
Mapping a Multi-Level Scheduling Pattern Language
to Distributed Real-Time Embedded Applications1

Christopher Gill Douglas Niehaus Lisa DiPippo and Victor Fay Wolfe Lonnie Welch

cdgill@cse.wustl.edu niehaus@ittc.ku.edu {dipippo,wolfe}@cs.uri.edu

welch@ohio.edu

Department of CSE Department of EECS Department of CS School of EECS
Washington University University of Kansas University of Rhode Island Ohio University

St. Louis, MO Lawrence, KS Providence, RI Athens, OH

Abstract

Mission-critical Distributed Real-Time and Embedded
(DRE) systems pose significant resource management
challenges at and across all architectural levels, i.e., the
operating system and low-level middleware on each
endsystem, and distributed services spanning multiple
endsystems. Furthermore, the challenges posed by one
application may differ from the challenges posed by
another. As developers of complex DRE applications
move increasingly from building individual systems to
composing systems of systems, it is imperative to
identify approaches that can reconcile design forces
throughout a multiplicity of architectural levels and
application scenarios. This paper makes two
contributions to the design of resource management for
DRE systems. First, it describes our recent
refinements to a pattern language for resource
scheduling in DRE systems. Second, it examines how
the pattern language applies to several example DRE
systems, thus giving guidance to developers of both
individual DRE systems and composite systems.

1 This work was funded in part by The Boeing Company, the DARPA Quorum and ANTS programs, and ONR.

1 Introduction

We have identified, and are continuing to extend and
refine our description of, a pattern language consisting
of scheduling-related design patterns at and across
multiple architectural levels. We call this pattern
language “Resource Rationalizer” [GNDWS], as its
primary purpose is to guide the design of scheduling
architectures toward a rational resolution of the
resource constraints at and across each architectural
level, with the end-to-end requirements of complex

mission-critical DRE applications. This paper is
structured as follows. Section 2 describes the
Resource Rationalizer pattern language, and our recent
extensions and refinements to it. Section 3 describes
three example DRE applications in detail, and
considers the paths through the pattern language
consisting of the patterns used in each application.
Finally, Section 4 offers concluding remarks and
describes future work on the pattern language and its
applications to DRE systems.

2. The Resource Rationalizer Pattern
Language

Figure 1 illustrates the Resource Rationalizer pattern
language. In addition, Figure 1 reflects our recent
identification of higher-level architectural roles played
by the patterns in the language: control patterns for
reasoning about resource management, actuation
patterns for adjusting resource allocations and sensing
patterns for gathering performance and resource data.
Taken together, the control, actuation, and sensing
roles at each level form an integrated control
architecture for monitoring, evaluating, and adapting
resource allocations and steering real-time
performance end-to-end. Each pattern’s background
shading in Figure 1 reflects its higher-level role.
In considering these roles, we have identified several
additional patterns in the language. At the distributed
middleware level we have identified the Distributed
Performance Monitoring pattern, and have also
divided what we formerly called the Global Resource
Allocation pattern into the distinct End-to-End
Allocation and Service Request Allocation patterns. At
the local middleware level, we have identified the

 1

mailto:cdgill@cse.wustl.edu
mailto:niehaus@ittc.ku.edu
mailto:dipippo@cs.uri.edu
mailto:welch@ohio.edu

Request
Pacing

Request
Partition Request

Propagation

Strategic
Request
Ordering

Distributed
Scheduling

Service

Distributed
Scheduling

Distributed
Resource

Consistency
Control

Global to
Local

Priority
Mapping

Service
Request

Allocation

Distributed
Temporal

Coherency

Application
Level QoS

Adjustment

Global
Overload

Management

Local
Middleware
Level

Distributed Middleware Level

Multiple Levels

A = alternatives C = complements I = implements M = modifies

C

C

C

C

C

C

C

M

MI I I

I

I

I

System
Specification

Distributed
Performance
Monitoring

Request
Management

End-to-end
Allocation

I

I

I

I

I

I

C

M

Local
Performance
Monitoring

Control Sensing Actuation

Strategy
Composition M

Masking
Interrupts

Planned
Scheduling

Priority-
Driven

Preemptive
Scheduling Share

Allocation
Hierarchical
Scheduling

C

OS Level

C

C

C

I

I
I

I

I

A

Resource &
Process

Monitoring

Resource
& Process

Control

I

I

I

I

M
I

C

M M

I C

I

C

C
C

C

Figure 1: Resource Rationalizer Pattern Language

Request Management and Local Performance
Monitoring patterns. At the OS level, we have
newly identified the Resource and Process
Monitoring and Resource and Process Control
patterns.

2.1 New Distributed Middleware
Patterns

Name: Distributed Performance Monitoring

Problem: When determining when and how to
reallocate computing application services as well
as computing and network resources, it is necessary
to know the state of the distributed system. This
involves the construction of accurate models of

process resource needs and performance;
additionally, the utilization and state of the
resources must be modeled.
Context: A pool of distributed computers is
interconnected via a network. A set of distributed
real-time application systems are using the
resources.

Forces: To provide a meaningful and consistent
view of the software and resource components of a
distributed real-time system requires the
aggregation of monitoring information collected at
lower levels. The aggregation must be performed in
an efficient and accurate manner.

Solution: Define global metrics that characterize
relevant aspects of performance for the software
systems and important aspects of resource state.

 2

Solution: Allocate tasks to the subsystems that
yield the best chance that the specified timing
constraints will be met. Use schedulability
techniques to predict the best subsystem on which
to allocate the requested task. Further, consider
future tasks when making this allocation. This may
be done by examining prior distributions of tasks in
similar applications, as well as by choosing
subsystems on which execution time will likely be
freed soon, i.e. subsystems that have aperiodic tasks
ending.

Select and gather the monitoring information
needed to calculate the metrics and compute the
metrics. Be sure that frequency of information
gathering is sufficient to allow the metrics to have
the desired accuracy, but also be careful not to
impose too large of an overhead on the system
during the gathering process.

