
Mapping a Multi-Level Scheduling Pattern Language                 
to Distributed Real-Time Embedded Applications1 

 
Christopher Gill Douglas Niehaus Lisa DiPippo and Victor Fay Wolfe Lonnie Welch 

cdgill@cse.wustl.edu niehaus@ittc.ku.edu {dipippo,wolfe}@cs.uri.edu 
 

welch@ohio.edu 

Department of CSE Department of EECS Department of CS School of EECS 
Washington University University of Kansas University of Rhode Island Ohio University 

St. Louis, MO Lawrence, KS Providence, RI Athens, OH 

 

Abstract 
 
Mission-critical Distributed Real-Time and Embedded 
(DRE) systems pose significant resource management 
challenges at and across all architectural levels, i.e., the 
operating system and low-level middleware on each 
endsystem, and distributed services spanning multiple 
endsystems.  Furthermore, the challenges posed by one 
application may differ from the challenges posed by 
another.  As developers of complex DRE applications 
move increasingly from building individual systems to 
composing systems of systems, it is imperative to 
identify approaches that can reconcile design forces 
throughout a multiplicity of architectural levels and 
application scenarios.  This paper makes two 
contributions to the design of resource management for 
DRE systems.  First, it describes our recent 
refinements to a pattern language for resource 
scheduling in DRE systems.  Second, it examines how 
the pattern language applies to several example DRE 
systems, thus giving guidance to developers of both 
individual DRE systems and composite systems. 

                                                      
1 This work was funded in part by The Boeing Company, the DARPA Quorum and ANTS programs, and ONR. 

1 Introduction 
  
We have identified, and are continuing to extend and 
refine our description of, a pattern language consisting 
of scheduling-related design patterns at and across 
multiple architectural levels.  We call this pattern 
language “Resource Rationalizer” [GNDWS], as its 
primary purpose is to guide the design of scheduling 
architectures toward a rational resolution of the 
resource constraints at and across each architectural 
level, with the end-to-end requirements of complex 

mission-critical DRE applications. This paper is 
structured as follows.   Section 2 describes the 
Resource Rationalizer pattern language, and our recent 
extensions and refinements to it.  Section 3 describes 
three example DRE applications in detail, and 
considers the paths through the pattern language 
consisting of the patterns used in each application.  
Finally, Section 4 offers concluding remarks and 
describes future work on the pattern language and its 
applications to DRE systems. 

2. The Resource Rationalizer Pattern 
Language 
 
Figure 1 illustrates the Resource Rationalizer pattern 
language. In addition, Figure 1 reflects our recent 
identification of higher-level architectural roles played 
by the patterns in the language: control patterns for 
reasoning about resource management, actuation 
patterns for adjusting resource allocations and sensing 
patterns for gathering performance and resource data.  
Taken together, the control, actuation, and sensing 
roles at each level form an integrated control 
architecture for monitoring, evaluating, and adapting 
resource allocations and steering real-time 
performance end-to-end.  Each pattern’s background 
shading in Figure 1 reflects its higher-level role.  
In considering these roles, we have identified several 
additional patterns in the language.  At the distributed 
middleware level we have identified the Distributed 
Performance Monitoring pattern, and have also 
divided what we formerly called the Global Resource 
Allocation pattern into the distinct End-to-End 
Allocation and Service Request Allocation patterns. At 
the local middleware level, we have identified the  
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Figure 1: Resource Rationalizer Pattern Language 

 

Request Management and Local Performance 
Monitoring patterns. At the OS level, we have 
newly identified the Resource and Process 
Monitoring and Resource and Process Control 
patterns. 

2.1 New Distributed Middleware 
Patterns 
 

Name: Distributed Performance Monitoring 
 
Problem: When determining when and how to 
reallocate computing application services  as well 
as computing and network resources, it is necessary 
to know the state of the distributed system. This 
involves the construction of accurate models of 

process resource needs and performance; 
additionally, the utilization and state of the 
resources must be modeled. 
Context: A pool of distributed computers is 
interconnected via a network. A set of distributed 
real-time application systems are using the 
resources. 
 
Forces: To provide a meaningful and consistent 
view of the software and resource components of a 
distributed real-time system requires the 
aggregation of monitoring information collected at 
lower levels. The aggregation must be performed in 
an efficient and accurate manner. 
 
Solution: Define global metrics that characterize 
relevant aspects of performance for the software 
systems and important aspects of resource state. 

 2 



Solution:  Allocate tasks to the subsystems that 
yield the best chance that the specified timing 
constraints will be met.  Use schedulability 
techniques to predict the best subsystem on which 
to allocate the requested task. Further, consider 
future tasks when making this allocation.  This may 
be done by examining prior distributions of tasks in 
similar applications, as well as by choosing 
subsystems on which execution time will likely be 
freed soon, i.e. subsystems that have aperiodic tasks 
ending. 

Select and gather the monitoring information 
needed to calculate the metrics and compute the 
metrics. Be sure that frequency of information 
gathering is sufficient to allow the metrics to have 
the desired accuracy, but also be careful not to 
impose too large of an overhead on the system 
during the gathering process. 
 
Resulting Context: Makes use of lower level 
metrics provided by the Local Performance 
Monitoring pattern, and indirectly uses metrics 
provided by the Resource and Process Monitoring 
pattern. 

 
Resulting Context:  Load allocation techniques as 
described above may require some run-time 
analysis of current system conditions.  This will 
incur added overhead to the execution of the 
application.  For this reason, load allocation 
algorithms should be designed and implemented 
carefully to utilize as much precomputed system 
information as possible, and avoid unnecessary 
analysis. Alternatively, simple load allocation 
techniques (like first fit, or simple balancing 
algorithms) may be sufficient and would incur less 
overhead. The trade-off here is that the simpler 
techniques will be less predictable, potentially 
requiring reallocation of resources in the future. 

