
Towards Reducing the Complexity of Adaptive Real-Time Large-Scale
Distributed Embedded Systems

Lisa DiPippo, Jiangyin Zhang,
Matthew Murphy, and

Victor Fay Wolfe
University of Rhode Island

{lastname}@cs.uri.edu

Joseph Loyall, Richard Schantz, and
Craig Rodrigues
BBN Technologies

{jloyall,schantz,crodrigu}@bbn.com

Jeff Parsons, Sandeep Neema,

 Balachandran Natarajan,
and Aniruddha Gokhale
Vanderbilt University

This paper describes elements of the approach that we are taking to address the complexity
inherent in creating software for large scale distributed real-time embedded (LDRE) applications
such as the control of total ship computing on the new US Navy surface ships (DDX),
coordinated unmanned vehicles, meteorological measurement and prediction systems, and
widely distributed automated financial control. These applications are functionally complex, and
their complexity is further amplified due to non-functional considerations such as:

- their large scale
- their potentially wide distribution
- their real-time requirements
- their dynamically changing environment

In general, our approach is to provide more of the solution to the non-functional aspects
commonly available off-the-shelf through a combination of advanced middleware services and
advanced software engineering approaches, which when combined would provide for developing
these systems from a much higher level (and presumably less costly and error prone) basis. We
briefly discuss how we have begun to apply four inter-related concepts to the coordinated, real-
time scheduling component of our larger QoS management approach. The four concepts are:

- The use of standards-based middleware
- Building in run-time adaptability into scheduling
- “Weaving” scheduling into applications using aspect-oriented programming
- A model-integrated computing approach to scheduling

Standards-Based Middleware. A foundation to our approach to reducing the cost and
complexity of constructing LDRE systems is the use of standards-based middleware that supports
common non-functional elements typical to LDRE systems. Middleware is reusable software that
forms a layer between the application and the underlying operating system, network protocol
stack, and hardware. By abstracting away many of the low-level issues of network programming,
middleware can:

• Eliminate the necessity for application developers to be aware of proprietary platform
details, and enable applications to be more portable.

• Provide a consistent and organized set of capabilities that are closer in appearance and
logic to design-level abstractions than to underlying computing and network mechanisms.

• Simplify the management of system resources.
• Amortize development lifecycle costs by leveraging previous expertise and encapsulating

essential patterns in reusable frameworks, rather than rebuilding them from scratch for
each project.

• Offer a wide variety of higher-level services oriented to the specific needs of developers,
such as security or transactional logging.

• Facilitate the integration of heterogeneous legacy subsystems and software artifacts.
Integration of DRE system components via middleware is further facilitated by standards, and
mature implementations that comply with them. In addition standards-based middleware makes it
possible to replace or update components of DRE systems easily, without requiring costly and
time-consuming application design changes.

Client
Object
(Servant)

IDL
Stubs

IDL
Skeletons

ORB Core

Object Adapter

operation ()

ORB Core

in args

out args + return value

OBJ
REF

Contract
Delegate Delegate

SysCond

Network

Mechanism/property
Manager

IIOP IIOP

SysCond
SysCond

SysCond

Contract

Callback
Callback

Figure 1: QuO Adaptable Middleware

Scheduling
 Service

Sets CORBA Priority

Sets Priority Inheritance, Priority Lanes, Priority Bands

Sets OS Prio Mapping

Sets Network Prio Mapping

Figure 2: URI Scheduling Service

We base our work on the Common Object Request Broker Architecture (CORBA) standard set
forth by the Object Management Group (OMG) [1]. CORBA is the only standards-based
commercial off-the-shelf (COTS) middleware implementation that has made substantial progress
in enabling middleware to satisfy the quality of service (QoS) requirements of LDRE systems, in
part due to the recent adoption of several related specifications including Real-time CORBA
[2,3], which exports features that enable applications to reserve and manage memory, CPU, and
network resources end-to-end while preserving predictability.