Resulting Context: Makes use of lower level
metrics provided by the Local Performance
Monitoring pattern, and indirectly uses metrics
provided by the Resource and Process Monitoring
pattern.

Resulting Context: Load allocation techniques as
described above may require some run-time
analysis of current system conditions. This will
incur added overhead to the execution of the
application. For this reason, load allocation
algorithms should be designed and implemented
carefully to utilize as much precomputed system
information as possible, and avoid unnecessary
analysis. Alternatively, simple load allocation
techniques (like first fit, or simple balancing
algorithms) may be sufficient and would incur less
overhead. The trade-off here is that the simpler
techniques will be less predictable, potentially
requiring reallocation of resources in the future.

Rationale: Effective allocation of resources for
dynamic application systems requires the ability to
capture the state of the system accurately.
Allocation decisions are only as good as the
information used to make the decisions.

◊ ◊ ◊

Name: Service Request Allocation

Problem: When deciding among several
subsystems on which to place the execution of a
particular task, certain resources can become
overutilized while others may be underutilized.
This poor global allocation of resources could cause
some tasks to unnecessarily violate timing
constraints. There is a need to fit these tasks on the
subsystems such that timing constraints of the
current tasks are met, as well as to consider future
dynamic tasks with timing constraints.

Rationale: This pattern will allow real-time service
requests to be allocated such that real-time
constraints will likely be met. Further, the
proactive nature of the pattern reduces the need for
costly reactive reallocation of resources.

◊ ◊ ◊

Name: End-to-end Allocation Context: A real-time distributed system in which
particular tasks may use any of a set of equivalent
resources from one of several operating systems or
endsystems.

Problem: An adaptive DRE system must have the
ability to decide when adaptations should occur.
Additionally, it should have coherent decision logic
that can (1) determine how to improve an allocation
and (2) issue commands to carry out the steps
needed for reallocation.

Forces: Choices of which endsystem to assign a
task, or which resources within various endsystems
to allocate to the task. Allocation needs to facilitate
overall enforcement and analysis of real-time
requirements. A consistent view of global state is
needed to maintain properties such as causality. A
compatible notion of scheduling policies and
parameters is needed, among possibly
heterogeneous application tasks. [GNDWS]

Context: Process monitoring and fault diagnosis
techniques have existed for decades and have been
used in the engineering of such complex systems as
the space shuttle and the Aegis combat system.

 3

Forces: Queuing in low-level middleware adds
overhead but is useful to reorder requests
dynamically. Static priority lanes avoid overhead
but require early de-multiplexing to avoid priority
inversions. Multiple forms of scheduling can be
applied at the local endsystem, each with its own
strengths and weaknesses in the face of other
forces. Furthermore, OS level support of different
scheduling forms may differ across platforms.

Forces: The allocation of resources for DRE
systems involves guaranteeing timing constraints
that involve chains of multiple software
components that span multiple computing and
network resources. This requires knowledge and
analysis of multiple resources and multiple
application services.

Solution: Describe the real-time and resource
requirements of the DRE application software.
Define and implement a controller function that can
determine corrective allocation needed to restore
the system to its desired state. Provide an interface
to the DRE application software for use by the
controller.

Solution: Provide customized forms of scheduling
in middleware on each endsystem to offer the most
effective forms of local request management
available for each operating system and application.

Resulting Context: This pattern relies on selection
of a particular endsystem scheduling pattern for its
implementation, such as the endsystem scheduling
patterns discussed in [GNDWS].

Resulting Context: Applying this pattern will
provide the actuation mechanisms for carrying out
reallocation decisions. In addition to this pattern,
applying the Resource and Process Monitoring
pattern will provide the information needed for
good decisions in the controller.

Rationale: Supporting flexible scheduling
strategies in local middleware has been shown
effective for complex DRE applications[GSC].

Rationale: This pattern helps especially in adaptive
DRE systems by providing the decision-making
capability that determines when and how resources
are reallocated. Schedulability analysis can be
applied to a proposed reallocation to determine if
key real-time time constraints can be met.
Techniques such as rate monotonic analysis exist
for performing schedulability analysis. In a broader
sense, control systems technology builds controllers
that assess a plant’s state and calculate specific
control actions that can help to restore the plant to a
desired state through control (resource allocation)
actions.

◊ ◊ ◊

Name: Local Performance Monitoring

Problem: Some forms of scheduling in local
middleware require closed loop feedback for
effective management, particularly of dynamic
loads.

Context: Applications where scheduling controllers
at the local middleware and distributed middleware
levels would benefit from more complete
information about application progress and other
run-time information. 2.2 New Local Middleware Patterns
 Forces: Monitoring must not extract an undue
penalty in overhead or even more importantly in
jitter. Particular kinds of information, such as
timing specifications, may cross thread or even
process boundaries and must account for nuances
such as locking. Correct instrumentation often
requires not only that system performance metrics
be taken, but details of where and under what
conditions the metrics are gathered.

Name: Request Management

Problem: Requests arriving from multiple remote
endsystems, or from local endsystem events, must
be managed consistently on the local endsystem.

Context: Distributed systems in which end-to-end
and local timing requirements must be achieved
through local enforcement mechanisms.

 4

Resulting Context: Does not tie to any lower level
patterns that are needed to complete this pattern.

Solution: Use efficient techniques such as inline
methods, metrics data caches, and conditionally
compiled probes to instrument the local middleware
infrastructure. Feed back the gathered information
to dispatchers, schedulers, and higher-level resource
controllers and monitors.

Rationale: Good decisions require good
information. Decision-making is strongly
constrained by the information that is used. The
information needs vary, depending on context.
Having a flexible way of gathering required
information is needed.

Resulting Context: Additional instrumentation
such as application component upcall adapters for
timing profiles and deadline success and failure
detection are often useful at the local middleware
level. In doing so, the local middleware enables
metrics collection with low invasiveness to
application components themselves.

◊ ◊ ◊

Name: Resource and Process Control

Problem: The essence of the problem is the need to
be able to carry out resource allocation decisions.
For every resource that is to be used, access to it
must be provided to allow adjustment of
appropriate properties.

