
Towards Reducing the Complexity of Adaptive Real-Time Large-Scale 
Distributed Embedded Systems 

Lisa DiPippo, Jiangyin Zhang, 
Matthew Murphy,  and  

Victor Fay Wolfe 
University of Rhode Island 

{lastname}@cs.uri.edu 

Joseph Loyall, Richard Schantz, and 
Craig Rodrigues 
BBN Technologies 

{jloyall,schantz,crodrigu}@bbn.com 

Jeff Parsons, Sandeep Neema,  

 Balachandran Natarajan,  
and Aniruddha Gokhale 
Vanderbilt University 

  

 
This paper describes elements of the approach that we are taking to address the complexity 
inherent in creating software for large scale distributed real-time embedded (LDRE) applications 
such as the control of total ship computing on the new US Navy surface ships (DDX), 
coordinated unmanned vehicles, meteorological  measurement and prediction systems, and 
widely distributed automated financial control.  These applications are functionally complex, and 
their complexity is further amplified due to non-functional considerations such as: 

- their large scale 
- their potentially wide distribution 
- their real-time requirements 
- their dynamically changing environment 

In general, our approach is to provide more of the solution to the non-functional aspects 
commonly available off-the-shelf through a combination of advanced middleware services and 
advanced software engineering approaches, which when combined would provide for developing 
these systems from a much higher level (and presumably less costly and error prone) basis.  We 
briefly discuss how we have begun to apply four inter-related concepts to the coordinated, real-
time scheduling component of our larger QoS management approach. The four concepts are: 

- The use of standards-based middleware 
- Building in run-time adaptability into scheduling 
- “Weaving” scheduling into applications using aspect-oriented programming 
- A model-integrated computing approach to scheduling 

 
Standards-Based Middleware. A foundation to our approach to reducing the cost and 
complexity of constructing LDRE systems is the use of standards-based middleware that supports 
common non-functional elements typical to LDRE systems.  Middleware is reusable software that 
forms a layer between the application and the underlying operating system, network protocol 
stack, and hardware. By abstracting away many of the low-level issues of network programming, 
middleware can: 

• Eliminate the necessity for application developers to be aware of proprietary platform 
details, and enable applications to be more portable. 

• Provide a consistent and organized set of capabilities that are closer in appearance and 
logic to design-level abstractions than to underlying computing and network mechanisms. 

• Simplify the management of system resources. 
• Amortize development lifecycle costs by leveraging previous expertise and encapsulating 

essential patterns in reusable frameworks, rather than rebuilding them from scratch for 
each project. 

• Offer a wide variety of higher-level services oriented to the specific needs of developers, 
such as security or transactional logging. 

• Facilitate the integration of heterogeneous legacy subsystems and software artifacts. 
Integration of DRE system components via middleware is further facilitated by standards, and 
mature implementations that comply with them. In addition standards-based middleware makes it 
possible to replace  or update components of DRE systems easily, without requiring costly and 
time-consuming application design changes. 
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Figure 1: QuO Adaptable Middleware 
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We base our work on the Common Object Request Broker Architecture (CORBA) standard set 
forth by the Object Management Group (OMG) [1]. CORBA is the only standards-based 
commercial off-the-shelf (COTS) middleware implementation that has made substantial progress 
in enabling middleware to satisfy the quality of service (QoS) requirements of LDRE systems, in 
part due to the recent adoption of several related specifications including Real-time CORBA 
[2,3], which exports features that enable applications to reserve and manage memory, CPU, and 
network resources end-to-end while preserving predictability.  
 
 A common characteristic of the 
application domains of interest is 
that they operate under real world 
constraints that can vary 
significantly.  In order address the 
dynamically changing nature of 
LDRE systems using middleware, 
our approach uses an architectural 
layer focused on supporting 
adaptable operation.  We utilize 
the Quality Objects (QuO) 
framework, an adaptive 
middleware layer developed by 
BBN Technologies [4] as a 
building block for managing 
adaptive runtime behavior. QuO 
extends middleware with a contract feature that represents the QoS contracts between an 
application and the environment in which it is executing, The contract identifies the levels of QoS 
in which the application can operate, the tradeoffs and adaptations available when QoS changes, 
and the environmental conditions that must be measured and controlled to recognize and enforce 
QoS. QuO also provides off-the-shelf interface objects (based on CORBA IDL) to system 
resource mechanisms, services, and managers, called system condition objects-delegates for 
inserting QoS awareness and adaptation into the path of object interactions; and an object 
gateway for incorporating transport level QoS control. System condition objects are wrapper 
facades  that enable the development of consistent middleware interfaces to low-level 
infrastructure, mechanisms, services, and managers, which might provide very different special-
purpose interfaces and lie at different levels in the system and middleware stack. Delegates are 
proxies that look like remote object stubs or local method interfaces to the application so they can 
be transparently inserted into the path of object interactions, but with QoS-aware and adaptive 
code woven in.  
 