 A common characteristic of the
application domains of interest is
that they operate under real world
constraints that can vary
significantly. In order address the
dynamically changing nature of
LDRE systems using middleware,
our approach uses an architectural
layer focused on supporting
adaptable operation. We utilize
the Quality Objects (QuO)
framework, an adaptive
middleware layer developed by
BBN Technologies [4] as a
building block for managing
adaptive runtime behavior. QuO
extends middleware with a contract feature that represents the QoS contracts between an
application and the environment in which it is executing, The contract identifies the levels of QoS
in which the application can operate, the tradeoffs and adaptations available when QoS changes,
and the environmental conditions that must be measured and controlled to recognize and enforce
QoS. QuO also provides off-the-shelf interface objects (based on CORBA IDL) to system
resource mechanisms, services, and managers, called system condition objects-delegates for
inserting QoS awareness and adaptation into the path of object interactions; and an object
gateway for incorporating transport level QoS control. System condition objects are wrapper
facades that enable the development of consistent middleware interfaces to low-level
infrastructure, mechanisms, services, and managers, which might provide very different special-
purpose interfaces and lie at different levels in the system and middleware stack. Delegates are
proxies that look like remote object stubs or local method interfaces to the application so they can
be transparently inserted into the path of object interactions, but with QoS-aware and adaptive
code woven in.

Dynamically Adaptable Scheduling.
 To address the complexity introduced
by the need to enforce real-time
requirements, and the complexity
introduced by dynamically changing
requirements, our approach involves
two steps that inject coordinated
scheduling into standards-based
middleware. The first step is to
integrate the middleware Scheduling
Service that is being developed at the
University of Rhode Island (URI) [5]

Algorithm For
Setting
Priority

Algorithm For
Overload

Mgmt.

Algorithm For
Priority

Mapping

Algorithm For
Service

Dispatch

SCHEDULING SERVICE/ RT CORBA 2.0 ORB

Current Schedule

Task Priorities

Task Importance

Task Deadlines
REAL-TIME SYSCOND

Delegate
SysCond
other RT
Contracts

SysCond
other RT
Contracts

...

SysCond
Algorithms &

Patterns

SysCond
Algorithms &

Patterns

SysCond
Algorithms &

Patterns
SysCond

Algorithms &
Patterns

Figure 3: QuO Control of Scheduling

into the multi-level adaptive reflective QuO framework using Quo contracts. The second step is
similar, but involves having the QuO framework directly control the real-time enforcement points
in a Real-Time CORBA 2.0 compliant ORB, using similar algorithms in a similar coordinated
fashion to what we will use in the Scheduling Service approach.

As depicted in Figure 2, the current URI Scheduling Service uses the Real-Time CORBA 1.0
standard Scheduling Service interface to set global CORBA priorities that are meaningful across
the distributed system. The Scheduling Service also sets real-time parameters in the ORB
including the ORB’s priority mapping (to both the operating systems’ and networks’ local
priorities), and the values for the POA’s priority lanes and priority bands. The Scheduling Service
does this by coordinating the following four scheduling algorithm categories: 1) priority
assignment; 2) priority mapping; 3) overload management; and 4) service dispatch order. These
coordinated algorithms ensure that the real-time enforcement in lower layers, such as the ORB
and networks, is consistent, and in certain cases, analyzable. We are engineering the Scheduling
Service so that the specific algorithm in each of these four algorithm categories is adaptable.
Once Real-Time CORBA 2.0 ORBs become available with dynamic scheduling capabilities built
into the ORB, which we expect within a year, we will use a similar coordinated algorithm
technique, but with the four algorithms and their parameters being set by QuO directly in the
ORB rather than necessarily through the external Scheduling Service.

To help manage the
complexity that
dynamic
environments
introduce to LDRE
system, we will use
the QuO middleware
framework in several
ways depicted in
Figure 3. The multi-
level QoS
management will
configure the
adaptable algorithms
described above
based on reflective
system information
that will be gathered
by monitoring
services and reported using QuO’s System Conditions (shown above the Scheduling Service in
Figure 3). In turn, the real-time services will feed back analyzed system state information, such as
the current planned schedule for resources and analysis-detected potential overload. This analysis
would, for instance, enable an overload management technique to re-negotiate QoS contracts
based on analyzed overload conditions before the overload occurs. Much of the real-time
scheduling information, such as deadlines, periods, expected and measured execution times,
measured utilizations of resources, the current schedule, the designation of importance of tasks,
etc, will be kept in QuO system condition objects, as shown in Figure 3. This makes the real-time
information available to all managers, mechanisms, and services through the middleware.