Rationale: Dynamic techniques such as feedback
control scheduling[LSTS], cancellation of futile
operation chains[Gill], and adaptive
rescheduling[Corman], rely on feedback
information for performance tuning and assurance.

Context: Tool sets provided in all modern
operating systems. Open APIs for accessing such
tool sets.

2.3 New OS Patterns
 Name: Resource and Process Monitoring Forces: Load balancing systems (e.g., [CONDOR],

[MOSIX]) provide and employ control mechanisms
such as process migration, priority control, and
cache configuration. Every system that tries to
dynamically control resource allocation for a DRE
system needs such interfaces. Exposing such
information in a systematic manner is important.

Problem: Decision-making is important to the
proper functioning of the system, and so needs to be
aware of the functioning of various entities. Thus, a
sensory component is needed to enable the resource
allocator to make good decisions.
 Context: A foundation of information sources
exists in operating systems and computer hardware.
Open and extendable APIs for information system
services are available.

Solution: Determine the set of external control
mechanisms needed in general; define APIs for
accessing them. Implement functionality required to
deliver the control mechanisms. Select desired
mechanisms and incorporate into system being
constructed.

Forces: Every operating system makes such
information available. Every system that tries to
determine what going on in a DRE system uses
such information. The scheduling function inside of
an OS keeps track of such information. Exposing
such information in a systematic manner is
important.

Resulting Context: Does not tie to any lower level
patterns that are needed to complete this pattern.

Rationale: This is the actuator that performs a
resource allocation action at the request of the
resource allocation decision maker.

Solution: Maximize accessibility to the information
through a catalog (name space) of data sources.
Implement functionality required for access to data
sources. Select desired features from catalog and
incorporate into system being constructed.

 5

Unmanned Air Vehicle: The UAV application is a
prototype system developed by BBN as part of a
US Navy program at NSWC [KRKPS]. A UAV
(unmanned air vehicle) is a remote controlled
aircraft that provides video feeds of an engagement
to viewers onboard ships and/or on the ground.
Several UAVs may be active at any given time,
sending video of various targets or enemy locations.

2.4 New Multi-Level Patterns

Name: System Specification

Problem: All levels of the distributed system need
to have access to the QoS requirements of the
application and of the system. The UAV application is made up of four main

parts: the video sender, the video distributor, the
video receiver and the video viewer. The video
sender is the process that takes the video feed from
the UAV camera and sends it, through video
streams, to the distributor. The video distributor
receives a video stream from the sender, and sends
it to video viewers on ship or on ground. The video
receiver receives the video stream from the
distributor and the viewer displays the video for
users to analyze.

Context: Applications in which QoS requirements
must be specified in order for the proper control and
adjustment to occur.

Forces: This pattern is affected by performance
constraints, resource allocation semantics,
constrained resource supply, coordination and
communication, activities spanning endsystems, and
competing QoS requirements.
 The above components make up the core of the

UAV application, however other parts can and have
been added to enhance the utility of the system. For
example, the distributor can also send video to an
automatic target recognition (ATR) system, which
examines the images and recognizes key targets.
From this system there might be feedback to the
UAV to direct it towards the target. The UAV
application can run under various scenarios, with
different combinations of the above components. In
the simplest case, there would be one sender, one
distributor and one receiver / viewer. However,
there can be multiple UAVs flying over different
regions and sending video streams to multiple
distributors. The distributors can send the video
streams to multiple viewers, as well as other
analysis systems, like the ATR.

Solution: Provide a consistent definition of the
system QoS requirements in a form that can be
enforced, e.g., by the Resource and Process Control
pattern. Offer both reflective information for
enforcing control law boundaries, and a priori
definitions of system level limits and assurances.

Resulting Context: This pattern does not rely on
other patterns to provide its functionality. It does
provide system information to the Resource and
Process Control pattern as well as the End-to-end
Allocation pattern.

Rationale: Each level of the system can have
access to the system specification and use the
information as needed. Further, each level of the
system can provide reflective system information to
share with the other levels for future decision-
making.

Avionics Mission Computing: The Bold Stoke
platform is a domain-specific middleware
framework developed for Avionics Mission
Computing applications in production military
aircraft by the Boeing Company. A basic Bold
Stroke application consists of avionics software
components performing operational flight program
(OFP) tasks, e.g., for navigation, heads-up displays,
and vehicle airframe monitoring, hosted on COTS
middleware and real-time operating systems and
running on several mission computers connected by
a VME bus or other highly efficient and predictable

3 Example DRE Applications

Mission-critical distributed real-time and embedded
(DRE) systems come in many forms, each with its
own sets of requirements and resources. In this
section we consider three separate applications,
each originating from a different defense-related
research program. We first give an overview of
each application.

 6

The computational demands on the system
varied from fairly static to quite dynamic,
depending on the nature of the tracking task.
Significant execution mode changes occurred when
a target was first detected, since resources were
allocated to tracking it, which required the agent
noticing its existence to start negotiating with
agents controlling radars that had the potential to
track it as it moved in any of several possible
directions. The agent support structure, including
both middleware and operating system components,
made a wide range of information available to
thread within an agent, and provided a number of
ways in which an agent could control its own
execution.

interconnects. Application data is passed between
processors by a domain-specific data replication
middleware service, and processing and data
concurrency is mediated by a real-time CORBA
Event Service.

As in the UAV example, a basic Bold Stroke
application may be supplemented by additional
processing, filtering, and coordination components.
For example, in the Weapon System Open
Architecture (WSOA) program, the ability to
download target imagery from a remote C2 aircraft
was added to a F-15 cockpit application [Corman].
In the Adaptive Software Test Demonstration
(ASTD) phase 2 program, a reasoning application
was combined with the basic OFP[GSGH]. With
each additional capability comes an increasingly
rich set of application requirements and resource
constraints, which must be resolved within the
overall resource management design.

3.1 Unmanned Air Vehicle Scheduling
Requirements

The main real-time requirement of the UAV

application is that video streams must be delivered
in such as way as to provide a display that is easily
viewable by a human (or by an application like the
automatic target recognition system described
above). This might require, for instance, that the
frames of an MPEG video be delivered at a rate no
less than 30 frames per second.

