
 1

REAL-TIME COTS MESSAGE COMMUNICATION FOR C3I SYSTEMS

BY

ROBERT J. PALLACK JR.

A THESIS SUBMITTED IN PARTIAL FULFULLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND
1997

 2

MASTER OF SCIENCE THESIS

OF

ROBERT J. PALLACK JR.

APPROVED:

Thesis Commitee
 Major Professor ________________________________

 DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND
1997

 3

Abstract

 This work investigates the viability of utilizing a Commercial off the Shelf

(COTS) based distributed system to meet the real-time data messaging requirements of

the Combat Command Control and Intelligent (C3I) systems for the New Strategic

Submarine Nuclear (NSSN) submarine. The primary method for performing the required

analysis is measuring the system latencies on representative equipment. Measurements

are taken to determine the latency effects of the workstation and underlying

Asynchronous Transfer Mode (ATM) network on message latencies.

 The concept of the Latency Server is also introduced. The Latency Server

provides latency estimates for message latencies between pairs of communication

workstations. The latency estimates are available to any requesting application client.

 Lastly, recommendations are made to the standards which specify the components

of the message communications system.

 4

Acknowledgments

 I first would like to thank my Branch Head Robert Watson and the Naval

Undersea Warfare Center (NUWC) for allowing the availablity of the computational

resources required to accomplish this thesis. I thank Greg Bussiere for his TCP/IP test

drivers and for his technical consultation in the accomplishment of the measurements in

Section 3. I thank Dr. Fay-Wolfe for his technical guidance and editorial comments.

Lastly, I would like to thank my wife, Mary Anne, and daughters, Hannah and Jamie for

putting up with me during the time I worked on this thesis.

 5

1.0 Introduction

 The problem domain that this research is addressing is to determine the viability

of utilizing a Commercial off the Shelf (COTS) computer network based system to meet

the real-time data messaging requirements of military Combat Command Control and

Intelligent (C3I) systems. C3I systems provide the computational resources which are

required to gather and process data in the support of a complex weapon system, such as,

a submarine. The C3I system that is the focus of this thesis is the C3I system being

developed for the New Strategic Submarine Nuclear (NSSN) submarine.

 In general, C3I systems can contain numerous software applications on various

workstations. C3I systems are typically composed of subsystems, each of which offers

specific system functionality. Each subsystem consists of one or more computer

resources. The subsystems are interconnected by computer networks. Applications

typically are required to exchange data with numerous applications from other subsystems

to accompish a system level task. Some system level tasks have real-time requirements.

Real-time refers to timing requirements (i.e. deadline) for task completion. Real-time

requirements are typically characterized as either soft or hard. Hard real-time

requirements can never be violated or else a catastrophic event will occur. On the other

hand, if soft real-time requirements are violated, no castrophic event occurs, however the

results may be degraded. Modern C3I systems will be based on COTS computers and

computer networks. Since message communications may be required in order for a task

to complete, the latency characteristics of message communications are of significant

interest with respect to the system’s real-time requirements. It is important to

characterize the latency of the COTS message communication system and to gain insight

on how the COTS system communication system can be utilized to support real-time C3I

system message traffic.

 The key measurement metrics used in this thesis to characterize latency are

average latency, maximum latency and latency distribution. Average latency

measurements provide a means of comparing the performance characteristics of different

configurations. Maximum latencies provide the means to determine what time critical

requirements a particular configuration can meet. If the requirement is considered soft-

 6

real-time, then the maximum latency may occasionally exceed the real-time time

constraint. If the requirements are considered hard real-time, the maximum latency can

never exceed the real-time time constraint. This thesis is primarily concerned with soft-

real-time systems.

 To facilitate C3I system design and implementation, a Common Object Request

Broker Architecture (CORBA) product will be utilized. CORBA is a standard which

provides a framework to define interfaces between communicating software applications

and includes the mechanisms to support communications between networked computers.

Unfortunately, the software utilized to implement the CORBA functionality adds to the

message data latencies. It is also of interest to characterize the CORBA implementation

contribution to intercomputer message data latencies.

 As a means to identify message data latencies, it may be beneficial for software

applications to dynamically request the latency component of the message

communication implementation between applications on different computers. This

would allow for the applications to maximize the amount of time available for

computational processing while ensuring that system deadlines are not missed. Although

this concept is not necessarily applicable to NSSN C3I System, it may have applications

to other network based computer systems.

1.1 Background of COTS Based Message Communications for C3I Systems

 Navy Combat Command Control and Intelligence Systems are the computer

systems aboard Navy platforms that, receive information from the outboard sensors,

provide the necessary computations for the platform personal to make decisions, and

provide the required preset commands to the weapon subsystems. The NSSN C3I System

consists of a high level network architecture connecting 13 subsystems. The subsystems

are as follows:

• Combat Control

 7

• Sonar

• Total Ship Monitoring

• Tactical Support Device

• Exterior Communication

• Electronic Surveillance

• On Board Training

• Ship Control

• Submarine Defense Warfare System

• Photonics

• Simulation/Stimulation

• Radar

• Navigation

Each subsystem performs a specific function. For instance, the Sonar subsystem

translates raw sensor data from transducers to target data for the Combat Control

subsystem.