The use of an adaptable standards-based middleware scheduling mitigates some of the complexity
due to real-time and adaptive requirements faced by LDRE developers. If developers can use off-

the-shelf middleware components that are configured to provide comprehensive, coordinated
real-time support, then their software simply has to interface to those adaptable scheduling
components instead of developers having to try to inject adaptive real-time enforcement into
LDRE software themselves.

Aspect-Oriented Scheduling.
Although standards based middleware and scheduling can remove some of the complexity from
LDRE development, interacting with the scheduling elements correctly within the functional
application can still be complicated. To ease this burden on LDRE developers, we use the QuO
delegates to allow them to employ aspect-oriented programming (AOP) [6], to insert interactions
with the standard middleware schedulers as an aspect. The AOP methodology and associated
tools allow programmers to decouple the functional development of programs from aspects that
cross-cut all or many components and levels in the system. These programming of these aspects
are then done separately and “woven” into the program with tools. Typical AOP techniques
allow the aspects to be “turned on” or “turned off” easily in the resulting application software.
Real-time is such an aspect – its enforcement requires a coordinated approach at all levels of the
system and typically spans multiple components. The application interface to the Scheduling
Service and/or real-time ORB employs QuO delegates (shown at the bottom of Figure 3) to send
the required parameters, such as deadlines and Importances, to the real-time enforcement
mechanisms and services and handle the resulting priority and other return values appropriately.
For instance, the delegate can invoke the underlying ORB to set in a client the CORBA priority
that was received from the Scheduling Service.

Thus, in our approach, not only are the details of complex adaptive real-time enforcement
embodied in the off-the-shelf middleware, the interfaces to those middleware components, which
themselves can be somewhat complex, can be designed and programmed separately from the
functional development of the LDRE application.

Model Driven Scheduling.
To bring several of the concepts of our approach together and allow them to work in larger scales,
we use a Model-Integrated Computing (MIC) approach. MIC creates a unified software
architecture and framework for creating LDRE software. The core components of the MIC
infrastructure are: a customizable Generic Model Editor [7] for creation of multiple-view,
domain-specific models; Model Databases for storage of the created models; and, a Model
Interpretation technology that assists in the creation of domain-and application-specific model
interpreters for transformation of models into executable/analyzable artifacts. The new
environment is domain-specific and includes tools to support the creation and storage of system
models, in addition to generation of executable/analyzable artifacts from these models.

Using the MIC technology, we are developing a domain-specific modeling environment called
the Adaptive Quality Modeling Environment (AQME) for modeling of key aspects of a QoS
Adaptive LDRE system [8] (see Figure 4):

§ QoS Adaptation Modeling – In this category, the adaptation of QoS properties of the
LDRE system is modeled. The designer can specify the different state configurations of
the QoS properties, the legal transitions between the different state configurations, the
conditions that enable these transitions (and the actions that must be performed to enact
the change in state configuration), the data variables that receive and update QoS
information, and the events that trigger the transitions. These properties are modeled
using an extended finite-state machine (FSM) modeling formalism. AQME can then
generate QuO contracts.

Adaptive QoS
Modeling Environment
(AQME)

Matlab Simulink/Stateflow Simulation
Symbolic Model Verifier (SMV) Model Checking

BBN Contract Definition Language

End-users
model their
systems in

AQME

1

2
Simulations are
generated from

models

I I I

I = Model Interpreter

3
Inputs for model

checkers is
generated

4
CDL output is

generated when
simulation and
model checking

results are
satisfactory

5 QoS adaptive DRE
system is deployed

Adaptive QoS
Modeling Environment
(AQME)

Matlab Simulink/Stateflow Simulation
Symbolic Model Verifier (SMV) Model Checking