 
Rationale: Effective allocation of resources for 
dynamic application systems requires the ability to 
capture the state of the system accurately. 
Allocation decisions are only as  good as the 
information used to make the decisions. 
 

◊ ◊ ◊ 
 

Name: Service Request Allocation 
 

Problem:  When deciding among several 
subsystems on which to place the execution of a 
particular task, certain resources can become 
overutilized while others may be underutilized.  
This poor global allocation of resources could cause 
some tasks to unnecessarily violate timing 
constraints.  There is a need to fit these tasks on the 
subsystems such that timing constraints of the 
current tasks are met, as well as to consider future 
dynamic tasks with timing constraints. 

 
Rationale:  This pattern will allow real-time service 
requests to be allocated such that real-time 
constraints will likely be met.  Further, the 
proactive nature of the pattern reduces the need for 
costly reactive reallocation of resources. 

 
◊ ◊ ◊ 
  

Name: End-to-end Allocation Context:  A real-time distributed system in which 
particular tasks may use any of a set of equivalent 
resources from one of several operating systems or 
endsystems. 

 
Problem: An adaptive DRE system must have the 
ability to decide when adaptations should occur. 
Additionally, it should have coherent decision logic 
that can (1) determine how to improve an allocation 
and (2) issue commands to carry out the steps 
needed for reallocation. 

 
Forces:  Choices of which endsystem to assign a 
task, or which resources within various endsystems 
to allocate to the task. Allocation needs to facilitate 
overall enforcement and analysis of real-time 
requirements. A consistent view of global state is 
needed to maintain properties such as causality.  A 
compatible notion of scheduling policies and 
parameters is needed, among possibly 
heterogeneous application tasks. [GNDWS] 

 
Context: Process monitoring and fault diagnosis 
techniques have existed for decades and have been 
used in the engineering of such complex systems as 
the space shuttle and the Aegis combat system. 
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Forces: Queuing in low-level middleware adds 
overhead but is useful to reorder requests 
dynamically.  Static priority lanes avoid overhead 
but require early de-multiplexing to avoid priority 
inversions.  Multiple forms of scheduling can be 
applied at the local endsystem, each with its own 
strengths and weaknesses in the face of other 
forces.  Furthermore, OS level support of different 
scheduling forms may differ across platforms. 

Forces: The allocation of resources for DRE 
systems involves guaranteeing timing constraints 
that involve chains of multiple software 
components that span multiple computing and 
network resources.  This requires knowledge and 
analysis of multiple resources and multiple 
application services. 
 
Solution: Describe the real-time and resource 
requirements of the DRE application software. 
Define and implement a controller function that can 
determine corrective allocation needed to restore 
the system to its desired state.  Provide an interface 
to the DRE application software for use by the 
controller. 

 
Solution: Provide customized forms of scheduling 
in middleware on each endsystem to offer the most 
effective forms of local request management 
available for each operating system and application. 
 
Resulting Context: This pattern relies on selection 
of a particular endsystem scheduling pattern for its 
implementation, such as the endsystem scheduling 
patterns discussed in [GNDWS]. 

 
Resulting Context: Applying this pattern will 
provide the actuation mechanisms for carrying out 
reallocation decisions. In addition to this pattern, 
applying the Resource and Process Monitoring 
pattern will provide the information needed for 
good decisions in the controller. 

 
Rationale: Supporting flexible scheduling 
strategies in local middleware has been shown 
effective for complex DRE applications[GSC].  

Rationale: This pattern helps especially in adaptive 
DRE systems by providing the decision-making 
capability that determines when and how resources 
are reallocated. Schedulability analysis can be 
applied to a proposed reallocation to determine if 
key real-time time constraints can be met. 
Techniques such as rate monotonic analysis exist 
for performing schedulability analysis.  In a broader 
sense, control systems technology builds controllers 
that assess a plant’s state and calculate specific 
control actions that can help to restore the plant to a 
desired state through control (resource allocation ) 
actions. 

 
◊ ◊ ◊ 
 

Name: Local Performance Monitoring 
 
Problem: Some forms of scheduling in local  
middleware require closed loop feedback for 
effective management, particularly of dynamic 
loads. 
 
Context: Applications where scheduling controllers 
at the local middleware and distributed middleware 
levels would benefit from more complete 
information about application progress and other 
run-time information. 2.2 New Local Middleware Patterns 
  Forces: Monitoring must not extract an undue 
penalty in overhead or even more importantly in 
jitter.  Particular kinds of information, such as 
timing specifications, may cross thread or even 
process boundaries and must account for nuances 
such as locking.  Correct instrumentation often 
requires not only that system performance metrics 
be taken, but details of where and under what 
conditions the metrics are gathered. 

Name: Request Management 
 
Problem: Requests arriving from multiple remote 
endsystems, or from local endsystem events, must 
be managed consistently on the local endsystem. 
 
Context: Distributed systems in which end-to-end 
and local timing requirements must be achieved 
through local enforcement mechanisms.    
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Resulting Context: Does not tie to any lower level 
patterns that are needed to complete this pattern. 

Solution: Use efficient techniques such as inline 
methods, metrics data caches, and conditionally 
compiled probes to instrument the local middleware 
infrastructure.  Feed back the gathered information 
to dispatchers, schedulers, and higher-level resource 
controllers and monitors. 

 
Rationale: Good decisions require good 
information. Decision-making is strongly 
constrained by the information that is used. The 
information needs vary, depending on context. 
Having a flexible way of gathering required 
information is needed. 

Resulting Context: Additional instrumentation 
such as application component upcall adapters for 
timing profiles and deadline success and failure 
detection are often useful at the local middleware 
level.  In doing so, the local middleware enables 
metrics collection with low invasiveness to 
application components themselves. 

