Towards Optimal TDMA Frame Size in Wireless
Sensor Networks

Kevin L. Bryan, Tiegeng Ren, Lisa DiPippo, Timothy Henry, Victor Fay-Wolfe

{bryank,rentg,dipippo,tmh,wolfe} @cs.uri.edu
University of Rhode Island, Kingston, RT 02881

Abstract—This paper describes a set of TDMA MAC protocols
for wireless sensor networks that can achieve near-optimal
throughput and good latency for regular periodic data delivery.
The protocol is based on a novel graph coloring technique called
the Color Constraint Heuristic (CCH) The paper describes a
centralized TDMA slot assignment algorithm, Centralized Slot
Assignment (CSA-CCH), that uses CCH. It then describes a
distributed version of the algorithm, Distributed Slot Assignment
(DSA-CCH. A further refinement of DSA that is designed for
query tree aggregation applications (DSA-AGGR) is also pre-
sented. The paper shows through simulations that our algorithm
performs closer to the optimal bound on data throughput than
several prominent TDMA slot assignment protocols for wireless
sensor networks. In addition, the CCH-based algorithms carefully
order the coloring to provide good latency for data delivery.

I. INTRODUCTION

Wireless Sensor Networks (WSN) are becoming popular
as solutions to an increasing number of application areas.
Monitoring the stress and pressure on a building’s framework,
data gathering for disaster recovery and tracking rapid move-
ment through a sensor field all require high query rates and
consistent, timely delivery of data in order to ensure that data’s
usefulness. Contention based MACs behave quite poorly under
these circumstances[1] and are not acceptable in real-time
or time-sensitive applications. Time-division multiple access
(TDMA) scheduling can eliminate collisions and remove the
need for a backoff. This increased predictability can better
meet the requirements for high query rate and timely data
delivery in high traffic scenarios. Applications like those
described above may require data to be collected at the nodes
and aggregated up to a base station. It may also require
that information, like code updates, be flooded throughout
the network to quickly reset the state of the nodes. These
applications have specific requirements that we articulate here
in a list of criteria. We will use these criteria to evaluate the
MAC protocols that we have developed.

o Predictability: When a node in the sensor network
detects that a critical value has changed, there must be
a level of certainty that the data will be received by the
base station within a specified time, and that the data is
still valid.

o Timeliness: Along with being predictable, the delivery
of data in these types of applications must also be fast.
Thus, the latency of data delivery should be minimized.
Further, if periodic requests are made for data delivery

from the sensor network, the rate at which the query
results are returned should be maximized, thus increasing
overall throughput of the application.

o Power efficiency: Many sensor networks are made up
of wireless nodes that run on limited battery power.
Protocol development must consider the energy cost of
a successful message transmission. It must also consider
how much energy must be expended before the network
can perform useful data transmission (set-up cost).

o Adaptability: The sensor network should be able to adapt
to nodes entering and leaving the network. This may
come from design, in networks with mobile nodes, or
it may come from node failure during the lifetime of the
network.

 Scalability: Sensor network protocol solutions should
work for small networks as well as larger networks with-
out incurring a large increase in cost in terms of power,
timeliness, adaptability, and predictability. Scalability can
be viewed in terms of number of nodes in the network
as well as density of the nodes in the network.

The benefit of having a conflict-free TDMA schedule is
clear: as the number of collisions is reduced or eliminated,
the throughput of the network can be greatly improved by the
corresponding reduction in retransmits. For flooding applica-
tions, this means data can be disseminated a great deal faster.
For applications in which data is aggregated from sensors to
a base station, these improvements imply the possibility of
quicker rates for receipt of periodic data collection.

Recently, there has been research into applying graph color-
ing theory to the assignment of time slots in a TDMA schedule
[2], [3], [4]. One of the goals of this work is to reduce the
number of colors used, and thus reduce the number of time
slots necessary for the schedule. We have developed a set
of TDMA-based MAC protocols based on coloring graphs
Our algorithms provide near-optimal slot assignment using
a heuristic that carefully addresses the order of coloring.
We first describe a centralized protocol, Centralized Slot
Assignment (CSA-CCH) that assumes knowledge of the entire
network topology. We then describe a distributed version of
the algorithm, Distributed Slot Assignment (DSA-CCH) that
does not assume any prior knowledge of the network, and
thus could be used in any real sensor network deployment.

The rest of this paper is organized as follows. Section II
provides a discussion of the mapping of the graph coloring

X Minimum number of colors to color a graph

A Maximum degree of any vertex in a graph
G? The square of graph G

A(G?) | The maximum degree of G2

clique A fully connected neighborhood of nodes
w Maximum clique size in a graph

TABLE I
GRAPH NOTATION

problem to the assignment of slots in a WSN TDMA protocol.
Section III presents related work in WSN TDMA slot assign-
ment using both centralized and distributed algorithms. Section
IV describes our algorithms. Section V presents a set of
simulations that we conducted to compare our algorithms with
existing graph-coloring TDMA algorithms. Finally, Section VI
summarizes our important results, and discusses future work.

II. WSN AND GRAPH COLORING

Graph coloring theory can be applied to frequency or time
slot assignment in wireless sensor networks. In this section
we provide background in the applicable graph theory, discuss
how it can be mapped to the WSN slot assignment problem,
and describe the network model that we have chosen to follow
in our work.