 C3I systems have traditionally been composed of uniquely designed computer

systems, communicating by point-to-point connections. These systems typically consist

of dozens of software applications located on different computer platforms. Several of

the applications have real-time considerations in that message latency characteristics are

of importance. Since the older systems utilized point-to-point connections and used

specially designed computers, the message latency characteristics were known and hence

not a major source of concern.

 In an effort to reduce procurement costs, procurement lead time, and to keep

current with technological advances, the Navy has taken the approach that all new

procurements of C3I systems will be based on COTS components. These components

would be specified by open system standards, so that the Navy would not become

dependent on a particular vendor’s implementation. This approach has resulted in the

design of the NSSN C3I System consisting of numerous commercial workstations

 8

connected together by computer networks. The NSSN C3I System is based on the

standards as identified in Table 1.1-1.

 SYSTEM COMPONENT STANDARD

 OPERATING SYSTEM: POSIX compliant

 NETWORK: ATM, SONET, TCP, IP

 DISPLAY: X-WINDOWS, MOTIF

 INTERFACE DEFINITION: CORBA

 SYSTEM MANAGEMENT: SNMP

Table 1.1-1

1.2 Objectives

 The research will consist of the following objectives:

1) Measure and analyze the average latency, maximum latency and latency

distribution of the components of the COTS message communication implementation to

characterize the soft real-time requirements which can be satisfied and the identification

of the system constraints required to make message communication hard-real-time,

2) Develop a CORBA-based client/server implementation to dynamically estimate

current system latencies for soft-real-time communication implementations, and

3) Compile a list of recommendations to enhance the real-time aspects of the

standards (ATM, protocol stack, and CORBA) which specify the COTS components

implementing the message communication system.

1.3 Scope and Assumptions

 This work is primarily concerned with message communication system

implementations that are similar to what is to be used for the NSSN C3I System. Since

this system is based on COTS components, and since COTS components do not

necessarily come with detailed design information, this work utilizes actual

measurements to characterize the message communications system. If actual detail

designs are not available, detailed simulations or analytical analysis may not be possible.

 9

Actual measurements also provide advantages in that time consuming complex analysis

need not be done, important implementation “quirks” can be uncovered and the results

obtained are actual results versus theoretical results which may be prone to errors.

 The majority of messages required to support the NSSN C3I System will be 256

bytes or smaller. Therefore, this work only obtains measurements for relatively small size

messages. The message sizes utilized in the measurements are as follows: 64 bytes, 128

bytes, 256 bytes, 512 bytes, 1024 bytes, 2048 bytes, 4096 bytes and 8192 bytes.

 The systems utilized for the measurements were HP TAC-3 and TAC-4

computers. The TAC-3 systems had HP-UX 9.01 operating system with the Orbix 2.0.1

implementation of CORBA. The TAC-4 systems had HP-UX 10.0 operating system with

the Orbix 2.0 implementation of CORBA. The ATM/SONET network used was based

on FORE ASX-1000 switches. It is also assumed that the ATM virtual connections are

based on the Unspecified Bit Rate (UBR) traffic contract.

1.4 Document Overview

 Section 2.0 of this document provides an introduction to the components of the

COTS message passing system. An example of how messages are passed between

remote applications is then described. In addition, real-time concepts are identified along

with a discussion of related published research.

 Section 3.0 provides a description and analysis of the latency measurements which

were taken. Measurements were taken and compared from application-to-application

from both CORBA and TCP/IP perspectives. In addition, measurements characterizing

latencies for the ATM network were obtain. This section also provides measurements to

demonstrate how latencies could be improved by assigning high priority to process.

 Section 4.0 introduces the concept of the Latency Server and provides high level

design information. In addition, the setup in which the Latency Server was tested is

discussed.

 Section 5.0 addresses the applicability of this thesis research to other work (i.e.

NSSN C3I System development and URI research). Section 6.0 provides

recommendations to the ATM, CORBA and TCP/IP standards on how these components

could be improved to support real-time time constrains. Section 7.0 states the

 10

conclusions for this work. Lastly, Section 8.0 provides recommendations on how this

thesis can be extended.

 11

2.0 Background Discussion

2.1 Message Communications Paradigm

 Inter-workstation communications is accomplished by message passing.

The two fundamental components of the COTS message passing system are the ATM

network and the workstations from which messages are to be passed. The significant

components of the workstation are the operating system, the protocol stack, and the

application program’s environment. The ATM network major components are the ATM

switches and the workstation’s ATM interface Network Interface Card (NIC).

 Section 2.1.1 presents a brief introduction to the operating system, the TCP/IP

protocol stack, the CORBA environment, and ATM. Section 2.1.2 illustrates the

interaction of these components during a message passing scenario.

2.1.1 Component Details

2.1.1.1 Operating System

 A POSIX compliant operating system can be viewed as several layers. The lowest

layer is the machine’s hardware. The machine hardware is accessed by the operating

system (kernel). The kernel provides basic services to programs by providing the

mechanism to interact with the hardware. Programs interact with the kernel via system

calls.