 
◊ ◊ ◊ 
 

Name: Resource and Process Control 
  
Problem: The essence of the problem is the need to 
be able to carry out resource allocation decisions. 
For every resource that is to be used, access to it 
must be provided to allow adjustment of 
appropriate properties. 

Rationale: Dynamic techniques such as feedback 
control scheduling[LSTS], cancellation of futile 
operation chains[Gill], and adaptive 
rescheduling[Corman], rely on feedback 
information for performance tuning and assurance. 

  
Context: Tool sets provided in all modern 
operating systems. Open APIs for accessing such 
tool sets. 

2.3 New OS Patterns 
  Name: Resource and Process Monitoring Forces: Load balancing systems (e.g., [CONDOR], 

[MOSIX]) provide and employ control mechanisms 
such as process migration, priority control, and 
cache configuration. Every system that tries to 
dynamically control resource allocation for a DRE 
system needs such interfaces. Exposing such 
information in a systematic manner is important. 

 
Problem: Decision-making is important to the 
proper functioning of the system, and so needs to be 
aware of the functioning of various entities. Thus, a 
sensory component is needed to enable the resource 
allocator to make good decisions. 
  Context: A foundation of information sources 
exists in operating systems and computer hardware. 
Open and extendable APIs for information system 
services are available. 

Solution: Determine the set of external control 
mechanisms needed in general; define APIs for 
accessing them. Implement functionality required to 
deliver the control mechanisms. Select desired 
mechanisms and incorporate into system being 
constructed. 

 
Forces: Every operating system makes such 
information available. Every system that tries to 
determine what going on in a DRE system uses 
such information. The scheduling function inside of 
an OS keeps track of such information. Exposing 
such information in a systematic manner is 
important. 

 
Resulting Context: Does not tie to any lower level 
patterns that are needed to complete this pattern. 
 
Rationale: This is the actuator that performs a 
resource allocation action at the request of the 
resource allocation decision maker.  

Solution: Maximize accessibility to the information 
through a catalog (name space) of data sources. 
Implement functionality required for access to data 
sources. Select desired features from catalog and 
incorporate into system being constructed. 
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Unmanned Air Vehicle: The UAV application is a 
prototype system developed by BBN as part of a 
US Navy program at NSWC [KRKPS].  A UAV 
(unmanned air vehicle) is a remote controlled 
aircraft that provides video feeds of an engagement 
to viewers onboard ships and/or on the ground.  
Several UAVs may be active at any given time, 
sending video of various targets or enemy locations. 

2.4 New Multi-Level Patterns 
 

Name: System Specification 
 
Problem:   All levels of the distributed system need 
to have access to the QoS requirements of the 
application and of the system.   The UAV application is made up of four main 

parts:  the video sender, the video distributor, the 
video receiver and the video viewer.  The video 
sender is the process that takes the video feed from 
the UAV camera and sends it, through video 
streams, to the distributor. The video distributor 
receives a video stream from the sender, and sends 
it to video viewers on ship or on ground.  The video 
receiver receives the video stream from the 
distributor and the viewer displays the video for 
users to analyze. 

 
Context:  Applications in which QoS requirements 
must be specified in order for the proper control and 
adjustment to occur. 
 
Forces:  This pattern is affected by performance 
constraints, resource allocation semantics, 
constrained resource supply, coordination and 
communication, activities spanning endsystems, and 
competing QoS requirements. 
 The above components make up the core of the 

UAV application, however other parts can and have 
been added to enhance the utility of the system.  For 
example, the distributor can also send video to an 
automatic target recognition (ATR) system, which 
examines the images and recognizes key targets.  
From this system there might be feedback to the 
UAV to direct it towards the target.  The UAV 
application can run under various scenarios, with 
different combinations of the above components.  In 
the simplest case, there would be one sender, one 
distributor and one receiver / viewer.  However, 
there can be multiple UAVs flying over different 
regions and sending video streams to multiple 
distributors.  The distributors can send the video 
streams to multiple viewers, as well as other 
analysis systems, like the ATR. 

Solution:  Provide a consistent definition of the 
system QoS requirements in a form that can be 
enforced, e.g., by the Resource and Process Control 
pattern.  Offer both reflective information for 
enforcing control law boundaries, and a priori 
definitions of system level limits and assurances. 
 
Resulting Context:  This pattern does not rely on 
other patterns to provide its functionality.  It does 
provide system information to the Resource and 
Process Control pattern as well as the End-to-end 
Allocation pattern. 
 
Rationale:  Each level of the system can have 
access to the system specification and use the 
information as needed.  Further, each level of the 
system can provide reflective system information to 
share with the other levels for future decision-
making. 

 
Avionics Mission Computing:  The Bold Stoke 
platform is a domain-specific middleware 
framework developed for Avionics Mission 
Computing applications in production military 
aircraft by the Boeing Company.   A basic Bold 
Stroke application consists of avionics software 
components performing operational flight program 
(OFP) tasks, e.g., for navigation, heads-up displays, 
and vehicle airframe monitoring, hosted on COTS 
middleware and real-time operating systems and 
running on several mission computers connected by 
a VME bus or other highly efficient and predictable 

3 Example DRE Applications 
 
Mission-critical distributed real-time and embedded 
(DRE) systems come in many forms, each with its 
own sets of requirements and resources.  In this 
section we consider three separate applications, 
each originating from a different defense-related 
research program. We first give an overview of 
each application. 
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The computational demands on the system 
varied from fairly static to quite dynamic, 
depending on the nature of the tracking task. 
Significant execution mode changes occurred when 
a target was first detected, since resources were 
allocated to tracking it, which required the agent 
noticing its existence to start negotiating with 
agents controlling radars that had the potential to 
track it as it moved in any of several possible 
directions. The agent support structure, including 
both middleware and operating system components, 
made a wide range of information available to 
thread within an agent, and provided a number of 
ways in which an agent could control its own 
execution. 

interconnects.  Application data is passed between 
processors by a domain-specific data replication 
middleware service, and processing and data 
concurrency is mediated by a real-time CORBA 
Event Service. 