A. Graph Coloring

Graph coloring is a classic problem in graph theory. The
idea is to color/label/number all of the vertices of a graph such
that adjacent nodes never have the same color. The smallest
number of colors that can be used to color a graph G is
the chromatic number of G and is denoted x(G). When it
is clear from context, we will just use x. There is a large
body of research on the chromatic number of graphs. The
computational complexity of finding the optimal solution is
proven to be NP-hard and x is bounded by w < y < A+1
[5], where w is the maximum clique size in the graph, and
A is the maximum degree of any vertex of the graph, (see
Table I for a summary of notation). For any greedy coloring
algorithm, the worst case number of colors is A + 1.

A generalization of graph coloring may contain more con-
straints. One such generalization is the L(p, ¢)-labeling where
the labels of neighboring vertices differ by at least p and the
labels of vertices at distance two differ by at least ¢ [6]. The
L(p, q)-labeling problem has been studied well in the past, as
summarized by Bodlaender et. al in [7].

The L(1,1)-labeling problem, is also known as the distance-
2 coloring problem [8]. It is equivalent to the coloring of the
square of a graph that has been stated in [9]. The square of a
graph G is the graph G? such that the edge (u,v) is in G? if
and only if there is a distance of at most two edges between
the v and v.

The order in which colors are assigned to nodes can
dramatically affect the number of colors used. Sorting vertices
by decreasing degree is an ordering heuristic suggested in [5]
that reduces the number of colors in a graph.

Fig. 1. Square of UD graph

B. Mapping to WSN

There are two types of potential communication collisions in
a wireless sensor network using TDMA. The first is direct col-
lision, in which any pair of neighbor transmitters are assigned
the same time slot. This prevents each from hearing anything
sent from the other since they transmit simultaneously. The
second is a hidden collision, in which a node cannot hear
anything during a listening slot if two of its neighbors are
assigned to transmit during that same time slot and therefore
transmit at the same time. In the radio literature this is referred
to as the hidden terminal problem. When coloring a graph for
WSN scheduling both types of collisions must be considered.

To model TDMA slot assignments in terms of the graph
theory coloring problem, we map nodes to vertices in the
graph, and links to edges. Each color represents a TDMA time
slot. We consider L(1, 1)-labeling (coloring the square of the
graph) because the square of the graph consists of the graph
containing the two-hop neighborhoods for all nodes, and thus
avoid both direct and hidden collisions.

The fewer colors needed for the graph, the fewer time slots
and smaller resulting frame size. For applications in which data
is flooded throughout the network, a smaller frame size will
reduce latency in distributing the data since a greater amount
of data can be transmitted in a fixed amount of time.

In applications that rely on data aggregation, the query rate
can be increased with a smaller frame size. A data query rate
as high as —L_—— can be achieved by any conflict-free
schedule. This is easy to see by considering some node n. If
n’s slot is ¢, then in the max_color slots before ¢, all of n’s
neighbors have been able to send data, which must include
transmissions from all of n’s children. Thus, n can aggregate
it’s children’s data with its own data for transmission at time
t.

C. Unit Disk Radio Model

A Unit Disk Graph (UD) [10], [11] can be used to model
a sensor network because the radius of the disk can be
considered the transmission distance for the radios on the
nodes. Thus, two nodes are considered adjacent if the first
node is within the radius of a unit disk centered at the second
node. We extend this concept further to consider the square of
the UD graph. This represents the two-hop neighborhoods of
the nodes in the network.

Figure 1 depicts the square of a UD graph. There are four
disks of diameter one centered by vertices {u, v, w, x}. If the
center of a disk is under the coverage of another disk, there’s
an edge between the centers of these two disks in the UD

graph G. For example, in the diagram v and u are neighbors,
as are w and u. Solid lines indicate an edge in graph G.

G(Vv E) = G({U, v, w, I}v {{UU}7 {uw}})

In the square of the graph G, G2, there is an edge between v
and w (the dashed line), since v and w are distance two in G.

G*(V.E) = G({u,v,w,z}, {{uv}, {uw}, {vw}})

In previous work, we have proven an upper bound on the
chromatic number for G2 of a UDG that is linear with respect
to w(G) for these graphs [12].

III. RELATED WORK

Recently there has been a large amount of research done in
the area of MAC protocols for wireless sensor networks. In
this section, we describe some of the general results in this
area, as well as results of applying graph coloring theory to
WSN MAC protocols.

Langendoen and Halkes [13] present a recent survey of
MAC protocols for WSNs. They describe CSMA and TDMA
protocols, and compare them based on various criteria. The
authors mention the power benefit of using TDMA protocols
because nodes can turn off their radios when they are not
scheduled to send or receive.

While some MAC protocols that use TDMA strategies allow
for some collisions [14], [15], all of the graph coloring MAC
protocols that we consider generate conflict free schedules.
As noted in [2], there are drawbacks and challenges to TDMA
scheduling for WSN’s in terms of clock drifting, flexibility and
the ability to adapt to interference from nodes not considered
as neighbors. However, there are various solutions to these
issues. Clock drifting can be handled by a buffer at the
beginning of a slot (other proposals to deal with clock drifting
appear in [16]). Topological flexibility can be introduced by
having nodes recolor at random intervals.