Autonomous Agent Teams: The driving
application for the Autonomous Negotiating Teams
(ANTS) project at the University of Kansas
provides good examples of a number of the patterns
within the Resource Rationalizer pattern language.
The driving application consisted of a number of
small radars capable of providing a range of
information to the agents controlling each radar.
Negotiation among agents was used to resolve
conflicts over how resources were used to track
targets moving through the area covered by a set of
agent-controlled radars. Several agents were co-
resident on a given computing platform, and thus
had to negotiate with each other about access to
computational resources as well as about what
information would be collected from a given radar
and when it would be collected.

Further real-time requirements are added to the
application when systems such as ATR are
included. In this case, control signals sent to the
UAV must be delivered in a timely fashion so that
the UAV can react and move towards the required
target before it moves out of range.

To meet the real-time constraints imposed by
the above requirements, the UAV application may
need to adapt to dynamic system conditions. For
example, if a distributor host is receiving and
sending a heavy load of video, it may become
overloaded. In this case, some of the load may need
to be allocated to a distributor on a different host.
Also, when the ATR system finds a critical target, it
is crucial that the control signal be delivered to the
UAV on time. If there is heavy load on the ATR
host, or on the UAV itself, this time constraint may
be violated. Thus, the importance or criticality of
the control task, and all other tasks in the system,
must be taken into account when determining what
load may be sacrificed in order to maintain overall
system timeliness.

For the purposes of this discussion the
essential aspects of the ANTS application are that
1) agents were required to make decisions under
time constraints, 2) more than one pair-wise
negotiation between a given agent and others could
proceed concurrently, 3) agents shared computing
resources and thus could affect each other's
execution behavior, and 4) agents had to be
reflective about their own and other agents'
execution behavior because they had to be able to
negotiate about computing resources as well as
information from specific radars.

 7

To demonstrate the usefulness of the Resource
Rationalizer pattern language, we trace through the
language here to show what parts are necessary to
support the real-time requirements of the UAV
application. We will look at two different versions
of the UAV application: a static system and a
dynamic system.

3.1.1 Static UAV Application

The static UAV application consists of a single
UAV, one distributor and one receiver / viewer pair.
Each of these components resides on a separate
host. The system remains static in that no
components are added dynamically, and the real-
time requirements, such as execution time, periods,
deadlines, are all well-known, and don’t change.
On each host, the video stream can be represented
as a periodic task with timing constraints imposed
by the required frame rate.

We present this simple application for several
reasons. First, it indicates that the pattern language
can support this type of static, real-time system.
And second, it provides a contrast to the dynamic
application that we describe next. This allows us to
demonstrate the wide range of types of systems that
the pattern language can support.

Distributed Middleware Patterns: On the
distributed level, the static UAV application applies
the Distributed Scheduling Service pattern to
provide global scheduling of the various periodic
tasks across the system. The Distributed
Scheduling Service pattern implements the
Distributed Scheduling pattern, which provides
global scheduling parameters, such as priority
assignments, to the tasks. The Global to Local
Priority Mapping pattern is necessary to provide a
mapping from global priorities to local priorities, if
priority based scheduling is being used.

The static UAV application also requires the
Service Request Allocation pattern, as implemented
by the End-to-End Allocation pattern. These
patterns would be used once, at system set-up time.
Once the allocations are made, they will not change.

Local Middleware Patterns: On the local
middleware level, the static UAV application
requires the Request Management pattern to map
service requests onto local resources and processes.

In particular, the Request Propagation pattern is
necessary to map the requests onto resources of the
various endsystems. This pattern also implements
the Distributed Scheduling pattern in the
Distributed Middleware level.

Operating System Patterns: The UAV
application requires the Resource & Process
Control pattern. Depending upon the kind of
scheduling that is used in the UAV application, it
will require the Resource & Process Control pattern
to implement either the Planned Scheduling pattern
or the Priority-Driven Scheduling pattern. The
decision of which type of scheduling to use will
affect all of the levels of scheduling patterns.

Multi-level Patterns: In the static UAV
application, the only multi-level pattern that is
required is the Distributed Temporal Coherency
pattern. It is critical that the system maintain a
consistent view of time so that the required timing
constraints can be understood and upheld on all
levels of the hierarchy, as well as all parts of the
distributed system.

3.1.2 Dynamic UAV Application

The dynamic UAV application consists of several
UAVs, flying in different regions, which may
intermittently send video streams when they reach a
particular location. There are several distributors
that can receive the video streams, and these
distributors can send the video streams to various
receivers that will display the video on a viewer, or
will provide input to an ATR system. The dynamic
nature of this application makes it impossible to
predict which tasks will execute when, and
therefore will rely on dynamic scheduling, and load
management. The specific tasks in this application
that need to be schedule include the periodic
execution of video sending and receiving on the
UAV hosts, the distributor hosts, and the receiver /
view hosts. Also, tasks within the ATR that
recognize and respond to targets found in the video
streams must be scheduled as well. These tasks will
be aperiodic, as they will occur dynamically when
targets are found. In this section we describe the
patterns in the Resource Rationalizer pattern
language that this dynamic UAV application would
use.

 8

Distributed Middleware Patterns: As in the
static version of the application, the dynamic UAV
requires the Distributed Scheduling Service pattern
and the Distributed Scheduling pattern. In this case,
the specific algorithms that will be used to
implement the strategies within the patterns must be
able to assign real-time parameters (such as
priorities) to both periodic (video streams) and
aperiodic (ATR) tasks. The Global to Local
Priority Mapping pattern is again necessary if the
application is implemented using priority-based
scheduling.