As in the UAV example, a basic Bold Stroke 
application may be supplemented by additional 
processing, filtering, and coordination components.  
For example, in the Weapon System Open 
Architecture (WSOA) program, the ability to 
download target imagery from a remote C2 aircraft 
was added to a F-15 cockpit application [Corman].  
In the Adaptive Software Test Demonstration 
(ASTD) phase 2 program, a reasoning application 
was combined with the basic OFP[GSGH].  With 
each additional capability comes an increasingly 
rich set of application requirements and resource 
constraints, which must be resolved within the 
overall resource management design. 

3.1 Unmanned Air Vehicle Scheduling 
Requirements 

  
The main real-time requirement of the UAV 

application is that video streams must be delivered 
in such as way as to provide a display that is easily 
viewable by a human (or by an application like the 
automatic target recognition system described 
above).  This might require, for instance, that the 
frames of an MPEG video be delivered at a rate no 
less than 30 frames per second. 

Autonomous Agent Teams: The driving 
application for the Autonomous Negotiating Teams 
(ANTS) project at the University of Kansas 
provides good examples of a number of the patterns 
within the Resource Rationalizer pattern language. 
The driving application consisted of a number of 
small radars capable of providing a range of 
information to the agents controlling each radar. 
Negotiation among agents was used to resolve 
conflicts over how resources were used to track 
targets moving through the area covered by a set of 
agent-controlled radars. Several agents were co-
resident on a given computing platform, and thus 
had to negotiate with each other about access to 
computational resources as well as about what 
information would be collected from a given radar 
and when it would be collected. 

Further real-time requirements are added to the 
application when systems such as ATR are 
included.  In this case, control signals sent to the 
UAV must be delivered in a timely fashion so that 
the UAV can react and move towards the required 
target before it moves out of range. 

To meet the real-time constraints imposed by 
the above requirements, the UAV application may 
need to adapt to dynamic system conditions.  For 
example, if a distributor host is receiving and 
sending a heavy load of video, it may become 
overloaded.  In this case, some of the load may need 
to be allocated to a distributor on a different host.  
Also, when the ATR system finds a critical target, it 
is crucial that the control signal be delivered to the 
UAV on time.  If there is heavy load on the ATR 
host, or on the UAV itself, this time constraint may 
be violated.  Thus, the importance or criticality of 
the control task, and all other tasks in the system, 
must be taken into account when determining what 
load may be sacrificed in order to maintain overall 
system timeliness. 

For the purposes of this discussion the 
essential aspects of the ANTS application are that 
1) agents were required to make decisions under 
time constraints, 2) more than one pair-wise 
negotiation between a given agent and others could 
proceed concurrently, 3) agents shared computing 
resources and thus could affect each other's 
execution behavior, and 4) agents had to be 
reflective about their own and other agents' 
execution behavior because they had to be able to 
negotiate about computing resources as well as 
information from specific radars. 
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To demonstrate the usefulness of the Resource 
Rationalizer pattern language, we trace through the 
language here to show what parts are necessary to 
support the real-time requirements of the UAV 
application.  We will look at two different versions 
of the UAV application:  a static system and a 
dynamic system. 

3.1.1 Static UAV Application 
 

The static UAV application consists of a single 
UAV, one distributor and one receiver / viewer pair.  
Each of these components resides on a separate 
host.  The system remains static in that no 
components are added dynamically, and the real-
time requirements, such as execution time, periods, 
deadlines, are all well-known, and don’t change.  
On each host, the video stream can be represented 
as a periodic task with timing constraints imposed 
by the required frame rate. 

We present this simple application for several 
reasons.  First, it indicates that the pattern language 
can support this type of static, real-time system.  
And second, it provides a contrast to the dynamic 
application that we describe next.  This allows us to 
demonstrate the wide range of types of systems that 
the pattern language can support. 

 
Distributed Middleware Patterns:  On the 
distributed level, the static UAV application applies 
the Distributed Scheduling Service pattern to 
provide global scheduling of the various periodic 
tasks across the system.  The Distributed 
Scheduling Service pattern implements the 
Distributed Scheduling pattern, which provides 
global scheduling parameters, such as priority 
assignments, to the tasks.  The Global to Local 
Priority Mapping pattern is necessary to provide a 
mapping from global priorities to local priorities, if 
priority based scheduling is being used. 

The static UAV application also requires the 
Service Request Allocation pattern, as implemented 
by the End-to-End Allocation pattern.  These 
patterns would be used once, at system set-up time.  
Once the allocations are made, they will not change. 

 
Local Middleware Patterns:  On the local 
middleware level, the static UAV application 
requires the Request Management pattern to map 
service requests onto local resources and processes.  

In particular, the Request Propagation pattern is 
necessary to map the requests onto resources of the 
various endsystems.  This pattern also implements 
the Distributed Scheduling pattern in the 
Distributed Middleware level. 

 
Operating System Patterns:  The UAV 
application requires the Resource & Process 
Control pattern.  Depending upon the kind of 
scheduling that is used in the UAV application, it 
will require the Resource & Process Control pattern 
to implement either the Planned Scheduling pattern 
or the Priority-Driven Scheduling pattern.  The 
decision of which type of scheduling to use will 
affect all of the levels of scheduling patterns. 

 
Multi-level Patterns: In the static UAV 
application, the only multi-level pattern that is 
required is the Distributed Temporal Coherency 
pattern.  It is critical that the system maintain a 
consistent view of time so that the required timing 
constraints can be understood and upheld on all 
levels of the hierarchy, as well as all parts of the 
distributed system. 