A major distinction among the various graph coloring based
algorithms that we examine is where the coloring decision is
made. In some of the algorithms (centralized), it is assumed
there is a single entity that has full knowledge of the network
topology. This is consistent in an environment where the
nodes are systematically placed and the queries and data
sink are stable. Distributed algorithms remove these strong
assumptions and instead allow the nodes to color themselves.
In most cases, we would expect better performance from a
centralized algorithm, as it has more information with which to
work. However, some centralized algorithms, such as RAND
[17], do not make use of a priori information. Distributed
algorithms are applicable on a wider variety of applications
when centralized knowledge of topology is not possible.

A. Centralized

In [17] the authors discuss three breadth-first centralized
algorithms which vary the labeling order of the nodes. The first
approach is called RAND whereby any node in the uncolored
list is chosen at random to be the next node assigned a color.
The Minimum Neighborhood First (MNF) labels nodes from

those having few neighbors to those with many neighbors. The
nodes are then colored in reverse order of their labeling. The
Progressive Minimum Neighborhood First (PMNF) is similar
to MNF, but once a node has been labeled, that node and
the corresponding connections are removed from the graph.
Therefore, the neighborhoods consistently change during the
labeling and must be recalculated with each step. The MNF
and PMNF algorithms cannot be distributed because their
ordering requires global information. The authors state the
worst case coloring could be as high as the maximum distance-
2 neighborhood in the graph, A(G?).

gMAC [4] is a protocol in which coloring begins at the
data sink and proceeds breadth-first (referred to here as BF).
A token containing the current coloring is passed amongst
the uncolored nodes. When a node receives the token, it
colors itself with the lowest available color that will not
cause conflicts. Because the token builds a map of the global
structure, a distributed version of this protocol is possible, but
it must still retain its sequential nature for color assignments.

There’s another centralized algorithm for coloring a graph -
The Degree Heuristic (DH) is a centralized greedy algorithm
that colors the nodes in the graph in order of nodes’ degree
from highest to lowest [5].

The work in [18] provides a First-Fit algorithm that leads
to a low bound very close to optimal for L(1, 1)-Labeling for
Disk Graphs by utilizing the geometric properties of unit disk
graphs. However, there’s no implementation of this technique
in wireless sensor network, and it is not translatable to a
distributed solution.

B. Distributed

DRAND [2] is a distributed version of RAND. Each node
chooses its own color on a random schedule, and refreshes the
color periodically. In order to prevent nodes that are separated
by two hops from attempting to assign their colors at the
same time, it uses a locking scheme where the node requests
a lock from each of the one hop neighbors before setting its
color. If granted, those neighbors will deny requests from other
nodes in their one hop neighborhood (the original node’s two
hop neighborhood) until the color is assigned and the lock is
released. This allows DRAND to complete its initial coloring
within a time proportional to A(G?).

DRAND randomizes the order of the nodes to be colored.
While this allows for parallelism in setup, it does not allow the
protocol to choose the order in which the nodes are colored.
Thus, in the worst case DRAND performs like a greedy
algorithm which uses A(G?) colors.

In [4], the authors do not provide a distributed solution
for qMAC. Instead they recommend using the distributed
coloring algorithm of DRAND or the one found in [19]
which implements a distributed breadth-first search in sensor
networks. However, this solution has drawbacks. First, it has
a performance issue based on the token passing. That is,
the algorithm would be O(n) in number of nodes, since it
could not implement parallelism in the coloring. Also, the
bookkeeping for a breadth-first search would create significant

overhead since each node must request and pass a token
containing the developing tree structure.

Work by [20] provides two distributed algorithms for
Distance — 2 coloring in Unit Disk Graphs. However, their
goal is on shorter setup time for a conflict-free schedule instead
of a smaller TDMA frame size.

The work in [3] presents DCQS (Dynamic Conflict-free
Query Scheduling) a TDMA protocol designed specifically
for query services with in-network data aggregation. It exploits
the precedence constraints imposed by the query path and data
aggregation. This solution assigns TDMA slots based on these
precedence constraints, and unlike our work, their algorithms
use edge coloring, instead of node coloring.

Our work seeks to improve on current protocol algorithms
in two key ways: reducing the number of colors and thereby
the frame size and intelligently ordering colors to reduce the
latency caused by “color-inversions” on the path to a base
station.

IV. ALGORITHMS

Our goal in developing MAC protocols is to find a coloring
for the TDMA schedule, such that the TDMA frame size is
as low as possible to reduces latency and maximize the level
of certainty that data will be received within a specified time.
This translates into a coloring that approaches the minimum
achievable number of colors and has small positive color
distances along data paths. The color distance of two nodes
is the difference between the numerical representations (slots)
of their colors. In a data aggregation application, a positive
color distance indicates that a parent node will have received
data from its child node along the data path prior to its own
transmission slot time.

A. Color Constraint Heuristic (CCH)

Randomized slot assignment algorithms, such as RAND
and DRAND, lose the advantage that can be gained from
a careful ordering of the node colors or slots and can ap-
proach A(G?)[2] in number of colors. We have developed
a lightweight and efficient heuristic, the Color Constraint
Heuristic (CCH), for choosing the order in which to color
nodes in a graph. If we always color the most constrained
node in the entire network, we arrive at a very efficient order
for coloring the network. The “most-constrained” node is the
node whose number of already colored neighbors gives it the
least freedom in selecting a color for itself. To determine the
most constrained node, we use a weighted sum of the one hop
and two hop neighbors that have been previously colored. A
higher weight is given to one hop neighbors, as they more
directly affect the color choices.

