knapsack solution to choose one or more precedence
pairs for a knapsack of the target penalty B. Use the precedence penalty for
“weight” and the T'BVj; for “value”. For chosen precedence pairs “reverse” the
precedence order and again schedule using the heuristic of §7.2.1. However,

calculate the precedence penalty using the original precedence ordering.

e Step 3. The solution is a candidate frontier point. Add this point and test
frontier for excess points as above. That is, add the point to the frontier
if no better points already exist on the frontier. If a point is added to the

frontier, then any points that are not as good as the added point must be

119

removed. Recall the definition of a frontier point in §3.2.5 determines if a point

18 “better” than another.

e Step 4. If the precedence target is the maximum precedence penalty possible

(sum of all penalties), then algorithm is complete. Otherwise, go back to step 2.

Using this heuristic, a frontier, which specifies the trade-off between logical and
temporal requirements, is created. An optimal schedule is chosen from the fron-
tier which exemplifies the relative importance of each. This heuristic suffers both
same advantages and disadvantages for heuristics presented previously. Briefly, this
heuristic has the advantage that it executes rather quickly—compared to branch and
bound—and is not so adversely affected by task set size. However, it is not guaran-
teed to find an optimal solution, and it may require modification to optimize it for
a specified application.

A more complete definition of this heuristic is presented in pseudocode form in

Appendix B.

7.6 Enhancements to Branch and Bound

In the previous sections of this chapter, we have proposed both a branch and bound
and heuristic solutions, each with advantages and disadvantages. In this section we
explore some techniques to improve branch and bound by more effective pruning and

also, to use the heuristic to further bound the branch and bound algorithm.

The Milestone Approach. In Chapter 2 we discussed the milestone method for
computing where imprecise results are acceptable [LLST91]. Recall that the mile-
stone method employs an iterative approach to calculations. At any time in the

calculation, a result is available. The precision of the result increases with time, but

120

if time is limited, then an imprecise result can be used. This method is directly appli-
cable to our use of the branch and bound algorithm. The algorithm described in §6.2
searches the state space for points on the frontier. As new points are found, previous
points may be deleted. When the algorithm terminates, all nodes have been fath-
omed, and the entire frontier is found. During the process, however, frontier points
are discovered in an arbitrary order. Fach successive frontier point provides a better
lower bound on the frontier, which is also an estimate of the frontier. Beginning with
the two points provided by the heuristic—and which is the first approximation of the
frontier—each additional point found by branch and bound refines that approxima-
tion. This process is meets the criteria of the milestone approach. We can terminate
the branch and bound algorithm at any time and return an approximation of the

frontier, where this approximation is a lower bound to the exact solution.

Enhanced Pruning. We discuss in §6.2 the pruning conditions to reduce the
search space to a region that includes the frontier. With this reduction, the search
requires less time. However, with each point found on the frontier, the search space
can be further restricted. Recall that points are added to the frontier if, for a
candidate point, a better frontier point does not exist. Figure 7.5 shows the situation.
Assume points a, b, ¢ and d are points currently on the frontier. Any new point that
falls in the “shadow” of any existing point cannot be on the frontier. The shadow is
the regions marked A, B, C' and D for points a, b, ¢ and d respectively. The fact that
there are regions that cannot contain a frontier point suggests further opportunities
for pruning. For some point (¢, p) where ¢ is the deadline penalty value and p is the

precedence penalty value, can prune nodes if the following condition are met:

I, + LB, >t AND Z, >p (7.16)

where II,, and =,, are the total deadline and precedence penalty evaluated at the

121

-
B} w0
o

o
O
o g - xd
—

1|-: -

Termporal o

Figure 7.5: Enhancements to Pruning

node and LB, is the lower bound for the deadline penalty to end of the branch.
This pruning rule is addition to the pruning rule (7.15). The condition of pruning
rule (7.15) is “AND’ed” with an instance of pruning rule (7.16) for all frontier points.
For a large number of frontier points, the pruning rule can become quite large. Fron-
tier points that are close to other frontier points will only provide a small reduction in
the search space, thus some points can be eliminated from the rule without minimal

impact.

Frontier End Point. Finally, we consider the problem discussed in §7.2.2. Recall
that if the heuristic point was not a good estimate of the actual frontier point, and
specifically, if the heuristic estimate of precedence penalty was less than actual, the
search space might be reduced too much. This leads to the possibility that a point
or points at the end of the frontier might be missed. An addition to the pruning
rule (7.15) can correct this situation. By not pruning nodes which fall into the region

marked F'in Figure 7.6, we can be guaranteed to find all frontier points, including

122

points near the end of the frontier.

-

0 o

o

O

L
< A

®
Termporal o

Figure 7.6: Expansion to Include All of Frontier

The change to pruning rule (7.15) is as follows: under the same assumptions and

definitions of pruning rule (7.15) prune if the following condition is met:
(Pi,+ LB, >6r OR =, >61) AND Pi, + LB, <1ly) (7.17)

where 11, is the value of the deadline penalty determined by the heuristic of point
marked as point f in Figure 7.6, this point was shown as point Iy in Figure 7.2. As
a result of this addition to the pruning rule, region F' will be searched in addition to

region (', and should an optimal point at b exist, it will now be found.