The Service Request Allocation pattern is
required in the dynamic UAV application to
allocate the tasks to resources. As in the static
UAV, this pattern will implement the End-to-End
Allocation pattern that is required to ensure that the
allocation of tasks across the system will meet the
specified timing constraints. Specifically, this may
involve choosing one distributor process over
another to handle a particular video stream based
upon the current and expected loads on the hosts
involved. Unlike the static UAV, this dynamic
application may also require reallocation of
resources if any of the hosts becomes, or is
predicted to become, overloaded. At this level, the
Global Overload Management pattern can be used
to determine how to handle the problem. For
example, if the host containing the ATR becomes
overloaded, and it has found a critical target, the
ATR’s task(s) may be deemed more important, or
critical, than other tasks on that host. Those less
important tasks may need to be sacrificed, or
reduced in quality in order to continue to meet the
timing constraints of the important ATR tasks.

Local Middleware Patterns: At the local
middleware level, the dynamic UAV application
requires the Request Management pattern. In this
case, this pattern can be implemented using the
Request Propagation pattern, the Request Pacing
pattern, and/or the Strategy Composition pattern.
This is because in the dynamic application it may
be necessary to allow the endsystem to adjust to the
dynamic system conditions. For example, the
Request Pacing pattern could pace the individual
frames in the periodic sending process in order to
keep them separated in time. The Strategic Request
Reordering pattern may also be used if certain tasks

are deemed to be more important than others, such
as the ATR example described above.

Operating System Patterns: The dynamic UAV
application requires several operating system level
patterns in order to ensure that the scheduling
decisions made at the higher levels are enforced on
the individual hosts within the distributed system.
As with the static application, the Resource &
Process Control pattern can be implemented using
either the Planned Scheduling pattern or the
Priority-Driven Preemptive Scheduling pattern.
However, the dynamic version of the application
also requires the Resource & Process Monitoring
pattern because the system must be able to monitor
the system to determine if timing constraints are
being upheld.

Multi-level Patterns: Several multi-level patterns
are required in the dynamic UAV application,
which are not necessary in the static version. This
includes the Software Performance Monitoring &
Diagnosis pattern, the System Level Control
pattern, and the Application Level QoS Adjustment
pattern. Each of these patterns is necessary to allow
each of the levels in the pattern language to monitor
the system, and to adapt to the changing system
conditions. For example, if a new viewer process
becomes active, and it begins to receive a video
stream from a particular distributor, the host that the
distributor is on could hit some load threshold that
indicates that the system is almost overloaded. In
this case, the Software Performance Monitoring &
Diagnosis pattern will recognize the potential
problem by using the OS level Resource & Process
Monitoring pattern, as well as the Service Request
Allocation pattern to help determine where the
request should be reallocated. Then the Application
QoS Adjustment pattern will determine a different
distributor from which the viewer can receive the
video stream. This will be done in conjunction with
the Service Request Allocation pattern and/or the
Request Pacing pattern. The System Performance
Monitoring & Diagnosis pattern will also feed back,
through the System Level Control pattern, to the
Resource & Process Control pattern at the OS level.

 9

3.1.3 Further Discussion

The description of the patterns used in this
application assumed that certain scheduling
decision have not been made – i.e. priority-based
scheduling vs. planned scheduling. This
assumption was made so that the discussion above
could consider both possibilities. If one option
were chosen over another, the path through the
pattern language that is required by the application
would be more direct.

3.2 Patterns to Support Bold Stroke
Avionics Mission Computing

The real-time requirements of Bold Stroke
applications center on a periodic frame-based
model, in which each invocation of an OFP
component is invoked and must complete within
one periodic frame. Different components may run
at different rates, and concurrency is enforced by a
set of dispatching threads pushing events from a
real-time CORBA Event Service to the
components. Further real-time requirements are
introduced when features such as image download
management or reasoning networks are added. In
this case, the additional components must be
carefully scheduled so they meet their own real-
time deadlines, but do not interfere with the
deadlines of critical OFP components.

To meet the real-time constraints imposed by
the above requirements, the Bold Stroke framework
may also need to adapt to dynamic system
conditions. However the range of adaptation may
span invocation-to-invocation dynamic scheduling
all the way to manipulating imagery compression to
improve download times. Dynamic scheduling
allows the framework to reorder non-critical
invocations so that more of them can meet their
deadlines, while still isolating critical invocations
from non-critical load. Adaptive re-scheduling of
tasks can be used to ensure tasks are appropriately
assigned to frames where they can meet their
deadlines.

We continue our examination of the Resource
Rationalizer pattern language by considering the
patterns necessary to support Bold Stroke
applications. We describe three variations: a basic

OFP, an adaptive OFP, and an OFP with
autonomous reasoning.

3.2.1 Basic Operational Flight
Program

As in the UAV discussion, we first present a

simple version of the Bold Stroke application to
show direct applicability of the pattern language,
and to motivate how systems beyond those
described in this paper can be supported through
incremental application of additional patterns in the
language.

The basic application consists of distributed
avionics software components running on COTS
real-time middleware, operating systems, and
middleware. Specialized functions such as image
display processing may receive support from
dedicated hardware, but even such specialized
components communicate to other components via
the standard COTS infrastructure. Concurrency of
component invocations is mediated by a real-time
event service, within which real-time dispatching is
implemented using a number of the patterns in the
language.

Distributed Middleware Patterns: The Global-to-
Local Priority Mapping pattern was applied
manually in the early implementations of Bold
Stroke to implement a form of end-to-end priority
lanes. Recent migration of Bold Stroke to Real-
Time CORBA 1.0[PSC] interfaces provided by
TAO2 makes this pattern even more relevant in this
example. A loose form of the Distributed
Scheduling pattern is seen in this example as well,
with local schedulers informed of local method
invocation rates by components on other
endsystems.

Local Middleware Patterns: The Strategic
Request Ordering pattern was applied to
dynamically dispatch non-critical invocations
dynamically, while dispatching critical invocations
statically. The Request Partition pattern was
applied to dispatch critical invocations in different
queues and by different threads at higher priorities,
than non-critical invocations. The Strategy

2 TAO is an open-source real-time ORB available at
http://www.cs.wustl.edu/~schmidt/TAO.html

 10

 11

Composition pattern was applied to combine static
and dynamic scheduling strategies, with appropriate
preservation of criticality isolation.