CCH_Ordering = 2 - ColoredOneHop + ColoredTwoH op

When choosing a node to be colored, we pick the node with
the highest value of CC'H_Ordering. Once a node has been
selected for coloring, it is colored with the lowest available
color in its two-hop neighborhood.

B. Centralized CCH Slot Assignment (CSA-CCH)

A centralized coloring algorithm must make color decisions
for individual nodes based on an overview of the entire graph.
For example, a centralized greedy coloring of a graph will
order the vertices by decreasing degree and then color the
nodes in that order. This can lead to fewer number of colors
for most graphs, however, in the worst case, it would lead to
A(G) + 1 as other greedy algorithm does.

For our centralized CSA-CCH algorithm, we start at the
base station, if one exists, or the highest degree node in the
original graph, and then spread the coloring decisions out from
that node. While this could be performed in a strict breadth
first pattern, we use the highest CCH value among uncolored
nodes as an indicator of which node to color. The CCH is then
re-computed for nodes neighboring the colored node.

C. Distributed CCH Slot Assignment (DSA-CCH)

In our distributed algorithm (DSA), a spreading scheme can
be used to color nodes. The coloring starts at one point (e.g.
base station) and all its one hop neighbors, then each node
must wait until a sufficient number of its neighbors are colored
before it can color itself.

To determine how many neighbors must be colored prior to
a node coloring itself, we use the ratio of a weighted sum of
the one hop and two hop neighborhood sizes to a weighted
sum of the one hop and two hop neighbors that have been
previously colored.

2 - ColoredOneH op 4+ ColoredTwoH op
2 - NumberOneHops + NumberTwoH ops

In our distributed DSA-CCH algorithm, it would be ex-
tremely expensive to do global scoring. Instead, we use a “col-
oring threshold”, a percentage of already colored neighbors in
a node’s two-hop neighborhood. For our preliminary tests, we
used 0.25 for the color_score threshold. Therefore, a node
will color itself if its color_score is greater than 0.25. This is
performed in a distributed manner so that each node can start
to color itself based on its own environment. The color_score
provides a means to balance the coloring between breadth-
first and depth-first. The 0.25 used in these simulations was
selected so that the ordering is weighted towards a breadth-
first.

While the 0.25 color_score threshold works well in many
cases, it is possible that for some topologies the coloring can-
not propagate through the entire network. For example, when
a single node is bridging two larger networks. Edge nodes
in the second neighborhood will never have a color_score
high enough to self-color. This is an area for future work and
possible solutions to this will be discussed in Section VI.

The distributed DSA-CCH algorithm uses the node locking
mechanism of DRAND to avoid deadlock and ensure consis-
tency. Our approach comes at the cost of scalability because
it is a spreading approach, rather than the extremely parallel
color assignments of which DRAND is capable. Parallelism
in DSA-CCH increases as the boundary between colored and
uncolored nodes increases. In networks that are used for data

color_score =

function ReadyToColor:
if 2 x (ColoredOneHop) + (ColoredTwoHop) /
(2 * NumberOneHops) + NumberTwoHops))
> 0.25:
return True
return False

function ChooseColor(colorTable):
parentcolor = colorTable[parent]
Prefer color just below parent’s color
for nextcolor := parentcolor — 1 downto O:
if nextcolor not in colorTable:
return nextcolor
If no such color is found above,
then pick a color near the end
of the current high frame size
maxcolor = max(max(colorTable), NumberOneHops+1)
for nextcolor := maxcolor — 1 downto parentcolor + 1:
if nextcolor not in colorTable:
return nextcolor
If we do not have a color,
return maxcolor + 1

create a new color

function Color:
if RequestLock(/*[out]x/ colorTable):
if ReadyToColor ():
ChooseColor(colorTable)
ReleaseLock ()

Fig. 2. Pseudo-code for DSA-AGGR

aggregation, the coloring time is proportional to the height of
the routing tree and node density (in terms of neighborhood
size).

D. Distributed CCH for Data Aggregation (DSA-AGGR)

Data aggregation queries are a common use for sensor
networks. We have developed a version of our DSA-CCH
algorithm, called DSA-AGGR, that is optimized for coloring
aggregation trees. In order to reduce query latency as aggregate
values are returned to a base station, we must reduce the
number of times a parent’s color number is less than any
of it’s children. Each “color inversion” corresponds to an
additional frame in the delivery of data to the base station. Our
modification to DSA-CCH uses routing tree information in
coloring nodes so that there are fewer color inversions, thereby
reducing latency. Figure 2 shows the DSA-AGGR algorithm.
Not shown there is that the base station starts by coloring itself
and its one-hop neighbors (a single transmission with all or
most of the one-hop neighbors assigned colors can accomplish
this). Note that RequestLock and ReleaseLock work in the
same way as in DRAND.