123

Chapter 8

Conclusions

The trade off between logical and temporal consistency is a trade off that, in the
appropriate situations, can provide schedules that best meet system performance
goals. We have shown that the trade-off is valid and theoretically sound. Logical and
temporal requirements use orthogonal measures of performance, and each measure
can be varied through different schedules.

While the techniques discussed here apply to scheduling problems where both
logical and constraints can be simultaneously be met, the strength of this work
is in real-time systems that have logical constraints that must adapt to overload
conditions. This requires that some temporal or some logical constraints may not
be met. In systems were it is unacceptable to violate logical constraints or miss task
deadlines, this approach would not be feasible. However, in time critical systems for
which meeting deadlines is a requirement, then it may be acceptable to violate logical
constraints. If the cost of missing a deadline is higher than the cost of performing
a task out of order, then it is acceptable to use a schedule that violates logical
consistency.

For this work to be useful in scheduling tasks there are five major assumptions

that must be met:

124

e First, there must be two different measures of performance.

e Second, different schedules produce different levels of performance in the dif-

ferent measures.
e Third, the precedence relations relate to penalties in a metric space.

e Fourth, it is acceptable to trade-off performance in one measure for better

performance in the other.
e Fifth, Deadline penalty and precedence penalty functions are known.

While we apply this work to two measures of performance, it can be extended
to more than two. For any number of measures the above assumptions must hold.
Additional measures of performance complicate the problem, thus it is advantageous
to limit the model to only those measures that we desire to trade-off.

For this problem, we provide the general framework and a collection of algorithms
and heuristics to provide solutions. Branch and bound methods are general in nature
and can be applied directly, regardless of the individual characteristics of the appli-
cation. Heuristics, however, must be crafted for the application since they generally
rely on application specific characteristic that can be used to create a schedule.

We have assumed throughout this work that deadline and penalty functions are
known. Without the knowledge of these functions it is not possible make a trade-off.
Stankovic [Sta88| discusses the origins of deadlines, and how they are applied in a
real-time system. Deadlines are usually driven by some external event, such as a
truck leaving the loading dock. Likewise multiple task penalties are derived from
several events, perhaps a morning shipment and an afternoon shipment. Deadline
penalties arise from the costs of missing the deadline. These may be related to actual
monetary costs, such as the additional costs of shipping by air if the deadline for

ground shipment is missed. Penalties for precedence violations are somewhat more

125

complex. Here, the costs relate to the task done incorrectly and the consequence on
the whole job. Such costs may be monetary, such as the cost of rework of parts that
do not meet quality standards due to incorrect processing. Possibly, the penalty is
related to the increased risk of making the wrong decision based on imprecise data,
such as from a database query. More difficult is the equivalence between logical and
temporal penalties. In some cases where both temporal and logical penalties are
expressed in monetary units, then the equivalence is well defined. But in general,
this is not the case. Deadlines relate to timeliness while precedence relates to quality
of output. These measures do not equate directly—but instead vary based on the
desires of a customer or the philosophy of the system user. This issue relates to the
simple question of getting something done on time, or doing it perfectly—which is
more important and by how much?

A related issue is the “scale” at which the trade-off is applied. We have generally
assumed low level tasks, which simplifies the problem and justifies the assumption of
non-preemptable tasks. A disadvantage of making a trade-off with low level tasks is
that it is more difficult to construct deadline and penalty functions, since the effect
of these functions is harder to understand in the larger process. If we can assume
non-preemptable tasks, then the methods discussed here are scalable to larger tasks,
which may actually consist of larger work units. Non-preemptable tasks is a valid
assumption in many applications. We leave the issue of preemptability of tasks as
future work.

Although we have shown that many applications can be supported by our results,
our unified scheduling technique may be inappropriate for many other applications.
Throughout this work, we have assumed that deadlines are of critical importance
to the system. If this assumption does not hold, then there is no justification to
violate precedence constraints. We expect that the system has the potential to be in

an overload condition, that the penalties for deadlines and precedence ordering are

126

known and it is possible to trade off one for the other. If this is not the case, then

this method is not appropriate.

As a result of this research, we have accomplished the following goals:

e Eistablished a model for the characterization of real-time tasks in a database,
FMS, mission planning, or similar system which might benefit from a trade off

between temporal and logical constraints.

e Applied penalty functions with certain restrictions to represent temporal con-
straints. We showed that these penalty functions can serve as a useful proxy
for a generalized temporal function and provide a means to tailor timing con-

straints to individual tasks.

e Defined a model for logical consistency using precedence ordering as a gener-
alization of pessimistic concurrency controls. We have shown that violations
of logical concurrency constraints introduce a bounded amount of imprecision

into the system.

e Defined a model which provides different levels of temporal and logical per-
formance based on the schedule of tasks. We showed that a set of efficient
schedules exists that makes an explicit trade-off between logical and temporal

consistency. We proved that the optimum schedule is included in that set.

e Using a incremental approach, we developed increasingly complex models. We
also developed heuristics that will find an optimal schedule from the set of

efficient schedules in polynomial time.

e Developed simulations to evaluate the scheduling methods and heuristics de-

veloped.

127

e We measured the performance of the heuristics and evaluated them for appli-
cation to real-time computing. Through simulation of practical applications
using randomly generated task sets, we verified the utility of the heuristics,
and more generally, the performance gain by allowing schedules that explicitly

make the trade-off between temporal and logical consistency.