Dynamically Adaptable Scheduling. 
 To address the complexity introduced 
by the need to enforce real-time 
requirements, and the complexity 
introduced by dynamically changing 
requirements, our approach involves 
two steps that inject coordinated 
scheduling into standards-based 
middleware. The first step is to 
integrate the middleware Scheduling 
Service that is being developed at the 
University of Rhode Island (URI) [5] 
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Figure 3: QuO Control of Scheduling 

into the multi-level adaptive reflective QuO framework using Quo contracts. The second step is 
similar, but involves having the QuO framework directly control the real-time enforcement points 
in a Real-Time CORBA 2.0 compliant ORB, using similar algorithms in a similar coordinated 
fashion to what we will use in the Scheduling Service approach. 
 
As depicted in Figure 2, the current URI Scheduling Service uses the Real-Time CORBA 1.0 
standard Scheduling Service interface to set global CORBA priorities that are meaningful across 
the distributed system. The Scheduling Service also sets real-time parameters in the ORB 
including the ORB’s priority mapping (to both the operating systems’ and networks’ local 
priorities), and the values for the POA’s priority lanes and priority bands. The Scheduling Service 
does this by coordinating the following four scheduling algorithm categories: 1) priority 
assignment; 2) priority mapping; 3) overload management; and 4) service dispatch order. These 
coordinated algorithms ensure that the real-time enforcement in lower layers, such as the ORB 
and networks, is consistent, and in certain cases, analyzable. We are engineering the Scheduling 
Service so that the specific algorithm in each of these four algorithm categories is adaptable. 
Once Real-Time CORBA 2.0 ORBs become available with dynamic scheduling capabilities built 
into the ORB, which we expect within a year, we will use a similar coordinated algorithm 
technique, but with the four algorithms and their parameters being set by QuO directly in the 
ORB rather than necessarily through the external Scheduling Service.  
 
To help manage the 
complexity that 
dynamic 
environments 
introduce to LDRE 
system, we will use 
the QuO middleware 
framework in several 
ways depicted in 
Figure 3. The multi-
level QoS 
management will 
configure the 
adaptable algorithms 
described above 
based on reflective 
system information 
that will be gathered 
by monitoring 
services and reported using QuO’s System Conditions (shown above the Scheduling Service in 
Figure 3). In turn, the real-time services will feed back analyzed system state information, such as 
the current planned schedule for resources and analysis-detected potential overload. This analysis 
would, for instance, enable an overload management technique to re-negotiate QoS contracts 
based on analyzed overload conditions before the overload occurs. Much of the real-time 
scheduling information, such as deadlines, periods, expected and measured execution times, 
measured utilizations of resources, the current schedule, the designation of importance of tasks, 
etc, will be kept in QuO system condition objects, as shown in Figure 3. This makes the real-time 
information available to all managers, mechanisms, and services through the middleware.  
 
The use of an adaptable standards-based middleware scheduling mitigates some of the complexity 
due to real-time and adaptive requirements faced by LDRE developers. If developers can use off-



the-shelf middleware components that are configured to provide comprehensive, coordinated 
real-time support, then their software simply has to interface to those adaptable scheduling 
components instead of developers having to try to inject adaptive real-time enforcement into 
LDRE software themselves. 
 