Our algorithm ensures that a parent node has a higher
numbered slot than its children without introducing any more
colors unless absolutely necessary. To do this, we first search
for a free slot below the parent’s number. If none is found,
then we start from either the maximum color in the two hop
neighborhood or the nodes degree, whichever is higher. In
trial runs, there was a negligible difference in the number of
colors DSA-AGGR used compared to DSA-CCH. However,
DSA-AGGR has significantly improved performance on an
aggregation query and maintains performance similar to DSA-
CCH in flooding distributions. Details of this are shown in
Section V.

V. SIMULATIONS

In order to evaluate how well our algorithms meet the
criteria specified in Section I, we performed a series of tests
comparing them to similar protocols. In the first test, the Node
Coloring Test, we measured how many colors, or TDMA slots,
are used by the various algorithms. This gives an indication
of how close our algorithm is to the optimal coloring. We
next performed a Startup Cost test to measured the energy
and time need to compute the slot assignments for each of the
distributed TDMA protocols. The third test (Data Flooding)
demonstrates the performance of the TDMA algorithm in an
application that has each node sending data to every other
node. This represents a high traffic scenario in which the
throughput of the nodes is critical. The final test, for Data
Aggregation, evaluates the performance of our algorithms, and
others, in a query routing scenario. Data is collected at sensor
nodes, and is routed and aggregated up a tree to the base
station.

The protocols we compare with our CSA and DSA are
RAND, DRAND, DH, and BEF. DH and BF are selected
because they are recognized as efficient centralized coloring
schemes in graph theory. We want to compare them with ours
to show how our choice of CCH for ordering the nodes to
color is valid. Since there these coloring schemes have no
WSN MAC protocol developed that we know of, and they
don’t lend themselves to distributed solutions, we do not apply
them in our other simulations.

All of our tests were run on our own URIMACSim simu-
lator which is designed specifically for testing TDMA-based
algorithms over hundreds of nodes. The simulator runs a fixed-
clock where each node is processed for each TDMA slot.
The state of each node can be one of: sleep, idle, transmit,
receive or collision. In each slot the simulator determines the
state of a node based on the predetermined slot assignments.
If the node is assigned a slot for transmission, its state is
set to transmit. If one of the node’s neighbors is assigned
to transmit in the slot, its state is set to receive. If more
than one of the node’s neighbors is assigned to transmit in
the slot, its state is set to collision. In any other case, the
node’s state is set to either idle or to sleep (if the algorithm
allows sleeping). Collisions are treated the same as receives
with respect to power consumption. While this simplification
reduces the usefulness of the simulator for several important
metrics, we believe the numbers obtained provide a reasonable
guideline for use in designing algorithms that can be tested in
a more complete simulator at a later time.

A. Simulation Metrics

The specific measurements that we used in the four tests
that we performed are described here.

« Frame Size: number of colors/slots used.

« Extra Colors: number of colors used above the optimal
number.

o Startup Time: amount of time used to color all of the
nodes in the network.

« Startup Energy Cost: energy is used to perform the node
coloring at startup.

« Completion over time: percentage of nodes receiving all
data from other nodes in the network over time.

« Max Latency: time from when a sensor is read until that
data is aggregated at the base station.

Each of the simulations was run on two different topologies
within a fixed dimension box of 100 x 100 units. The first
topology places each mote randomly in a Sqi?(ON) y Sqig(oN)
box within a regular grid and N ranging from 81 to 400 (thus,
effectively increasing the density). The second topology places
nodes randomly throughout the 100 x 100 space. These two
topologies will be referred to as Grid-Random and Random
respectively. In both scenarios, the communication radius was
fixed at 20 units. Tests were run with the same set of PRNG
seeds so that identical topologies would be run by each of the
algorithms.

B. Node Coloring Test

The first set of simulations examined the number of colors
used by each algorithm. Each topology/algorithm pair was run
ten times and the data was averaged. Figure 3(a) shows that
DSA-CCH uses 12% to 21% fewer colors than DRAND with
an average savings of 17.6% over all densities. Our centralized
algorithm CSA-CCH requires 22.9% fewer colors than the
corresponding centralized RAND algorithm. Notice that this
figure and Figure 3(c) show the upper and lower bounds on
the number of colors, A(G?) and A(G) respectively, since
both are served as base line test in literatures frequently.

Figures 3(b) and 3(d) show the performance of each algo-
rithm compared to the lower bound of colors needed (A(G))
by illustrating how many extra colors each algorithm uses over
the number used by the optimal coloring.

Figure 3(b) and 3(d) also shows that CSA performs better
than DH and BF in all topologies (2.5% better than DH and
4.5% than BF in Random topology; 1.1% better than DH and
4% than BF in Grid-Random topology). This validates our
CCH as a good choice for ordering node coloring. CSA per-
forms slightly better than the well-established node coloring
heuristics, DH and BF, and it has a distributed solution that is
more realistic in most WSN applications.

Figures 3(c) and 3(d), show that our CCH-based algorithms
perform slightly better than RAND and DRAND on a Random
topology. This variance allows all coloring algorithms to fre-
quently reuse lower numbers instead of adding an extra color.
However, such varied node density itself does not guarantee
that the chromatic number (of G?) is less. We consider the
effect of layout on this bound to be future work.