Through the efforts of the work, we have shown the possibility of trading-off tem-
poral constraints for logical constraints. Not only have we shown this trade-off to
be sound, but we are able to explicitly define the trade-off. In support of this con-
cept, we have extended the concept of value functions to include logical constraints
modeled as precedence constraints. This work will be useful in the specific applica-
tions discussed, such as real-time databases, scheduling in FMS’s and mission control
for military applications. In addition, there are many other real-time applications
that will benefit from this work—in fact, any application where the five assumptions

discussed at the beginning of this chapter hold.

128

Chapter 9

Future Work

In the sections that follow we outline several areas that are ready for further explo-

ration.

9.1 Delay Schedules

We have assumed throughout this work that the penalty function is non-decreasing.
This has major implications for scheduling in that a non-decreasing penalty function
insures that no delay schedule can be better than all schedules without delays, that is,
if a delay schedule is optimal, there exists a non-delay schedule that is also optimal.
A delay schedule is one that has idle time between tasks. If a penalty function for
some task can decrease in time, over some portion of the scheduling horizon, then a
better schedule might be achievable by delaying the task, that is, by the addition of
idle time between the task and its predecessor task.

Delay schedules present a number of problems for a scheduler. First of all, an
optimal schedule cannot be determined by enumeration. Because it executes in
n! time, enumeration is not all that useful, but at least in the case of non-delay

schedules, it will provide an optimal schedule. We have used enumeration in this

129

work to successfully evaluate heuristic methods. With delay schedules, the use of
enumeration will be less useful.

Although delay schedules present several diflicult problems, there may be some
advantages provided by decreasing penalty functions in specific applications. With-
out resorting to delay functions, we presently handle the issue of tasks that may not
be ready to execute by not introducing them to the system until they are ready. This
forces tasks to delay execution until they are ready, but does not allow a penalty to
be taken for execution slightly earlier than its ready time. Since this type of trade-off
is central to our work, this method of delaying task until ready is not completely

satisfactory.

9.2 Non Feasible Schedules

Since, in one sense, we assess penalties for late and out-of-order tasks; no schedules
are infeasible, just expensive. However, if a penalty function has an infinite penalty
(or an arbitrarily high Big M penalty) following some deadline, then we can define
infeasible schedules as schedules that have a total deadline penalty which is infinite
(or above M).

We can assume that a feasible schedule exists, but by assigning infinite penalties
we create the possibility of in feasibility. In real-time applications infeasible schedules

present serous problems, and at the least require some sort of exception handling.

9.3 Requirement to Execute all Tasks

In the static scheduling case of the general model introduced Chapter 3, the issue
of whether all tasks must be executed is not a concern. Low penalty tasks, which

might otherwise be deleted, can simply be moved to the end of the schedule. But

130

in the dynamic scheduling case, such low penalty tasks are at risk of being delayed
indefinitely. This is acceptable, from the standpoint of the scheduling policy, but
at some point, the system needs a garbage collection function to clean out old tasks
that are not likely to be executed. Failure to remove these stale tasks will increase
scheduling overhead over time.

In our work here, we have alternately permitted and denied the possibility of
deleting tasks when their execution is no longer of any benefit to the system. The
important consideration is that we allow tasks to be deleted when it is clear that they
are no longer viable, but do not permit deletion simply to avoid a penalty. The use of
value functions, such as proposed by Locke [Loc86] provides a mechanism for deleting
tasks. Tasks are deleted when their execution would add no value to the system.
With penalty functions, however, the issue is not so clear. Penalty functions are
non-decreasing, so the longer we wait before deleting a task, the higher the penalty.
This argues for deleting all tasks at the start of the schedule to minimize the penalty.
Such a strategy is clearly unacceptable. With penalty functions, a policy for deleting
tasks is required, assuming that deleting tasks is acceptable. Such a policy is not
difficult to formulate, for example, we may simply allow that tasks may be deleted
after their final deadline, but not before. Note that in the static scheduling problem,
task deletion is not an issue, since such tasks that are candidates for deletion can
instead be processed at the end of the schedule. It is the dynamic case, were more

tasks are likely to be added to the set, that deletion becomes an issue.

9.4 Generalized Penalty Functions

We have used in this work, a penalty function that is a non-decreasing multiple step
function. We have already discussed the implications of non-decreasing functions,

here we discuss the constraint of step functions. There are several other options for

131

penalty functions including piece-wise linear functions and continuous functions. The
difficulty in this scheduling arises from the discrete nature of the solution. A discrete
number of tasks must be assigned to a discrete number of positions in a schedule.
As we have seen, this is an instance of the Traveling Salesman Problem, a problem
known to be AN"P-hard. The problem would be must easier solved if part of one task
could be scheduled in part of one position in the schedule, that is, solvable by linear
programming. The discrete formulation forces this problem into a class of problems
solved as integer programs. We can relax the discrete constraint for deadlines, which
would appear to simplify the problem by removing the integer constraints. However,
the basic integer constraints of tasks and position in schedule remain.

The heuristic and branch and bound algorithms do not require a multiple step
function. However, the use of either continuous or piecewise linear functions is left

for future work.