3.1.2 Dynamic UAV Application 
 

The dynamic UAV application consists of several 
UAVs, flying in different regions, which may 
intermittently send video streams when they reach a 
particular location.  There are several distributors 
that can receive the video streams, and these 
distributors can send the video streams to various 
receivers that will display the video on a viewer, or 
will provide input to an ATR system.  The dynamic 
nature of this application makes it impossible to 
predict which tasks will execute when, and 
therefore will rely on dynamic scheduling, and load 
management.  The specific tasks in this application 
that need to be schedule include the periodic 
execution of video sending and receiving on the 
UAV hosts, the distributor hosts, and the receiver / 
view hosts.  Also, tasks within the ATR that 
recognize and respond to targets found in the video 
streams must be scheduled as well.  These tasks will 
be aperiodic, as they will occur dynamically when 
targets are found.   In this section we describe the 
patterns in the Resource Rationalizer pattern 
language that this dynamic UAV application would 
use. 

 8 



Distributed Middleware Patterns:  As in the 
static version of the application, the dynamic UAV 
requires the Distributed Scheduling Service pattern 
and the Distributed Scheduling pattern.  In this case, 
the specific algorithms that will be used to 
implement the strategies within the patterns must be 
able to assign real-time parameters (such as 
priorities) to  both periodic (video streams) and 
aperiodic (ATR) tasks.  The Global to Local 
Priority Mapping pattern is again necessary if the 
application is implemented using priority-based 
scheduling. 

The Service Request Allocation pattern is 
required in the dynamic UAV application to 
allocate the tasks to resources.  As in the static 
UAV, this pattern will implement the End-to-End 
Allocation pattern that is required to ensure that the 
allocation of tasks across the system will meet the 
specified timing constraints.  Specifically, this may 
involve choosing one distributor process over 
another to handle a particular video stream based 
upon the current and expected loads on the hosts 
involved.  Unlike the static UAV, this dynamic 
application may also require reallocation of 
resources if any of the hosts becomes, or is 
predicted to become, overloaded.  At this level, the 
Global Overload Management pattern can be used 
to determine how to handle the problem.  For 
example, if the host containing the ATR becomes 
overloaded, and it has found a critical target, the 
ATR’s task(s) may be deemed more important, or 
critical, than other tasks on that host.  Those less 
important tasks may need to be sacrificed, or 
reduced in quality in order to continue to meet the 
timing constraints of the important ATR tasks. 

 
Local Middleware Patterns:  At the local 
middleware level, the dynamic UAV application 
requires the Request Management pattern.  In this 
case, this pattern can be implemented using the 
Request Propagation pattern, the Request Pacing 
pattern, and/or the Strategy Composition pattern.  
This is because in the dynamic application it may 
be necessary to allow the endsystem to adjust to the 
dynamic system conditions.  For example, the 
Request Pacing pattern could pace the individual 
frames in the periodic sending process in order to 
keep them separated in time.  The Strategic Request 
Reordering pattern may also be used if certain tasks 

are deemed to be more important than others, such 
as the ATR example described above. 

 
Operating System Patterns:  The dynamic UAV 
application requires several operating system level 
patterns in order to ensure that the scheduling 
decisions made at the higher levels are enforced on 
the individual hosts within the distributed system.  
As with the static application, the Resource & 
Process Control pattern can be implemented using 
either the Planned Scheduling pattern or the 
Priority-Driven Preemptive Scheduling pattern.  
However, the dynamic version of the application 
also requires the Resource & Process Monitoring 
pattern because the system must be able to monitor 
the system to determine if timing constraints are 
being upheld. 

 
Multi-level Patterns:  Several multi-level patterns 
are required in the dynamic UAV application, 
which are not necessary in the static version.  This 
includes the Software Performance Monitoring & 
Diagnosis pattern, the System Level Control 
pattern, and the Application Level QoS Adjustment 
pattern.  Each of these patterns is necessary to allow 
each of the levels in the pattern language to monitor 
the system, and to adapt to the changing system 
conditions.  For example, if a new viewer process 
becomes active, and it begins to receive a video 
stream from a particular distributor, the host that the 
distributor is on could hit some load threshold that 
indicates that the system is almost overloaded.  In 
this case, the Software Performance Monitoring & 
Diagnosis pattern will recognize the potential 
problem by using the OS level Resource & Process 
Monitoring pattern, as well as the Service Request 
Allocation pattern to help determine where the 
request should be reallocated.  Then the Application 
QoS Adjustment pattern will determine a different 
distributor from which the viewer can receive the 
video stream.  This will be done in conjunction with 
the Service Request Allocation pattern and/or the 
Request Pacing pattern.  The System Performance 
Monitoring & Diagnosis pattern will also feed back, 
through the System Level Control pattern, to the 
Resource & Process Control pattern at the OS level. 
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3.1.3 Further Discussion 
 

The description of the patterns used in this 
application assumed that certain scheduling 
decision have not been made – i.e. priority-based 
scheduling vs. planned scheduling.  This 
assumption was made so that the discussion above 
could consider both possibilities.  If one option 
were chosen over another, the path through the 
pattern language that is required by the application 
would be more direct. 

 

3.2 Patterns to Support Bold Stroke 
Avionics Mission Computing 

 
The real-time requirements of Bold Stroke 
applications center on a periodic frame-based 
model, in which each invocation of an OFP 
component is invoked and must complete within 
one periodic frame.  Different components may run 
at different rates, and concurrency is enforced by a 
set of dispatching threads pushing events from a 
real-time CORBA Event Service to the 
components.  Further real-time requirements are 
introduced when features such as image download 
management or reasoning networks are added.  In 
this case, the additional components must be 
carefully scheduled so they meet their own real-
time deadlines, but do not interfere with the 
deadlines of critical OFP components. 