C. Startup Cost Test

In this test we measured the amount of time and energy
that is used in the startup phase of the TDMA protocols. This
startup phase involves assigning time slots to each node in
the network. Because the centralized protocols assume that
all setup is done by some entity that has knowledge of the
entire network, we can assume that this is done a priori on a

Frame Size

Extra Colors

Frame Size

Extra Colors

160 BF —x—

140 | RAND —o—

a6 —
DH —¢—

CSA —a—
DSA —m—

DRAND —e—
MG —a—

50 100 150 200 250 300 350 400

Number of Nodes

(a) Frame on Grid-Random topology

T
CSA —x—

DH —%—

BF —8—

- DSA —m—
RAND —6—
DRAND —e—

50 100 150 200 250 300 350 400

0

Number of Nodes

(b) Extra colors used on Grid-Random topology

T
80 —
DH —x—
FOBF—x—
CSA —&—

| DSA —=—

RAND —o—
DRAND —8—
NG —a—

50 100 150 200 250 300 350 400

Number of Nodes

(c) Frame size on Random topology

L L L L L L
0 100 150 200 250 300 350 400

Number of Nodes

(d) Extra colors used on Random topology

Fig. 3. Frame Size Tests

base station that is not power constrained. Therefore, we only
ran this test on the distributed protocols, DSA and DRAND.
An important thing to note is that the startup phase for these
algorithms must use CSMA for the MAC protocol because the
TDMA schedule has not been setup yet. While we modeled
most aspects of CSMA in our simulator, it does not completely
simulate the performance of CSMA. Thus, the results in these
tests do not necessarily reflect a real scenario. However, since
the setup for all of the protocols is simulated in the same way,
the results reflect the relative differences among them.

We wanted to find out how the startup cost changes as
the system scales in both number of nodes and in network
density. Figure 4(a) shows the startup time for both protocols
as the number of nodes increases. As expected, DRAND uses
less time than DSA, and as the number of nodes increases,
the startup time remains constant because of the parallelism
of DRAND. DSA increases linearly as the number of nodes
increases.

Figure 4(b) shows how the protocols scale with network
density. With low density, DRAND has a shorter startup time
than DSA. But as the number of neighbors per node increases,
DSA performs better and remains relatively constant. This
is because with very dense networks, DRAND has a lot of
nodes in the same neighborhood deciding to color themselves.
On the other hand, DSA uses information about the node’s
neighborhood to decide which to color, and thus does it more
efficiently.

Figures 4(c) and 4(d) show how the protocols scale in terms
of energy used for the startup phase. In both tests, DSA uses
less energy than DRAND, and the difference increases as the
network scales up. This is because DRAND randomly chooses
nodes to try to color themselves, and thus under the CSMA
MAC, collisions can occur, which can waste energy. DSA
chooses nodes to color more carefully, and also chooses fewer
nodes at a time to color, so collisions are less likely to occur.

Overall the startup tests indicate that while DRAND gener-
ally takes less time to startup, DSA conserves energy better,
and scales better in terms of time as the density of the network
increases.

D. Data Flooding Test

In the data flooding simulation test, we used a trivial routing
strategy where every node in the network floods its message in
an attempt to reach every other node. Two observations can be
made about this strategy. First, this strategy will only complete
in a connected topology. Second, on connected topologies with
a no-conflict schedule, the entire flooding will complete. This
test can show data dissemination rates when specific data paths
are not known.

Because the algorithms tested in this set have no routing
information, none are biased towards a particular type of
dissemination. Figures 5(a) and 5(b), show the number of
nodes that have received 100% of the data in each test. The
test shows how a shorter frame size helps data move quicker in
an all-to-all data flooding scenario, averaging out all possible
paths that data could take through the network. By observing

DA —
DRAND ——

Setup time

0 L L L L L L
50 100 150 200 250 300 350 400

Number of nodes

(a) Startup Time Varying over Number of Nodes

3 :
DSA ——

DRAND —*—

Setup time

12 14 16 18 2 2 2% % 28
Nodes density

(b) Startup Time Varying over Network Density

35000 :
DSA ——
DRAND —x—

30000 -

25000 -

20000 -

Energy cost

15000 -

10000 -

5000 -

0 L L L L L L
50 100 150 200 250 300 350 400

Number of nodes

(c) Startup Energy Cost Varying over Number of Nodes

40000

DSA ——
DRAND —x—
35000 -
30000 -

25000 -

20000 -

Energy cost

15000 -

10000 -

5000 -

.
12 14 16 18 20 2 2 % 28
Nodes densiy

(d) Startup Energy Cost Varying over Network Density

Fig. 4. Startup Cost Tests

csA— "
DSA —%—
80 | RAND —m—
DRAND —e—

Nodes Completed

L L
500 600 700 800 900 1000 1100 1200

Time

(a) Flooding with 81 Nodes

csA——
DSA —%—
| RAND —m—
DRAND —e—

Nodes Completed

0 I I L L L
2000 2200 2400 2600 2800 3000 3200 3400 3600 3800
Time

(b) Flooding with 144 Nodes

Fig. 5. Data Flooding Tests

the 81-node simulation in Figure 5(a) and 144-node test in
Figure 5(b), we see the total completion time of DSA-CCH
is 16.7% and 10.6% quicker than DRAND respectively. From
the simulations, we found DSA-CCH saves 20% in the frame
size over DRAND.