9.5 Bound on Processing Time for Branch and

Bound Algorithm

As we have discussed, there is a trade-off between using an algorithm which provides
a optimal solution and an algorithm that executes in polynomial time. Using the
branch and bound techniques we have developed, processing time to schedule up
to twenty tasks may be reasonable. But in the worst case, processing time can be
much longer. The use of an € can be used to decrease the search time in return for a
sub-optimal schedule. If the processing time for the branch and bound is monitored,
then if the algorithm processing exceeds some limit, either the schedule determined

by the fast heuristic can be used, or ¢ increased and the branch and bound run again.

132

This is one avenue for future work. Further investigation of the milestone ap-

proach through simulation to determine processing times is suggested.

9.6 Dynamic Scheduling

The work we have discussed here uses a model of static scheduling. That is, all task
attributes are known to the scheduler a-priori. Thus the scheduler, prior to building
a schedule has all the information necessary to make the right decisions. In real-time
systems, however, it is more likely that new tasks will enter the system requiring
system resources. In this situation of dynamic scheduling, the system must adapt to
the new information and re-schedule the tasks remaining to be processed.

While dynamic scheduling may be the more realistic approach in a real appli-
cation, we chose not to consider it for this work. Dynamic scheduling complicates
the issue since it requires that the scheduler adapt and re-schedule new tasks. For
this work we chose to focus on the core issues of temporal versus logical scheduling
goals and not further cloud this issue with the additional requirements imposed by
dynamic scheduling.

Looking toward future work, it is desirable that this work evolves to include
dynamic scheduling. In its simplest form dynamic scheduling can be accomplished
by simply repeating the static scheduling algorithms at periodic intervals or whenever
task attributes change that would affect the schedule. However, this approach may
not be the most efficient. Continuous re-scheduling using the static scheduling model
will impose a high processor overhead on the system degrading performance.

The implementation of a dynamic schedule algorithm can take advantage of in-
formation from the previous schedule, and this information can be used to find the
next schedule. However, the techniques we have developed here do not require a

large amount of the storage during execution. For example the depth first search

133

that we have employed needs only keep track of where it is in the tree and several
attributes of the candidate schedule.

In our branch and bound algorithm we seed the algorithm with a candidate
solution derived from a heuristic. There is no requirement for the accuracy of the
seed, however, the better the seed, the more quickly branch and bound is likely to find
a good solution which is then used to prune other nodes. In a dynamic scheduling
environment, an optimal solution from a previous schedule could be used to seed
the current solution. Unfortunately, it does not seem that this approach would
provide significant improvement. The use of a seed schedule only provides modest
improvement in branch and bound processing time, a seed schedule can quickly be
calculated by heuristic and finally the schedule from a previous schedule is likely to
contain different tasks to be scheduled.

Perhaps a more promising approach would be the modification of our heuristic
to accommodate dynamic scheduling. In this way, completed tasks could be deleted
from the system and new tasks inserted into the schedule such as to minimize penalty.
The low complexity of this algorithm makes it attractive computationally. At pe-
riodic intervals, the schedule created using this method could be validated using a
fast static scheduling heuristic. Or, at less frequent intervals, a more complete static

scheduling algorithm could be run to create a new baseline schedule.

9.7 Repetitive Tasks

We have, in this work, ignored the possibility that some tasks are repetitive. Instead,
we assume in this static case, all tasks are known to the scheduler and need to be
executed only once. Repetitive tasks are more relevant to the dynamic case, were
we might release tasks periodically as they become ready. However, in a system

were there are a number of repetitive tasks, it might be desirable to accommodate

134

them independently of the other tasks. For example, an heuristic, such as the rate
monotonic algorithm [LL73] could be used to schedule repetitive tasks, then using
the methods discussed in this work, schedule the remaining tasks in the gaps between
repetitive tasks. This alone is probably not sufficient, in that it may be desirable to
permit the trade-off between logical and temporal constraints with both repetitive
and non-repetitive tasks. Indeed, we it may be acceptable to miss execution of a

repetitive task occasionally since it will be executed again at a later time.

9.8 Stochastic Scheduling

In our work, we have assumed that all processing times are known and fixed. In real-
ity, processing times, well as the task set and penalty functions may be not so clear.
Stochastic scheduling assumes that these task attributes are specified by probability
functions rather than fixed numbers. This is a area that as many implications for

the scheduling algorithms and is an area which should receive more research.

9.9 Future Applications

In this dissertation we have described a method to schedule tasks with both temporal
and logical constraints in real-time systems. Much of the motivation comes from the
systems that in “overload” condition where not all constraints can be met. However,
this is not meant to be exclusive, since this work applies to any real-time systems
where are timing requirements are in conflict with logical constraints, even if the
system is not in overload. The frontier provides an accurate, intuitive and useful
metric for scheduling tasks under these conditions.

In many applications, developers have struggled with the problem of handling

timing requirements in the presence of logical constraints. Relaxed alternate criteria

135

solutions, penalty functions contrived to enforce precedence are two of the ways this
problem has heretofore been approach. With this work, solutions to problems of this

type should be more directly and more easily solved.

136

References

[BHGSO]

[Bol90]

[C1a90]

[CLBY4]

[eplo4]

[DiP95)

[FO8Y]

Phillip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-
rency Control and Recovery in Database Systems. Addison Wesley, New
York, 1986.

Bela Bollobas. Graph Theory, An Introductory Course. Springer-Verlag,
1990.