Aspect-Oriented Scheduling. 
Although standards based middleware and scheduling can remove some of the complexity from 
LDRE development, interacting with the scheduling elements correctly within the functional 
application can still be complicated.  To ease this burden on LDRE developers, we use the QuO 
delegates to allow them to employ aspect-oriented programming (AOP) [6], to insert interactions 
with the standard middleware schedulers as an aspect.  The AOP methodology and associated 
tools allow programmers to decouple the functional development of programs from aspects that 
cross-cut all or many components and levels in the system.  These programming of these aspects 
are then done separately and  “woven” into the program with tools. Typical AOP techniques 
allow the aspects to be “turned on” or “turned off” easily in the resulting application software. 
Real-time is such an aspect – its enforcement requires a coordinated approach at all levels of the 
system and typically spans multiple components. The application interface to the Scheduling 
Service and/or real-time ORB employs QuO delegates (shown at the bottom of Figure 3) to send 
the required parameters, such as deadlines and Importances, to the real-time enforcement 
mechanisms and services and handle the resulting priority and other return values appropriately. 
For instance, the delegate can invoke the underlying ORB to set in a client the CORBA priority 
that was received from the Scheduling Service. 
 
Thus, in our approach, not only are the details of complex adaptive real-time enforcement 
embodied in the off-the-shelf middleware, the interfaces to those middleware components, which 
themselves can be somewhat complex, can be designed and programmed separately from the 
functional development of the LDRE application. 
 
Model Driven Scheduling. 
To bring several of the concepts of our approach together and allow them to work in larger scales, 
we use a  Model-Integrated Computing (MIC) approach. MIC creates a unified software 
architecture and framework for creating LDRE software. The core components of the MIC 
infrastructure are: a customizable Generic Model Editor [7] for creation of multiple-view, 
domain-specific models; Model Databases for storage of the created models; and, a Model 
Interpretation technology that assists in the creation of domain-and application-specific model 
interpreters for transformation of models into executable/analyzable artifacts. The new 
environment is domain-specific and includes tools  to support the creation and storage of system 
models, in addition to generation of executable/analyzable artifacts from these models. 
 
Using the MIC technology, we are developing a domain-specific modeling environment called 
the Adaptive Quality Modeling Environment (AQME) for modeling of key aspects of a QoS 
Adaptive LDRE system [8] (see Figure 4):  

§ QoS Adaptation Modeling – In this category, the adaptation of QoS properties of the 
LDRE system is modeled. The designer can specify the different state configurations of 
the QoS properties, the legal transitions between the different state configurations, the 
conditions that enable these transitions (and the actions that must be performed to enact 
the change in state configuration), the data variables that receive and update QoS 
information, and the events that trigger the transitions. These properties are modeled 
using an extended finite-state machine (FSM) modeling formalism. AQME can then 
generate QuO contracts. 
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Figure 4: GME Modeling and Generation of QuO Middleware 

§ Computation Modeling – In this category, the computational aspect of a LDRE system is 
modeled. A dataflow model is created in order to specify the various computational 
components and their interaction. This model takes the form of hierarchical task graphs. 
Our approach involves using AQME to address the complexities of real-time scheduling, 
by plugging the RapidRMA scheduling analysis tool developed by Tri-Pacific Software 
[9]. 

§ Middleware Modeling – In this category, the middleware services, the system monitors, 
and the tunable “knobs” (i.e., the parameters being provided by the middleware) are 
modeled. AQME can then direct the generation of code points for aspect weaving, where 
middleware configuration can be either monitored or adapted to changing QoS 
requirements. 

 
 
Several 
generators have 
been developed 
using the model 
interpretation 
technology to 
perform various 
domain-specific 
analyses and 
simulations of 
the modeled 
system. For 
example, 
RapidRMA, as 
mentioned 
above, has been  
integrated with 
AQME, and 
can perform 
real-time 
schedulability 
analysis on a system using its own meta-modeling paradigm, which includes task locations, 
resource locations, task dependencies, and task-specific resource usage.  
 
When the real-time analysis results are satisfactory, the modeled system can be synthesized for 
deployment on a platform, using a separate generator.  Figure 5 (next page) shows our envisioned 
approach of model generators providing the scheduling delegates used by the application and the 
QuO contracts used to control the middleware scheduling (see Figure 3). The generated delegates 
would express real-time requirements, such as deadlines. The generated contracts would ensure 
that the middleware provides appropriate adaptable real-time scheduling. 
 
Summary. This paper has presented some elements of our approach to handling the complexity 
of LDRE systems. In particular it focused on several concepts for support of real-time 
enforcement: adaptive middleware scheduling, providing scheduling interactions through aspect-
oriented programming (AOP), and bringing these concepts together for large scale developments 
through model-integrated computing (MIC). These elements are part of our more comprehensive 
approach to providing distributed QoS using adaptive reflexive middleware, AOP, and MIC.
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