Operating System Patterns: The application
depended on a POSIX-like COTS operating system,
with Priority-Driven Preemptive Scheduling as the
primary OS-level pattern used by the application.

Multi-level Patterns: The System Specification
pattern was applied at all levels of the application,
from the hardware to the operating system to the
middleware, to the distribution and components and
their specifications.

3.2.2 Adaptive Operational Flight
Program

The adaptive OFP application consists of an F-15
cockpit communicating with a remote C2 aircraft to
download imagery for enroute mission redirection.
The F-15 cockpit system is fundamentally an
extension of the basic OFP application to include
dynamic adaptation of QoS for downloaded image
tiles. The main trade-off is between image quality
and download timeliness, with compression levels
used to control this trade-off. In addition to the
patterns described in the basic OFP application
example, the following additional patterns were
applied to the adaptive version.

Local Middleware Patterns: The Local
Performance Monitoring pattern was applied to
provide feedback to higher-level resource
management by QuO[ZBS] and a Real-Time
Adaptive Resource Manager (RTARM)
[HJHMLKSZB]. In addition, the Request
Management control pattern was applied to
reschedule not only priorities of requests, but also
rates of execution of components upon direction by
the RTARM.

Multi-level Patterns: The Application Level QoS
Adjustment pattern was applied to define and allow
reasonable variations in image tile quality.

3.2.3 Operational Flight Program with
Autonomous Reasoning

The OFP application with on-line reasoning
consists of an advanced reasoning-based avionics
application[MJ] running a subset of the OFP
components used in the basic OFP example. While
OFP component invocations are engineered to be
highly predictable, reasoning tasks are inherently
less bounded, and therefore must be designed
carefully to mesh with the periodic frame-based
scheduling model used by the OFP. In addition to
the patterns described in the basic and adaptive OFP
application examples, the autonomous reasoning
OFP example applies the following patterns:

Local Middleware Patterns: The Strategy
Composition pattern is applied in a new way in the
autonomous reasoning example – not only are static
and dynamic dispatching combined for OFP
components, but task network component
dispatches are mapped into the OFP dispatching
infrastructure, so that the rates and priorities at
which reasoning tasks are dispatched are reconciled
with those of OFP tasks. In addition, the Request
Propagation pattern was applied to tunnel
dispatches from the OFP dispatcher to a higher
level dispatcher in the task network itself.

3.2.4 Further Discussion

In general, the progression from the basic OFP to
the adaptive OFP to the reasoning OFP showed a
cumulative application of patterns in the language.
Additional patterns, the majority applied at the local
middleware level, are needed to resolve the new
design forces introduced by each evolution of the
OFP example. One observation worth noting is that
the example assumes a POSIX OS, which means
the Priority-Driven Preemptive Scheduling pattern
is necessarily the basis for implementing the
Request Partition pattern at the local middleware
level.

 12

3.3 Patterns to Support Teams of
Autonomous Agents

Real-time execution constraints arise in a number of
different ways in the ANTS application. The most
obvious is that as a target moves through the
tracking area, decisions about which radars will
measure its progress must be made while those
measurements are still possible. Negotiation is
required among agents to resolve any conflicting
demands on a given radar, which can arise not only
because it is being asked to watch more than one
target during the same time period, but also because
it is currently out of service due to calibration, or
because the agent controlling it is reluctant to
consume the power required to perform the
requested service. The negotiations themselves have
deadlines deriving ultimately from the requirements
of the tracking task, as a given agent must ensure
that it can resolve a given negotiation in time to try
another if the current negotiation fails.

This application area is thus an unusual venue
for real-time in that agents are plagued by
incomplete knowledge of the situation, conduct
computations that have no worst case execution
time, at least no known worst case, and yet they
must try to satisfy deadlines, using their awareness
of various aspects of the situation, and the control
over the use of system resources provided to them.
While agents cannot guarantee to succeed, they are
nonetheless responsible for doing as well as they
can, which requires both an awareness of the
system state, the overall goals of the system, but
also a willingness to cooperate to achieve the best
system-wide result.

One of the most interesting features is the
dynamic nature of both the system requirements,
and the resource allocations designed to try and
satisfy the requirements. The agents' effort to adapt
their behavior to circumstance was supported by the
real-time scheduling server, the real-time
scheduling services library, and the OS facilities
used to allocate resources and to monitor their use.

3.3.1 Real-Time Scheduling Server

This portion of the ANTS application consisted of a
server with which each thread within a multi-
threaded agent negotiated to obtain CPU resources,

which was expressed as a percentage of CPU during
a given time period. The scheduling server was a
central point at which all such requests from agents
on a given computer were resolved, and a new
explicit execution plan satisfying the selected agent
thread execution constraints was constructed. Note
that not all requests were satisfied, as the total
requested CPU could easily exceed the total
available.

Feedback to the agent threads could include
counter-offers to the agents' requests, as well as
simple information about what other agent threads
were possible candidates for negotiation, since they
were current holders of the desired resource. Agents
could then revise their requests to conform to
current conditions, or they could go gather further
information and then negotiate with current
consumers of the CPU to obtain more.

Distributed Middleware Patterns: The scheduling
server exhibited no distributed patterns explicitly,
although it was responsible for handling overload in
the form of excessive resource requests. This is an
indication that it may play a role in supporting the
Global Overload Management pattern.

Local Middleware Patterns: The scheduling
server was an implementation of the Request
Management pattern, and also the Request
Partitioning pattern. The way in which the
scheduling server constructed the agent execution
schedules also included some aspects of the Request
Pacing pattern, since the constructed schedules also
controlled the rate at which the requested CPU
resources were delivered to the threads.

Operating System Patterns: At the operating
system level, the scheduling server took advantage
of the Planned Scheduling pattern within the
KURT-Linux operating system to implement the
Share Based Scheduling pattern. This approach
used the Resource and Process Control pattern
within the kernel to accomplish its goals.

Multi-level Patterns: The scheduling service
implementation spanned the local middleware and
OS levels of the system. Schedule construction took
place at the middleware level, but the execution of
the constructed execution plan necessarily took
place within the OS.