Raymond Clark. Scheduling Dependent Real-Time Activities. PhD the-
sis, Carnegie-Mellon University, 1990. PhD Dissertation, Department of

Computer Science, Carnegie-Mellon University.

C. Chuen-Lung and R. Bulfin. Scheduling a single machine to mini-
mize two criteria: Maximum tardiness and number of tardy jobs. [IF

Transactions, 26(5):76-84, Sep 1994.
CPLEX Optimization, Inc. CPLEX User Manual, 1994.

Lisa Cingiser DiPippo. Object-Based Semantic Real-time Concurrency
Control. PhD thesis, University of Rhode Island, 1995. PhD Dissertation,
Department of Computer Science, the University of Rhode Island.

Abdel Aziz Farrag and M. Tamer Ozsu. Using semantic knowledge of
transactions to increase concurrency. ACM Transactions on Database

Systems, 14(4):503-525, December 1989.

137

[Fre82]

[GMS3]

[HP94]

[Jen96]

17995]

[KMO2]

[KMO3]

[Law78]

[lin94a

lin94b]

S. French. Sequencing and Scheduling, An Introduction to the Mathe-
matics of the Job-Shop. Ellis Horwood Limited, 1982.

Hector Garcia-Molina. Using semantic knowledge for transaction pro-
cessing in a distributed database system. ACM Transactions on Database

Systems, 8(2):186-213, June 1983.

A. Hariri and C. Potts. Single machine scheduling with dealines to min-
imize the weighted number of tardy jobs. Management Science, 40(12),
1994.

D. Jensen. Real-time manifesto. Published on the Internet:

http//www.realtime-os.com/rtmanifesto/, 1996.

G. Jones and M. Sodhi. A method for describing operation sequences in
flexible manufacturing systems. In Proceedings of the Third International

Conference on Computer Integrated Manufacturing, July 1995.

Tei-Wei Kuo and A. K. Mok. Application semantics and concurrency
control of real-time data-intensive applications. In Real-Time Systems

Symposium, December 1992.

Tei-Wei Kuo and A. K. Mok. A semantics-based protocol for real-time

data access. In Real-Time Systems Symposium, December 1993.

E. L. Lawler. Sequencing jobs to minimize total weighted completion

time subject to precedence constraints. Annals of Discrete Mathematics,

2:75-90, 1978.
Lindo Systems, Inc. LINDO User Manual, 1994.
Lindo Systems, Inc. LINGO User Manual, 1994.

138

[LL73]

[LLKS85]

[LLS*91]

[Loc86]

[Lyn83]

[PDPW94]

[Pin95]

[PMSS]

[Ram93]

C. L. Liu and James W. Layland. Scheduling algorithms for multi-

programming in a hard-real-time environment. Journal of the ACM,

20(1):46-61, 1973.

E.L. Lawler, J K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. The
Traveling Salesman Problem. John Wiley and Sons, 1985.

J. Liu, K. Lin, W. Shih, A. Yu, J. Chung, and W. Zhao. Algorithms for
scheduling imprecise computation. [EEE Computer, 24(5), May 1991.

Douglas Locke. Best-Effort Decision Making For Real-Time Schedul-
ing. PhD thesis, Carnegie-Mellon University, 1986. PhD Dissertation,

Department of Computer Science, Carnegie-Mellon University.

Nancy A. Lynch. Multilevel concurrency — a new correctness criterion for
database concurrency control. ACM Transactions on Database Systems,

8(4):484-502, December 1983.

JJ Prichard, Lisa Cingiser DiPippo, Joan Peckham, and Victor Fay
Wolfe. RTSORAC: A real-time object-oriented database model. In Pro-
ceedings of the International Conference on Database and Expert Systems

Applications, Sept 1994,

M. Pinendo. Scheduling: Theory, Algorithms and Systems. Prentice Hall,
1995.

Joan Peckham and Fred Maryanski. Semantic data models. ACM Com-
puting Surveys, 20(3):153-189, Sept. 1988.

Krithi Ramamritham. Real-time databases. International Journal of

Distributed and Parallel Databases, 1(2), 1993.

139

[RP]

[SM90]

[Sta88]

[VCY95]

[Win93]

[WYP92]

[YWLS94]

Krithi Ramamritham and Calton Pu. A formal characterization of ep-
silon serializability. to appear in Transactions on Knowledge and Data

Engineering.

P. Toth S. Martello. Knapsack Problems; Algorithms and Computer

Implementations. John Wiley and Sons, 1990.

John Stankovic. Misconceptions about real-time computing: A serious
problem for next-generation systems. [EEE Computer, 21(10), October
1988.

G. Vairaktarakis and L. Chung-Yee. The single-machine scheduling prob-

lem to minimize total tardiness subject to minimimum number of tardy

jobs. IEE Transactions, 27:250-256, 1995.

W. Winston. Operations Research, Applications and Algorithms.
Duxbury Press, 1993.

K. Wu, P. Yu, and C. Pu. Divergence control for epsilon-serializability. In

Proceedings of the International Conference on Data Engineering, 1992.

P. S. Yu, Kun-Lung Wu Wu, Kwei-Jay Lin, and Sang H. Son. On real-
time databases: Concurrency control and scheduling. Proceedings of the

IEEFE, 82(1):140-157, January 1994.