BBN Contract Definition Language

End-users
model their
systems in

AQME

1

2
Simulations are
generated from

models

I I I

I = Model InterpreterI = Model Interpreter

3
Inputs for model

checkers is
generated

4
CDL output is

generated when
simulation and
model checking

results are
satisfactory

5 QoS adaptive DRE
system is deployed

Figure 4: GME Modeling and Generation of QuO Middleware

§ Computation Modeling – In this category, the computational aspect of a LDRE system is
modeled. A dataflow model is created in order to specify the various computational
components and their interaction. This model takes the form of hierarchical task graphs.
Our approach involves using AQME to address the complexities of real-time scheduling,
by plugging the RapidRMA scheduling analysis tool developed by Tri-Pacific Software
[9].

§ Middleware Modeling – In this category, the middleware services, the system monitors,
and the tunable “knobs” (i.e., the parameters being provided by the middleware) are
modeled. AQME can then direct the generation of code points for aspect weaving, where
middleware configuration can be either monitored or adapted to changing QoS
requirements.

Several
generators have
been developed
using the model
interpretation
technology to
perform various
domain-specific
analyses and
simulations of
the modeled
system. For
example,
RapidRMA, as
mentioned
above, has been
integrated with
AQME, and
can perform
real-time
schedulability
analysis on a system using its own meta-modeling paradigm, which includes task locations,
resource locations, task dependencies, and task-specific resource usage.

When the real-time analysis results are satisfactory, the modeled system can be synthesized for
deployment on a platform, using a separate generator. Figure 5 (next page) shows our envisioned
approach of model generators providing the scheduling delegates used by the application and the
QuO contracts used to control the middleware scheduling (see Figure 3). The generated delegates
would express real-time requirements, such as deadlines. The generated contracts would ensure
that the middleware provides appropriate adaptable real-time scheduling.

Summary. This paper has presented some elements of our approach to handling the complexity
of LDRE systems. In particular it focused on several concepts for support of real-time
enforcement: adaptive middleware scheduling, providing scheduling interactions through aspect-
oriented programming (AOP), and bringing these concepts together for large scale developments
through model-integrated computing (MIC). These elements are part of our more comprehensive
approach to providing distributed QoS using adaptive reflexive middleware, AOP, and MIC.

.

References

[1] Object Management Group, The Common Object Request Broker:
Architecture and Specification, 3.0 edition, June 2002. at http://www.omg.org/cgi-bin/doc?formal/02-06-33

[2[Object Management Group, Real-time CORBA Specification, 1.1 edition, August 2002 at
http://www.omg.org/cgi-bin/doc?formal/02-08-02

[3] Object Management Group, Real-time CORBA 2.0: Dynamic Scheduling Specification, ptc/01-08-34
edition, September 2002 at http://www.omg.org/cgi-bin/doc?ptc/2001-08-34

[4] Quality Objects at http://quo.bbn.com

[5] L. DiPippo, V. F. Wolfe, L. Esibov, G. Cooper, R. Johnston, B. Thuraisingham, J. Mauer, Scheduling
and Priority Mapping for Static Real-Time Middleware, Real-Time Systems, 20, 155-182, 2001, Kluwer
Academic Publishers. Similar version available at
http://homepage.cs.uri.edu/research/rtsorac/pubs/rtsysj2.pdf

[6] Aspect-Oriented Programming at http://aosd.net

[7] GME at http://www.isis.vanderbilt.edu/Projects/gme/default.html

[8] Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale, Christopher D. Gill, Balachandran Natarajan,
Craig Rodrigues, Joseph P. Loyall, Richard E. Schantz and Richard Shapiro, Applying Model-Integrated
Computing to Provision Middleware and Application Quality of Service," Submitted to the 23rd
International Conference on Distributed Computing Systems (ICDCS-23), (Providence, RI), IEEE, May
2003. available at http://www.cs.wustl.edu/~nanbor/papers/icdcs03.pdf

[9] RapidRMA at http://www.tripac.com/html/prod-fact-rrm.htm

I I

3
Scheduling

Delegates

RapidRMA Analysis
QuO Contracts

I

Figure 5: GME Modeling and Generation of Scheduling