 13

3.3.2 RTSS Library

The Real-Time System Services library provided an
API to the RTSS for use by the agents
implementing the simple protocol used by agents to
request CPU resources. It also provided other
services.

The CPU consumption behavior and current
allocation for each agent thread was measured by
the OS and made available to all threads through an
RTSS library interface to new OS capabilities.
Agent threads when looking for threads currently
using significantly less than their allocated CPU
share used this information, so they might be able to
negotiate a transfer. The RTSS library also
implemented an interface that permitted agents to
adapt their behavior to the passage of time. Most
actions of an agent had a deadline by which it
should be completed. The foundation of the
approach was the use of a simple set of state
variable values to express the passage of time
relative to the deadline. This system thus made it
fairly simple to have the agent code follow one path
through its code when it was still "early" in its
execution period, but to decide to follow a different
and more expedient path when it was getting "late"
as the deadline became "close".

Local Middleware Patterns: At the middleware
level, the RTSS implements the Request
Partitioning pattern since it has to resolve conflicts
among a set of potentially infeasible resource
requests, deciding to actually perform some feasible
subset. The Request Propagation pattern is also
supported in the RTSS, albeit somewhat weakly,
when one agent begins negotiation with another, as
the deadline of the negotiation now influences what
happens on the systems supporting both agents.
The Strategic Request Reordering pattern is
implemented in the negotiation between the agents,
as supported by the RTSS library, and the
scheduling server.

Operating System Patterns: The Share Allocation
pattern is implemented by the scheduling server and
library, which build an explicit execution plan using
the explicit plan pattern to implement the shares.
Hierarchical scheduling was strongly motivated by
this application as we wanted to be able to express
the idea that a given set of resources was allocated

to the set of threads performing a negotiation, two
threads in different agents, or that we wanted to
allocate resources to the set of threads
implementing the agent as a group. The current
model only permitted allocation to threads
individually. The best example was that a
"negotiation" thread was actually a pair of threads,
which were effectively co-routines. Only one
executed at a time, while the other was blocked.
These pairs should at least have been given CPU
resources as a group. Synchronous locks were used
between these pairs.

Multi-level Patterns:
The RTSS library implementation of the subsystem
making agent thread resource use status available to
other threads was a multi-level combination of the
Local Performance Monitoring pattern at the local
middleware level, and of the resource and Process
monitoring pattern at the OS level.

3.3.3 Data Streams

The data streams approach to performance data
gathering was used to make both system level and
user level performance information available for
system evaluation, and in some cases for use by
agents during system execution.

Distributed Middleware Patterns: Distributed
scheduling is present in the sense that an agent is
negotiating into the future about which agents will
track a target, and what agents will assume
responsibility for further tracking as a target moves
farther and farther away from its original observer.
In this case it was implemented at the application
level.

Local Middleware Patterns: The Data Streams
User Interface (DSUI) implements the Local
Performance Monitoring pattern.

Operating System Patterns: The Data Streams
Kernel Interface (DSKI) implements the Resource
and Process Monitoring pattern.

Multi-level Patterns: We used the Network Time
Protocol (NTP) tools to implement the Distributed
Temporal Consistency pattern to help keep
performance measurement and agent based control

 14

of system behavior coordinated across computer
system boundaries. The enabled agents to talk about
an absolute time at which to perform actions, and
then be able to do them simultaneously, within the
limits of the clock synchronization.

4 Conclusions and Future Work

In this section we summarize the contributions of
this paper, in terms of concrete recommendations to
developers, based on our observations on both the
Resource Rationalizer pattern language and the
example systems we’ve studied. We also note areas
of future work related to this effort, particularly in
the area of combining features of the systems
studied, and the corresponding mapping and
combination of the segments of the pattern
language that apply to each.

4.1 Recommendations

Based on our experiences mapping the Resource
Rationalizer pattern language to several DRE
systems, we have several recommendations for
developers seeking to apply large-scale pattern
languages.

Identify related systems and map the language to
them as well. As each system is developed within
its own set of design forces, the particular patterns
in the language that apply may differ from system
to system. Each such mapping reveals new insights
into the paths through the pattern language that are
most common, and therefore presumably most
important. Furthermore, differences between the
paths may serve to distinguish key classes of
applications.

Look for higher-level relationships among the
patterns. Common paths through a large-scale
pattern language are likely indicators of underlying
structure. When different patterns play similar
roles, either for different problems or in different
contexts, it may be useful to look for deeper
structure. For example in the Resource Rationalizer
pattern language, an overarching controller-
actuator-sensor architectural structure is evident.

Consider whether new patterns are revealed.
When considering both the mapping to particular
examples and the higher-level structure of a pattern
language, it may be useful to examine a kind of
closure on the language: whether new patterns are
revealed by these examinations.

4.2 Future Work: System Composition

We conclude by noting that as developers
increasingly move from building individual systems
to composing systems of systems, the paths through
pattern language that each individual system traces
may serve as a guide to their integration. We
describe two forms of integration, and as a “thought
experiment” explore ways in which the applications
described in this paper might notionally be
combined, based on the patterns they embody.

System of Systems: The first kind of integration
involves a system-of-systems approach in which
individual systems are interconnected though
possibly loosely coupled to form a larger system.
For example one can envision a military battlespace
infosphere[Cybenko] in which fighter aircraft,
unmanned aerial vehicles, and autonomous ground
robots all communicate and coordinate their
activities through a central C2 aircraft. This kind of
coordination requires specification of additional
end-to-end real-time parameters that are mapped
into each subsystem, and possibly an overarching
control function provided by the C2 system. We
believe that even for loose coordination of
sufficiently complex systems, additional research is
needed into the best techniques for applying
scheduling patterns broadly at all levels of the
Resource Rationalizer language across the
combined system.