140

Appendix A

Heuristic to Schedule with Temporal

Requirements

This appendix includes the pseudocode for the heuristic described in the text for
creating a schedule of tasks with temporal constraints (§6.3). The main subroutine
(Schedule_tasks), is the entry routine. It creates a schedule of tasks using one of five
user specified heuristics.

This pseudocode loosely follows the conventions of the “C” programming lan-
guage, with some minor additions for clarity. Key words (C commands) are capital-
ized. Variable names are all lower case; however, some liberties have been taken with
declaration, initialization and passing arguments in subroutines. Subroutine names
are lower case with first letter capitalized. The FOR loop structure is expressed
as: DO FOR loop_counter = initial TO final. The DEFINE keyword defines
only variables and structures which are global. Comments use the conventional C
notation of /* comment */. Fxcept for the entry subroutine (Schedule_tasks), all
subroutines return a single value. The entry subroutine returns a list (schedulel]) as

a passed argument.

DEFINE big_M; /#* integer representation of "infinity" */

141

DEFINE number_of_tasks;
DEFINE number_of_deadlines;

DEFINE STRUCTURE
{

task_number;

objective;
}schedule[number_of_tasks];

DEFINE STRUCTURE

{ /* task attribute and temporal penalty table */
task_time;
deadline_array[number_of_deadlines];
penalty_array[number_of_deadlines];

} task_list [number_of_tasks];

SUBROUTINE Get_index(task_number, completion_time)

{ /* returns index into penalty_array for completion time, that
is, returns pointer to task penalty corresponding to task
completion time */

DO WHILE {task_list[task_number].deadline[i]<completion_time
AND i<number_of_deadlines} i++;
RETURN (i) ;

SUBROUTINE Calculate_penalty(task_number, index)
{ /* returns penalty for a task given the index into penalty
array */

/* if past last deadline, penalty is Big M */
IF(index == number_of_deadlines) RETURN (Big_M);

ELSE RETURN (task_list[task_number].penalty[index];

SUBROUTINE Calculate_smooth_penalty(task_number,index)
{ /* returns penalty for task given the index into penalty
array, but assuming a linear interpolation between penalty

142

steps (see text) */

/* if past last deadline, penalty is Big M */
IF (index == number_of_deadlines) RETURN (Big_M);

/* note, if first deadline is met, then first point is (0,0)*/
ELSE IF(index == 0)

{

task_list[task_number].penalty[index];
task_list[task_number] .deadline[index];

i
Il

o]
Il

/* for any other deadline met, find delta x and delta y from
previous deadline point */

ELSE
{
y = task_list[task_number].penalty[index]
- task_list[task_number].penalty[index-1];
x = task_list[task_number].deadline[index]
- task_list[task_number].deadline[index-1];
+
/* if x is zero, then "interpolated penalty" is just penaltyx*/
IF (x == 0) RETURN task_list[task_number].penalty[index];
/* return linear interpolated penalty */
ELSE RETURN (y/x * (completion_time
- task_list[task_number].deadline[index])
+ task_list[task_number] .penalty[index]);
+

SUBROUTINE Calculate_completion_time()

{ /% calculates completion time for task next to be scheduled,
since last task in sequence is scheduled first, initially,
the completion time is sum of all task processing times.
As tasks are scheduled, completion time is the sum of all
unscheduled task processing times */

DO FOR n=0 TO number_of_tasks
{

143

/* check to see if task is scheduled */
DO FOR m=0 TO number_of_tasks

{
IF (schedule[m].task_number==n) scheduled = TRUE;

+
IF NOT (scheduled)
completion_time += task_list[n].task_time;

SUBROUTINE Start_time(task_number, completion_time)
{ /% given a completion time, finds the start time of the task,
if it were to be scheduled next */

RETURN (completion_time - task_list[task_number].task_time);

SUBROUTINE Maximum_penalty(completion_time)
{ /% for a given completion time, return the penalty value for
the task with the greatest penalty */

DO FOR n=0 TO number_of_tasks
max_penalty = MAX (get_penalty(get_index(n,completion_time)),
max_penalty) ;

RETURN (max_penalty);

SUBROUTINE Get_slope(index_start, index_end, task_number)
{ /% find the "slope" of the penalty function in the region of
the deadline */

RETURN (Calculate_smooth_penalty(task_number,index_end)
- Calculate_smooth_penalty(task_number,index_start))
/ task_list[task_number] .task_time);

SUBROUTINE Test_for_scheduled(task_number)
{ /* tests the task (task_number) to see if it has been already
scheduled */

144

DO FOR n=0 TO number_of_tasks
IF (schedule[n] .task_number == task_number) RETURN(TRUE) ;

RETURN(FALSE) ;

SUBROUTINE Task_ready(task_number)

{ /* NOTE: this subroutine will be replaced by a different
routine when precedence constraints are considered in
Appendix B */

RETURN (TRUE)

SUBROUTINE Choose_task(position, criteria, completion_time)

{ /% for a given completion time, returns task_number of task
with best (lowest) score based on the criteria specified.
criteria: 1 = lowest composite penalty (requires "alpha")

2 = lowest penalty

3 = lowest smoothed penalty

4 = lowest slope in region of completion time

5 = shortest processing time */

min_score = big_M;
min_score_task_number = NULL;