To meet the real-time constraints imposed by 
the above requirements, the Bold Stroke framework 
may also need to adapt to dynamic system 
conditions.  However the range of adaptation may 
span invocation-to-invocation dynamic scheduling 
all the way to manipulating imagery compression to 
improve download times.  Dynamic scheduling 
allows the framework to reorder non-critical 
invocations so that more of them can meet their 
deadlines, while still isolating critical invocations 
from non-critical load.  Adaptive re-scheduling of 
tasks can be used to ensure tasks are appropriately 
assigned to frames where they can meet their 
deadlines. 

We continue our examination of the Resource 
Rationalizer pattern language by considering the 
patterns necessary to support Bold Stroke 
applications.  We describe three variations:  a basic 

OFP, an adaptive OFP, and an OFP with 
autonomous reasoning. 

3.2.1 Basic Operational Flight 
Program 

 
As in the UAV discussion, we first present a 

simple version of the Bold Stroke application to 
show direct applicability of the pattern language, 
and to motivate how systems beyond those 
described in this paper can be supported through 
incremental application of additional patterns in the 
language. 

The basic application consists of distributed 
avionics software components running on COTS 
real-time middleware, operating systems, and 
middleware.  Specialized functions such as image 
display processing may receive support from 
dedicated hardware, but even such specialized 
components communicate to other components via 
the standard COTS infrastructure. Concurrency of 
component invocations is mediated by a real-time 
event service, within which real-time dispatching is 
implemented using a number of the patterns in the 
language. 

 
Distributed Middleware Patterns: The Global-to-
Local Priority Mapping pattern was applied 
manually in the early implementations of Bold 
Stroke to implement a form of end-to-end priority 
lanes. Recent migration of Bold Stroke to Real-
Time CORBA 1.0[PSC] interfaces provided by 
TAO2 makes this pattern even more relevant in this 
example.  A loose form of the Distributed 
Scheduling pattern is seen in this example as well, 
with local schedulers informed of local method 
invocation rates by components on other 
endsystems. 

 
Local Middleware Patterns: The Strategic 
Request Ordering pattern was applied to 
dynamically dispatch non-critical invocations 
dynamically, while dispatching critical invocations 
statically.  The Request Partition pattern was 
applied to dispatch critical invocations in different 
queues and by different threads at higher priorities, 
than non-critical invocations.  The Strategy 

                                                      
2 TAO is an open-source real-time ORB available at 
http://www.cs.wustl.edu/~schmidt/TAO.html 
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Composition pattern was applied to combine static 
and dynamic scheduling strategies, with appropriate 
preservation of criticality isolation. 

 
Operating System Patterns: The application 
depended on a POSIX-like COTS operating system, 
with Priority-Driven Preemptive Scheduling as the 
primary OS-level pattern used by the application. 

 
Multi-level Patterns: The System Specification 
pattern was applied at all levels of the application, 
from the hardware to the operating system to the 
middleware, to the distribution and components and 
their specifications. 

3.2.2 Adaptive Operational Flight 
Program 

 
The adaptive OFP application consists of an F-15 
cockpit communicating with a remote C2 aircraft to 
download imagery for enroute mission redirection.  
The F-15 cockpit system is fundamentally an 
extension of the basic OFP application to include 
dynamic adaptation of QoS for downloaded image 
tiles.  The main trade-off is between image quality 
and download timeliness, with compression levels 
used to control this trade-off. In addition to the 
patterns described in the basic OFP application 
example, the following additional patterns were 
applied to the adaptive version. 

 
Local Middleware Patterns: The Local 
Performance Monitoring pattern was applied to 
provide feedback to higher-level resource 
management by QuO[ZBS] and a Real-Time 
Adaptive Resource Manager (RTARM) 
[HJHMLKSZB].  In addition, the Request 
Management control pattern was applied to 
reschedule not only priorities of requests, but also 
rates of execution of components upon direction by 
the RTARM. 

 
Multi-level Patterns: The Application Level QoS 
Adjustment pattern was applied to define and allow 
reasonable variations in image tile quality. 
 

3.2.3 Operational Flight Program with 
Autonomous Reasoning 

 
The OFP application with on-line reasoning 
consists of an advanced reasoning-based avionics 
application[MJ] running a subset of the OFP 
components used in the basic OFP example.  While 
OFP component invocations are engineered to be 
highly predictable, reasoning tasks are inherently 
less bounded, and therefore must be designed 
carefully to mesh with the periodic frame-based 
scheduling model used by the OFP.  In addition to 
the patterns described in the basic and adaptive OFP 
application examples, the autonomous reasoning 
OFP example applies the following patterns: 

 
Local Middleware Patterns: The Strategy 
Composition pattern is applied in a new way in the 
autonomous reasoning example – not only are static 
and dynamic dispatching combined for OFP 
components, but task network component 
dispatches are mapped into the OFP dispatching 
infrastructure, so that the rates and priorities at 
which reasoning tasks are dispatched are reconciled 
with those of OFP tasks.  In addition, the Request 
Propagation pattern was applied to tunnel 
dispatches from the OFP dispatcher to a higher 
level dispatcher in the task network itself. 