Composite System: Issues of control loop tightness
and pervasiveness of integration of the individual
systems define a spectrum from loosely to tightly
integrated systems. The notion of a tightly
integrated composite system lies at the opposite end
of the spectrum from the loosely federated system
of systems approach described above. For example,
we might consider extensions to the reasoning OFP
described in Section 3.3, which combine the
elements of the ANTS and dynamic UAV
applications. Closely integrating dynamic video

 15

streaming, a reasoning OFP, and negotiation
subsystems within each UAV would support
collaborating teams of UAVs with increased
autonomy and robustness in target acquisition and
tracking, particularly for elusive time-critical
targets.

To achieve the fidelity and pervasiveness of
control needed in this much closer degree of
integration, we believe new research is needed to
examine the fine-grain interactions between the
paths through the language for each subsystem,
particularly where some design re-factoring is
indicated by the new combinations of design forces.
Furthermore, new inter-level interactions within the
pattern language itself appear to be important areas
of research. For example, it is useful to consider
how share-based and priority-based scheduling
patterns can be inter-related for appropriate
isolation of critical and non-critical functionality.

We conclude by noting a few research questions
that span the spectrum of loose to tight integration
of scheduling throughout a combined system. Does
the choice of composing systems of systems versus
integrating more closely depend largely on issues of
scale? I.e., beyond a certain point, does close
integration become intractable, mandating a system-
of-systems approach? If so, at what point does this
transition occur? Does that observation in turn
offer insights into how to push the transition farther
out, allowing higher fidelity integration of
increasingly large and complex systems of systems?

References

 [CONDOR] M. Lizkow, M. Livney, and M. Mutka, Condor: A
hunter of idle workstations, Proc. 8th International Conference
on Distributed Computing Systems, San Jose, June 1998.

[Corman] D. Corman, WSOA-Weapon Systems Open
Architecture Demonstration - Using Emerging Open System
Architecture Standards to Enable Innovative Techniques for
Time Critical Target (TCT) Prosecution, Proceedings of the
20th IEEE/AIAA Digital Avionics Systems Conference
(DASC), Daytona Beach, FL, October, 2001.

[Cybenko] G. Cybenko, et al., Final Report of the AFOSR/IF
Workshop on Infospheric Science, George Mason University,
July 2001.
http://actcomm.thayer.dartmouth.edu/task/InfosphereFinalReport.ppt

[Gill] C. Gill, Flexible Scheduling in Middleware for
Distributed Rate-Based Real-Time Applications, Doctoral
Dissertation, Washington University, St. Louis, MO, December
2001.

[GNDWS] C. Gill, D. Niehaus, L. DiPippo, V. F. Wolfe, V.
Subramonian, Resource Rationalizer: a Pattern Language for
Multi-Scale Scheduling, 9th Conference on Pattern Languages
of Programs, Monticello, IL, September 2002.

[GSC] C. Gill, D. Schmidt, R. Cytron, Multi-Paradigm
Scheduling for Distributed Real-Time Embedded Computing,
IEEE Proceedings Special Issue on Modeling and Design of
Embedded Software, October, 2002.

[GSGH] C. Gill, D. Sharp, P. Goertzen, J. Hoffert, An
Evolution of QoS Context Propagation in Event-Mediated
Avionics Software Architectures, Proceedings of the 20th
IEEE/AIAA Digital Avionics Systems Conference (DASC),
Daytona Beach, FL, October 2001.

[HJHMLKSZB] J. Huang, R. Jha, W. Heimerdinger, M.
Muhammad, S. Lauzac, B. Kannikeswaran, K. Schwan, W.
Zhao and R. Bettati, RT-ARM: A Real-Time Adaptive Resource
Management System for Distributed Mission-Critical
Applications, Workshop on Middleware for Distributed Real-
Time Systems, RTSS-97, IEEE, San Francisco, CA, 1997

[KRKPS] D. Karr, C. Rodrigues, Y. Krishnamurthy, I. Pyarali,
and D. Schmidt, Application of the QuO Quality-of-Service
Framework to a Distributed Video Application, Proceedings of
the 3rd International Symposium on Distributed Objects and
Applications, OMG, Rome, Italy, September 2001,

[LSTS] C. Lu, J. Stankovic, G. Tao and S. Son, Feedback
Control Real-Time Scheduling: Framework, Modeling, and
Algorithms, Journal of Real-Time Systems, Special Issue on
Control-Theoretical Approaches to Real-Time Computing,
Kluwer, 2002.

[MJ] B. McBryan and M. Joy, May 1999,
Rotorcraft Pilot’s Associate Shared Memory Task
Network Architecture, AHS International Forum 55
Proceedings, AHS.

[MOSIX] A. Barak and O. La'adan, The MOSIX Multi-
computer Operating System for High Performance Cluster
Computing, Journal of Future Generation Computer Systems,
13(4-5), March 1998, 361-372.

[PSC] I. Pyarali, D. Schmidt, and R. Cytron, Achieving End-to-
End Predictability of the TAO Real-time CORBA ORB, 8th
IEEE Real-Time Technology and Applications Symposium,
San Jose, CA, September 2002.

 [ZBS] J. Zinky, D. Bakken and R. Schantz, Architectural
Support for Quality of Service for CORBA Objects, Theory and
Practice of Object Systems 3(1), John Wiley and Sons, 1997.

	Mapping a Multi-Level Scheduling Pattern Language to Distributed Real-Time Embedded Applications
	Abstract
	1 Introduction
	2. The Resource Rationalizer Pattern Language
	2.1 New Distributed Middleware Patterns
	2.2 New Local Middleware Patterns
	2.3 New OS Patterns
	2.4 New Multi-Level Patterns
	3 Example DRE Applications
	3.1 Unmanned Air Vehicle Scheduling Requirements
	3.1.1 Static UAV Application
	3.1.2 Dynamic UAV Application
	3.1.3 Further Discussion
	3.2 Patterns to Support Bold Stroke Avionics Mission Computing
	3.2.1 Basic Operational Flight Program
	3.2.2 Adaptive Operational Flight Program
	3.2.3 Operational Flight Program with Autonomous Reasoning
	3.2.4 Further Discussion
	3.3 Patterns to Support Teams of Autonomous Agents
	4 Conclusions and Future Work
	4.1 Recommendations
	4.2 Future Work: System Composition
	References