DO FOR n=0 TO number_of_tasks

{
IF(Test_for_unscheduled(n) == TRUE AND Task_ready(n))

{
slope = get_slope(get_index(n,get_start(n,
completion_time), (get_index(n,completion_time) ,n);
penalty = calculate_penalty(n,get_index(n,completion_time));

BEGIN CASE
{

145

/* composite penalty (alpha chosen empirically) */
CASE(criteria == 1) score = alpha * slope
+ penalty/maximum_penalty(completion-time) ;

/* penalty */
CASE(criteria == 2) score

penalty;

/* smoothed penalty */

CASE(criteria == 3) score
Calculate_smooth_penalty(n,get_index(n,
completion_time);

/* slope */
CASE(criteria == 4) score = slope;

/* processing time */
CASE(criteria == 5) score=task_list[n].task_time;

IF(score < min_score)

{

min_score = score 5

min_score_task_number = n;
+
+
+
schedule[position].task_number = min_score_task_number;
schedule[position].objective = min_score;
RETURN;

SUBROUTINE Schedule_tasks(task_list, schedule, criteria)

{ /* creates a schedule of tasks based on the specified
criteria. Tasks are defined by task_list[], schedule is
returned in schedule[] as a list of task_number */

DO FOR n=number_of_tasks TO 0
{

Choose_task(n, criteria, Calculate_completion_time());

146

objective = objective + schedule[n].objective;

+
RETURN (objective) ;

147

Appendix B

Heuristic to Schedule with Temporal and

Logical Requirements

This appendix includes the pseudocode for the heuristic described in the text for
scheduling a set of tasks that have both temporal and logical constraints. (§7.5).
The main subroutine (Find_frontier), is the entry routine. It returns a list of frontier
points, from which the best schedule can be chosen. The heuristic described here
effectively creates a list of ready tasks. Then the heuristic of Appendix A is called
to schedule tasks for temporal performance, but with the modification that only
tasks that are ready can be scheduled. In order to accomplish this modification, the
subroutine Task_Ready included in this appendix is substituted for the subroutine
Task_ready originally included in Appendix A.

This pseudocode loosely follows the conventions of the “C” programming lan-
guage, with some minor additions for clarity. Key words (C commands) are capital-
ized. Variable names are all lower case; however, some liberties have been taken with
declaration, initialization and passing arguments in subroutines. Subroutine names
are lower case with first letter capitalized. The FOR loop structure is expressed as:

DO FOR loop_counter = initial TO final. The DEFINE keyword defines only

148

variables and structures which are global. Comments use the conventional C nota-
tion of /* comment */. Except as noted, all subroutines return a single value—those

that don’t instead modify one or more of the globally defined data structures.

DEFINE STRUCTURE

{ /* this structure defines all precedence constraints. The array
entry (weight[x] [y]= penalty) defines the penalty for
violating the constraint x<y). Penalty = 0 when no constraint
is specified. Value is the temporal benefit for violating the
constraint x<y. Value[x][y] = 0 if there is no temporal
benefit for violating x<y, or if weight[x][y] = 0 */

weight [number_of_tasks] [number_of_tasks];
value [number_of_tasks] [number_of_tasks];
} prec_constraints[max_kps_sizel

DEFINE STRUCTURE

{ /* this structure is an set of arrays. An array contains
the set of precedence violations required
(kps_solutions[].selected[x] [yl = 1 if x<y selected) to meet
some penalty value. There is an array for each penalty value,
from O to the maximum. */

selected [number_of_tasks] [number_of_tasks];
} kps_solutions[max_kps_size];

DEFINE STRUCTURE
{ /* task attributes and temporal penalty table */
task_time; /* not used in this heuristic */
deadline_array[number_of_deadlines];
penalty_array[number_of_deadlines];
} task_list [number_of_tasks];

DEFINE STRUCTURE
{
task_number;
objective;

149

}schedule[number_of_tasks];

DEFINE STRUCTURE
{

schedule [number_of_tasks];
/* frontier point (x,y) */
X;
Vs

} frontierl[];

DEFINE number_of_tasks;
DEFINE number_of_deadlines;

SUBROUTINE Create_TBV()

{ /% Using the temporal penalty functions, determines the
value of violating a precedence constraint. No value
is returned */

DO FOR i=0 TO number_of_tasks {
DO FOR j=0 TO number_of_tasks

{
IF(prec_constraints.weight[i] [j]1 > 0)
{
/* there is a logical benefit, what is the
temporal benefit */
slope_i = task_list[i].penalty_array[number_of_deadlines-1]
/ task_list[i] .deadline_array[number_of_deadlines-1];
slope_j = task_list[j].penalty_array[number_of_deadlines-1]
/ task_list[j].deadline_array[number_of_deadlines-1];
/* temporal benefit is difference is slopes —-- if > 0 */
benefit = slope_j - slope_i;
IF(benefit > 0)
prec_constraints.value[i] [j] = benefit;
T
RETURNQ) ;

SUBROUTINE Test_for_frontier(x,y)

150

{ /* checks new point to see if should be on frontier,
if it is, also checks to see any points now should be
removed.