A related is the difference in time from when the first node
gets all data until the last node get its last piece of data as
shown in Figure 5(a) and 5(b). In the 144 node test, DSA-
CCH shows an 11.9% improvement over DRAND.

E. Data Aggregation Test

The fourth test examines latency in a data aggregation
application and again compares the same four algorithms, plus
DSA-AGGR, which was designed to improve DSA in such
scenarios. Our routing tree for aggregation is a simple breadth
first spanning tree where the first parent to announce itself
takes all the unclaimed neighbors. We use this simple routing
tree setup because it is often used in sensor networks, and
because the focus of our work is on the TDMA schedule,
so this type of routing tree is sufficient to demonstrate the
algorithms of interest. Note that because parts of the tree may
have different heights, some interior nodes will have longer
queues of unfinished aggregation than others.

Figure 6 compares our algorithms to RAND and DRAND
on data aggregation queries with Grid-Random deployments.
Random was not considered for this simulation, since it is
not guaranteed to be connected. For the 81-node deployment,
DSA-AGGR yields a 25% gain over DRAND.

100

csh—
DSA-AGGR —x—
[DSA—x—
RAND —&—

| DRAND —m—

Query latency

L L L L L L L L
80 % 100 110 120 130 140 150 160 170

Number of nodes in field

Fig. 6. Data Aggregation on Grid-Random topology with 81 to 169 nodes

Although we do not show it here, we also compared our
algorithms against the numbers provided in [3] with respect
to the DCQS algorithm. Their tests ran DCQS on an 81 node
Grid-Random network with a 675m x 675m field with radio
radius of 125m. Their total latency was 30 and they had query
rate of %. This compares directly to our 81-node setup (which
has the same density), where we have latency of 33 and a
query rate of % (see Figure 3(a)). While this figure does
not include DSA-AGGR in it, the number of colors, and thus
the query rate, is the same as DSA, as shown in the figure.
Given these results, we can see that at a cost of only 10% of
their latency, we were able to double the query rate. This is
because our DSA-AGGR algorithm emphasizes assigning the
smallest number of slots, while also taking the routing order
into account. On the other hand, DCQS focuses on the query
precedence order and not minimizing number of slots.

VI. CONCLUSION

In this paper, we have presented an algorithm that ap-
proaches the lower bound of achievable frame size for a
TDMA schedule better than existence algorithms. By using
a novel color constraint heuristic (CCH), we developed an
efficient and light-weight centralized coloring algorithm for
slot assignment (CSA-CCH) in wireless sensor networks. We
also presented a distributed version of the algorithm (DSA-
CCH) and achieved a measure of parallelism without use of
global information for the coloring.

We compare centralized algorithms such as DH, RAND,
and BF algorithm to CSA, and distributed algorithms such as
DRAND, DCQS, to DSA. Our algorithm shows substantial
improvement in terms of TDMA frame size, which lead to
higher throughput in TDMA systems.

For the data aggregation application, we improved our DSA-
CCH algorithm to accommodate the data routing and make the
best use of pipelining so that we achieve relatively low latency
and yet keep the near optimal query rate which benefits from
the small frame size.

Recall the five criteria specified in Section I as important
characteristics of sensor network MAC protocols. Here we dis-
cuss how our protocols provide these important requirements.

o Predictability. Our TDMA protocols that we have pre-
sented here are collision-free and thus requires no retrans-
missions. We can bound the amount of time it will take
for a message to traverse a path in the network.

o Timeliness. For applications in which data is flooded
throughout the network, we have demonstrated that DSA
reaches more nodes more quickly than DRAND. For
query aggregation applications, DSA-AGGR has lower
latency than DRAND.

« Power efficiency. Our protocols demonstrate power effi-
ciency in several ways. First, the ability to schedule sleep
time for the node can reduce the amount of energy wasted
on overhearing and idle listening. Second, because there
are no collisions, the protocols do not waste energy in
retransmitting lost messages. And third, the efficient as-
signment of transmission slots allows the overall number
of messages to be reduced when sending data around the
network.

« Adaptability. While we do not discuss adaptability in the
description of our algorithms, they can adapt to additions
and removals of nodes relatively easily. If a node is added
to the network, we can use a technique similar to that
used in DRAND [2] in which we reschedule the nodes
in the two-hop neighborhood of the new node. If a node is
removed from the network, the TDMA schedule does not
need to change at all because removal of a node cannot
cause collisions. However, over time, removal of many
nodes can make the TDMA schedule inefficient. This can
be fixed by periodically rescheduling the entire network,
as was also described in [2].

o Scalability. Scalability can be defined several ways. In
Section V, we show how the startup cost of our protocols
scales with the number of nodes and with network
density. While the startup time increases faster than
DRAND as the number of nodes increases, the increase
with density is slower. We believe that a more important
scalability issue involves the number of transmission
slots needed to schedule the network. The simulations
described in Section V.B show that as the size of the
network increases, the number of slots used by DSA
increases slower than for DRAND. For a long-lived
application, as many sensor network applications tend
to be, the scalability of the executing schedule is more
important than the scalability of the startup cost.

In the future, we plan to integrate our algorithm into a real-
time service to support high data query rates in wireless sensor
networks. We also have ideas on how to improve the DSA-
AGGR algorithm by understanding more about the path of the
messages. That is, some collisions may be acceptable if we
know that they are not in the path of any messages being sent.