 

3.2.4 Further Discussion 
 

In general, the progression from the basic OFP to 
the adaptive OFP to the reasoning OFP showed a 
cumulative application of patterns in the language.  
Additional patterns, the majority applied at the local 
middleware level, are needed to resolve the new 
design forces introduced by each evolution of the 
OFP example.  One observation worth noting is that 
the example assumes a POSIX OS, which means 
the Priority-Driven Preemptive Scheduling pattern 
is necessarily the basis for implementing the 
Request Partition pattern at the local middleware 
level. 
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3.3 Patterns to Support Teams of 
Autonomous Agents 
 
Real-time execution constraints arise in a number of 
different ways in the ANTS application. The most 
obvious is that as a target moves through the 
tracking area, decisions about which radars will 
measure its progress must be made while those 
measurements are still possible. Negotiation is 
required among agents to resolve any conflicting 
demands on a given radar, which can arise not only 
because it is being asked to watch more than one 
target during the same time period, but also because 
it is currently out of service due to calibration, or 
because the agent controlling it is reluctant to 
consume the power required to perform the 
requested service. The negotiations themselves have 
deadlines deriving ultimately from the requirements 
of the tracking task, as a given agent must ensure 
that it can resolve a given negotiation in time to try 
another if the current negotiation fails. 

This application area is thus an unusual venue 
for real-time in that agents are plagued by 
incomplete knowledge of the situation, conduct 
computations that have no worst case execution 
time, at least no known worst case, and yet they 
must try to satisfy deadlines, using their awareness 
of various aspects of the situation, and the control 
over the use of system resources provided to them. 
While agents cannot guarantee to succeed, they are 
nonetheless responsible for doing as well as they 
can, which requires both an awareness of the 
system state, the overall goals of the system, but 
also a willingness to cooperate to achieve the best 
system-wide result. 

One of the most interesting features is the 
dynamic nature of both the system requirements, 
and the resource allocations designed to try and 
satisfy the requirements. The agents' effort to adapt 
their behavior to circumstance was supported by the 
real-time scheduling server, the real-time 
scheduling services library, and the OS facilities 
used to allocate resources and to monitor their use. 
 
3.3.1 Real-Time Scheduling Server 

 
This portion of the ANTS application consisted of a 
server with which each thread within a multi-
threaded agent negotiated to obtain CPU resources, 

which was expressed as a percentage of CPU during 
a given time period.  The scheduling server was a 
central point at which all such requests from agents 
on a given computer were resolved, and a new 
explicit execution plan satisfying the selected agent 
thread execution constraints was constructed. Note 
that not all requests were satisfied, as the total 
requested CPU could easily exceed the total 
available. 

Feedback to the agent threads could include 
counter-offers to the agents' requests, as well as   
simple information about what other agent threads 
were possible candidates for negotiation, since they 
were current holders of the desired resource. Agents 
could then revise their requests to conform to 
current conditions, or they could go gather further 
information and then negotiate with current 
consumers of the CPU to obtain more. 

 
Distributed Middleware Patterns: The scheduling 
server exhibited no distributed patterns explicitly, 
although it was responsible for handling overload in 
the form of excessive resource requests. This is an 
indication that it may play a role in supporting the 
Global Overload Management pattern. 

 
Local Middleware Patterns: The scheduling 
server was an implementation of the Request 
Management pattern, and also the Request 
Partitioning pattern. The way in which the 
scheduling server constructed the agent execution 
schedules also included some aspects of the Request 
Pacing pattern, since the constructed schedules also 
controlled the rate at which the requested CPU 
resources were delivered to the threads. 

 
Operating System Patterns: At the operating 
system level, the scheduling server took advantage 
of the Planned Scheduling pattern within the 
KURT-Linux operating system to implement the 
Share Based Scheduling pattern. This approach 
used the Resource and Process Control pattern 
within the kernel to accomplish its goals. 

 
Multi-level Patterns: The scheduling service 
implementation spanned the local middleware and 
OS levels of the system. Schedule construction took 
place at the middleware level, but the execution of 
the constructed execution plan necessarily took 
place within the OS.  
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3.3.2 RTSS Library 
 

The Real-Time System Services library provided an 
API to the RTSS for use by the agents 
implementing the simple protocol used by agents to 
request CPU resources. It also provided other 
services. 

The CPU consumption behavior and current 
allocation for each agent thread was measured by 
the OS and made available to all threads through an 
RTSS library interface to new OS capabilities. 
Agent threads when looking for threads currently 
using significantly less than their allocated CPU 
share used this information, so they might be able to 
negotiate a transfer. The RTSS library also 
implemented an interface that permitted agents to 
adapt their behavior to the passage of time. Most 
actions of an agent had a deadline by which it 
should be completed. The foundation of the 
approach was the use of a simple set of state 
variable values to express the passage of time 
relative to the deadline. This system thus made it 
fairly simple to have the agent code follow one path 
through its code when it was still "early" in its 
execution period, but to decide to follow a different 
and more expedient path when it was getting "late" 
as the deadline became "close". 

 
Local Middleware Patterns: At the middleware 
level, the RTSS implements the Request 
Partitioning pattern since it has to resolve conflicts 
among a set of potentially infeasible resource 
requests, deciding to actually perform some feasible 
subset.  The Request Propagation pattern  is also  
supported in the RTSS, albeit somewhat weakly, 
when one agent begins negotiation with another, as 
the deadline of the negotiation now influences what 
happens on the systems supporting both agents.  
The Strategic Request Reordering pattern is 
implemented in the negotiation between the agents, 
as supported by the RTSS library, and the 
scheduling server. 
 
Operating System Patterns: The Share Allocation 
pattern is implemented by the scheduling server and 
library, which build an explicit execution plan using 
the explicit plan pattern to implement the shares. 
Hierarchical scheduling was strongly motivated by 
this application as we wanted to be able to express 
the idea that a given set of resources was allocated 

to the set of threads performing a negotiation, two 
threads in different agents, or that we wanted to 
allocate resources to the set of threads 
implementing the agent as a group. The current 
model only permitted allocation to threads 
individually. The best example was that a 
"negotiation" thread was actually a pair of threads, 
which were effectively co-routines. Only one 
executed at a time, while the other was blocked. 
These pairs should at least have been given CPU 
resources as a group. Synchronous locks were used 
between these pairs. 