A point is on the frontier when no other point is better
in one measure and better or equal in the other

Modifies the frontier list (frontier[]), returns NULL */

/* see if point should be added (no point clearly better) */
add_point = TRUE;
DO FOR(n=0 to frontier_index)
{
IF(x < frontier[n].x AND
y <= frontier[n].y) add_point = FALSE

/* should point be added? */
IF(add_point == TRUE)
{
/* add point */
frontier_index++;
frontier [frontier_index] .x = x;
frontier[frontier_index].y = y;
frontier [frontier_index] .schedulel]

schedule([];

/* check each point against new point */
DO FOR(n=0 to frontier_index)
{
/* new point is better? */
IF(frontier[n] .x < x AND frontier[n].y <= y)
{
/* remove old point */
frontier[n] .x = NULL;
frontier[n] .y = NULL;
frontier[n].schedule[] = NULL;
+

}
RETURNQ) ;

151

SUBROUTINE Task_ready(task_number, kps_number) ;
{ /* NOTE: this subroutine replaces the routine of the same
name in Appendix A.

A task is ready when it has no unscheduled successor tasks,
where a successor task is defined by the original
precedence constraints, or overridden by forced violation
of precedence constraints as specified in the array
kps_solutions(kps_number) */

ready = TRUE;
DO FOR(n=0 to number_of_tasks)

{
IF(prec_constraints.weight [task_number] [n] > 0
OR kps_solutions[kps_number].selected[task_number] [n] == 1)
{
/* task_number is not ready if task n is not
already scheduled */
ready = FALSE;
DO FOR(m=0 number_of_tasks)
{
IF (schedule[n].task_number == n) ready = TRUE;
+
+
+
RETURN(ready) ;

SUBROUTINE Array_and(destination, n, knapsack_size - n)

{ /% AND’s two knapsack result arrays and puts the result in
destination. Destination is either a knapsack solution
array or a temporary array */

DO FOR i=0 TO number_of_tasks {
DO FOR j=0 TO number_of_tasks

destination[i] [j] = kps_solutions[n].selected[i] [j]
AND kps_solutions[knapsack_size-n].selected[i] [j];

152

IF(destination[i] [j] == 1) value = value +
prec_constraints.value[i] [j];
Hr
RETURN (value) ;

SUBROUTINE Combine_previous(knapsack_size, kps_solution);

{ /* begin by trying all solutions consisting of two previous
solutions (including the solution for zero = null set),
and pick the best, add to kps_solutions and return
logical value */

DO FOR n = 0 to knapsack_size - 1

{
IF(Array_and(temp, n, knapsack_size - n) > logical_value)
{
logical_value = Array_and(kps_solutions[knapsack_size],
n, knapsack_size - n);
+
+

RETURN (logical_value);

SUBROUTINE Knapsack_weight(knapsack_size)
{ /* Returns the current "weight" of knapsack solution */

DO FOR i=0 TO number_of_tasks {
DO FOR j=0 TO number_of_tasks

{
IF(kps_solutions [knapsack_size] .selected[i] [j]==TRUE)
{
weight = weight + prec_constraints.weight[i] [j];
+
T
RETURN (weight) ;

SUBROUTINE Add_more_weight(logical_value, knapsack_size)
{ /* Trying to add more un-selected constraint violations

153

(weights), such that weight fits, and it has the
highest value. Logical_value is returned. */

weight = Knapsack_weight(knapsack_size)
weight_added = TRUE;
DO WHILE(weight_added==TRUE)

{

weight_added==FALSE;
DO FOR i=0 TO number_of_tasks {
DO FOR j=0 TO number_of_tasks
{
/* see if it fits and it’s available */
IF(prec_constraints.weight[i] [j] + weight < knapsack_size
AND kps_solutions[knapsack_size] .status[i] [j] == FALSE;

{
IF(prec_constraints.value[i] [j] > max)
{
max = prec_constraints.valuel[i] [j];
max_i = 1i;
max_j = j;
+

weight

}

+
+}
kps_solutions[knapsack_size] .status[max_i] [max_j]=TRUE;
logical_value = logical_value
+ prec_constraints.value[max_i] [max_j];
= weight + prec_constraints[max_i] [max_j];
weight_added = TRUE;

RETURN (logical_value);

SUBROUTINE Dynamic_program(knapsack_size)
/* given a set of smaller knapsacks (kps_solutions[k]), find

{

the optimal knapsack for a knapsack of size knapsack_size.
Note that when a previous solution is used, any "stones"
already selected, cannot be selected again.

This subroutine modifies the frontier[] structure, it
returns logical_value. */

154

/* find solution by combining all combinations of previous
solutions */
logical_value = Combine_previous(knapsack_size);

/* keep trying to add one more un-selected constraint
violation */
logical_value = Add_more_weight(logical_value, knapsack_size)

RETURN (logical_value);

SUBROUTINE Schedule_tasks_prec(task_list, frontier, prec_constraints)
{ /% Creates a frontier of optimal schedules given task definitions,
timing constraints and precedence constraints. */

/* Create the table which gives the temporal "benefit" for
violating a precedence constraint */
Create_TBV();

/* Use dynamic programming to choose
DO FOR kps=0 TO max

{
logical_value = Dynamic_program(kps);
/* given a set of constraints to meet and to *not* meet,
find the best temporal schedule */
temporal_value = Schedule_tasks(task_list, schedule, criteria);
/* Check to see if this point is on the frontier */
Check_frontier[temporal_value] [logical_value];
+
RETURNQ) ;

155