We have hypotheses about workarounds to the bridging
problem in our DSA-CCH algorithm. For example, it might
be possible to use timeouts or multiple starting locations, but
these have not been tested.

Finally, we plan to explore how our algorithm works with
more realistic radio models. The unit disk radio assumption

is useful for reasoning about sensor network algorithms but it
has been shown that it does not reflect the true nature of radio
communications. We plan to explore models that consider
the difference between transmission distance and interference
distance, as well as unreliability of radio connectivity.

REFERENCES

[1] S. S. Kulkarni and M. U. Arumugam, “Tdma service for sensor
networks,” ICDCSW, vol. 05, pp. 604-609, 2004.

[2] 1. Rhee, A. Warrier, J. Min, and L. Xu, “Drand:: distributed random-
ized tdma scheduling for wireless ad-hoc networks,” in MobiHoc '06:
Proceedings of the seventh ACM international symposium on Mobile ad
hoc networking and computing. New York, NY, USA: ACM Press,
2006, pp. 190-201.

[3] O. Chipara, C. Lu, and J. Stankovic, “Dynamic conflict-free query
scheduling for wireless sensor networks,” in Proceedings of the 14th
IEEE International Conference on Network Protocols, 2006.

[4] S. B. Eisenman and A. T. Campbell, “Structuring contention-based
channel access in wireless sensor networks,” in IPSN ’06: Proceedings
of the fifth international conference on Information processing in sensor
networks. New York, NY, USA: ACM Press, 2006, pp. 226-234.

[5] D. B. West, Introduction to Graph Theory, 2nd ed. Prentice Hall, 2001.

[6] B. M. K. Q. Peter Bella, Daniel Kral, “Labeling planar graphs with a
condition at distance two,” in Proceedings 2005 European Conference
on Combinatorics, Graph Theory and Applications, 2005.

[71 H. Bodlaender, T. Kloks, R. Tan, and J. van Leeuwen, “Approximation
A — coloring on graphs,” in STACS, 2000. [Online]. Available:
citeseer.ist.psu.edu/bodlaenderOOapproximations.html

[8] M. Halldérsson, “Approximating the [(h,k)-labelling problem,”
Engineering Research Institute, University of Iceland Technical,
Tech. Rep. Report No. VHI-03-2005, 2005. [Online]. Available:
citeseer.ist.psu.edu/252952.html

[9] N. Alon and B. Mohar, “The chromatic number of graph powers,” Comb.
Probab. Comput., vol. 11, no. 1, pp. 1-10, 2002.

[10] G. W. Ewa Malesinska, Steffen Piskorz, “On the chromatic number of
disk graphs,” Networks, vol. 32, no. 1, pp. 13-22, 1998.

[11] T. Erlebach and J. Fiala, “Independence and coloring problems on
intersection graphs of disks,” 2001. [Online]. Available: citeseer.ist.psu.
edu/erlebachOlindependence.html

[12] T. Ren, K. L. Bryan, and L. Thoma, “On coloring the square of unit
disk graph,” University of Rhode Island Dept. of Computer Science and
Statistics, Tech. Rep., 2006.

[13] G. P. Halkes, T. van Dam, and K. G. Langendoen, “Comparing energy-
saving mac protocols for wireless sensor networks,” Mob. Netw. Appl.,
vol. 10, no. 5, pp. 783-791, 2005.

[14] 1. Rhee, A. Warrier, M. Aia, and J. Min, “Z-mac: a hybrid mac
for wireless sensor networks,” in SenSys 05: Proceedings of the 3rd
international conference on Embedded networked sensor systems. New
York, NY, USA: ACM Press, 2005, pp. 90-101.

[15] L. DiPippo, D. Tucker, V. Fay-Wolfe, K. Bryan, T. Ren, W. Day,
M. Murphy, T. Henry, and S. Joseph, “Energy-efficient mac for broadcast
problems in wireless sensor networks,” in Proceedings of the Third
International Conference on Networked Sensing Systems, Chicago, 1L,
June 2006.

[16] M. Maréti, B. Kusy, G. Simon, and A. Lédeczi, “The flooding time
synchronization protocol,” in SenSys '04: Proceedings of the 2nd in-
ternational conference on Embedded networked sensor systems. New
York, NY, USA: ACM Press, 2004, pp. 39-49.

[17] S. Ramanathan, “A unified framework and algorithm for channel as-
signment in wireless networks,” Wirel. Netw., vol. 5, no. 2, pp. 81-94,
1999.

[18] P. Wan, C. Yi, X. Jia, and D. Kim, “Approximation algorithms for
conflict-free channel assignment in wireless ad hoc networks: Research
Articles,” Wireless Communications & Mobile Computing, vol. 6, no. 2,
pp. 201-211, 2006.

[19] B. Awerbuch, “Randomized distributed shortest paths algorithms,” in
STOC ’89: Proceedings of the twenty-first annual ACM symposium on
Theory of computing. New York, NY, USA: ACM Press, 1989, pp.
490-500.

[20] S. Parthasarathy and R. Gandhi, “Distributed algorithms for coloring
and domination in wireless ad hoc networks,” Proc. of FSTTCS, 2004.