 
Multi-level Patterns: 
The RTSS library implementation of the subsystem 
making agent thread resource use status available to 
other threads was a multi-level combination of the 
Local Performance Monitoring pattern at the local 
middleware level, and of the resource and Process 
monitoring pattern at the OS level.  
 
3.3.3 Data Streams 

 
The data streams approach to performance data 
gathering was used to make both system level and 
user level performance information available for 
system evaluation, and in some cases for use by 
agents during system execution. 
 
Distributed Middleware Patterns: Distributed 
scheduling is present in the sense that an agent is 
negotiating into the future about which agents will 
track a target, and what agents will assume 
responsibility for further tracking as a target moves 
farther and farther away from its original observer. 
In this case it was implemented at the application 
level.  

 
Local Middleware Patterns: The Data Streams 
User Interface (DSUI) implements the Local 
Performance Monitoring pattern. 

 
Operating System Patterns: The Data Streams 
Kernel Interface (DSKI) implements the Resource 
and Process Monitoring pattern. 

 
Multi-level Patterns: We used the Network Time 
Protocol (NTP) tools to implement the Distributed 
Temporal Consistency pattern to help keep 
performance measurement and agent based control 
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of system behavior coordinated across computer 
system boundaries. The enabled agents to talk about 
an absolute time at which to perform actions, and 
then be able to do them simultaneously, within the 
limits of the clock synchronization. 
 

4 Conclusions and Future Work 
 

In this section we summarize the contributions of 
this paper, in terms of concrete recommendations to 
developers, based on our observations on both the 
Resource Rationalizer pattern language and the 
example systems we’ve studied.  We also note areas 
of future work related to this effort, particularly in 
the area of combining features of the systems 
studied, and the corresponding mapping and 
combination of the segments of the pattern 
language that apply to each. 

4.1 Recommendations 
 

Based on our experiences mapping the Resource 
Rationalizer pattern language to several DRE 
systems, we have several recommendations for 
developers seeking to apply large-scale pattern 
languages. 
 
Identify related systems and map the language to 
them as well.  As each system is developed within 
its own set of design forces, the particular patterns 
in the language that apply may differ from system 
to system.  Each such mapping reveals new insights 
into the paths through the pattern language that are 
most common, and therefore presumably most 
important.  Furthermore, differences between the 
paths may serve to distinguish key classes of 
applications. 
 
Look for higher-level relationships among the 
patterns.  Common paths through a large-scale 
pattern language are likely indicators of underlying 
structure.  When different patterns play similar 
roles, either for different problems or in different 
contexts, it may be useful to look for deeper 
structure.  For example in the Resource Rationalizer 
pattern language, an overarching controller-
actuator-sensor architectural structure is evident. 

Consider whether new patterns are revealed.  
When considering both the mapping to particular 
examples and the higher-level structure of a pattern 
language, it may be useful to examine a kind of 
closure on the language: whether new patterns are 
revealed by these examinations.   

4.2 Future Work: System Composition 
 

We conclude by noting that as developers 
increasingly move from building individual systems 
to composing systems of systems, the paths through 
pattern language that each individual system traces 
may serve as a guide to their integration.  We 
describe two forms of integration, and as a “thought 
experiment” explore ways in which the applications 
described in this paper might notionally be 
combined, based on the patterns they embody. 
 

System of Systems: The first kind of integration 
involves a system-of-systems approach in which 
individual systems are interconnected though 
possibly loosely coupled to form a larger system.  
For example one can envision a military battlespace 
infosphere[Cybenko] in which fighter aircraft, 
unmanned aerial vehicles, and autonomous ground 
robots all communicate and coordinate their 
activities through a central C2 aircraft. This kind of 
coordination requires specification of additional 
end-to-end real-time parameters that are mapped 
into each subsystem, and possibly an overarching 
control function provided by the C2 system.  We 
believe that even for loose coordination of 
sufficiently complex systems, additional research is 
needed into the best techniques for applying 
scheduling patterns broadly at all levels of the 
Resource Rationalizer language across the 
combined system. 

 
Composite System: Issues of control loop tightness 
and pervasiveness of integration of the individual 
systems define a spectrum from loosely to tightly 
integrated systems.  The notion of a tightly 
integrated composite system lies at the opposite end 
of the spectrum from the loosely federated system 
of systems approach described above.  For example, 
we might consider extensions to the reasoning OFP 
described in Section 3.3, which combine the 
elements of the ANTS and dynamic UAV 
applications.  Closely integrating dynamic video 



 15 

streaming, a reasoning OFP, and negotiation 
subsystems within each UAV would support 
collaborating teams of UAVs with increased 
autonomy and robustness in target acquisition and 
tracking, particularly for elusive time-critical 
targets. 

To achieve the fidelity and pervasiveness of 
control needed in this much closer degree of 
integration, we believe new research is needed to 
examine the fine-grain interactions between the 
paths through the language for each subsystem, 
particularly where some design re-factoring is 
indicated by the new combinations of design forces.  
Furthermore, new inter-level interactions within the 
pattern language itself appear to be important areas 
of research.  For example, it is useful to consider 
how share-based and priority-based scheduling 
patterns can be inter-related for appropriate 
isolation of critical and non-critical functionality. 

We conclude by noting a few research questions 
that span the spectrum of loose to tight integration 
of scheduling throughout a combined system. Does 
the choice of composing systems of systems versus 
integrating more closely depend largely on issues of 
scale? I.e., beyond a certain point, does close 
integration become intractable, mandating a system-
of-systems approach?  If so, at what point does this 
transition occur?  Does that observation in turn 
offer insights into how to push the transition farther 
out, allowing higher fidelity integration of 
increasingly large and complex systems of systems? 
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