 Programs are executable files. An instance of an executing program is a process.

Programs which implement required NSSN functionality will be termed application

programs. Application programs consist of one or more processes.

 Figure 2.1.1.1-1 is a block diagram of the kernel derived from [15]. Application

programs are invoked in what is termed as the User Mode. Application programs call a

system call library which causes an interrupt resulting the system to transition from User

mode to Kernel Mode.

 The kernel itself is composed of:

 12

1. system call interface: provides interface to kernel;

2. file subsystem: provides file management functionality;

3. hardware control: provides low level communications to peripherals;

4. device drivers: provides means to control peripheral devices;

5. buffer cache: provides caching to/from peripheral devices;

6. networking module: provides network communication functionality;

7. process control subsystem: manages process scheduling;

UNIX Operating System Block Diagram

file subsytem
inter-process
communication

scheduler

memory
management

process
control
subsystem

buffer cache

system call interface

network
module
(TCP/IP)

hardware

hardware control Kernel Level

Hardware Level

device drivers

blockcharacter

libraries

application program application program application program...........

User Level

Kernel Level

Figure 2.1.1.1-1

 The file subsystem functions include file management, controls file access,

retrieves data and allocates space. The hardware control handles interrupts and provides

a means for peripheral devices to communicate with the underlying machine. The device

 13

drivers provide the means to control peripheral devices such as disks and network

interfaces. There are two methods in which the device drivers interact with the file

subsystem, character device and block device. The character device accepts a raw stream

of data to/from the driver. The block device offers caching utilizing the buffer cache.

The buffer cache allows peripheral data to be cached. This allows performance benefits

in that the CPU does not have to wait for a slower peripheral device (i.e. secondary

memory) to provide/accept the data to/from the file system. The network stack provides

the functionality to support network communications.

 The process control subsystem is composed of the inter-process communication

module, the scheduler module and the memory management module. The inter-process

communication module provides a means to pass data between processes. The memory

management module manages main memory. If main memory is not large enough, the

memory manager either performs a paging or a swapping function. The scheduler,

schedules processes to run. For HP-UX, processes run for 10 ms before they are swapped

out. The highest priority process always run first. The priority of User Mode processes is

dependent on the time duration since it was last scheduled.

2.1.1.2 CORBA

 The Common Object Request Broker (CORBA) is a specification [17] for a

distributed architecture specified by the Object Management Group. CORBA specifies

an architecture in which applications on remote hosts can communicate with each other

without any knowledge of the underlying network. The applications can be on

heterogeneous machines utilizing different programming languages.

 A Client/Server model is used for information exchange between applications.

Interfaces between Clients and Servers are specified by an Interface Definition Language

(IDL). IDL provides a declarative language in which object interfaces or software

“wrappers” are created to facilitate data exchange between applications. It is the

responsibility of the server programmer to implement the object methods. Data can be

interchanged simply by the client invoking the object methods.

 14

 A system designed utilizing CORBA may be viewed as a software bus in which

applications are attached (see Figure 2.1.1.2-1). The CORBA framework provides a level

of abstraction in which the underlying network details are transparent to the applications.

Data is sent between remote applications by simply invocating the IDL methods. The

actual physical architecture for Figure 2.1.1.2-1 may physically be implemented as what

is shown in Figure 2.1.1.2-2.

CORBA Software Bus

S O F T W A R E B U S

A P P L IC A T IO N 1 A P P L IC A T IO N 2

A P P L IC A T IO N 3 A P P L IC A T IO N 4

Figure 2.1.1.2-1

 Underlying Network

 15

ATM
SWITCH

ROUTER

ATM
SWITCH

WORKSTATION 2
APPLICATION 2

WORKSTATION 4
APPLICATION 4

WORKSTATION 1
APPLICATION 1

WORKSTATION 3
APPLICATION 3

 Figure 2.1.1.2-2

 To support the required CORBA functionality, each workstation has an Object

Request Broker (ORB). The ORB functionality is implement utilizing a client stub and a

server skeleton. The client stub and server skeleton are created when the IDL defined

interface is compiled by a CORBA based IDL compiler. The resulting stub implements

the code to interface with any server object which is described by the IDL interface.

Likewise, the skeleton implements the code necessary to facilitate the binding and

servicing of clients. To create the client, the CORBA client stub object file is linked with

the application client object file and runtime libraries. To establish the server, the

CORBA skeleton object file is linked with the application server object file and runtime

libraries. In addition, the CORBA implementation may have daemon processes

executing on the workstation. A daemon is a background process which runs when a

specific event occurs.

 Orbix from IONA Technology was the implementation of CORBA used for this

thesis. Orbix utilizes a daemon, identified as orbixd, for a client to bind to a server

object. The bind results in the orbixd dameon locating the server object and establishing

a proxy server object within the clients workstation’s address space. Once the bind has

completed, the orbixd dameon sleeps until the occurrence of another object binding.

 16

2.1.1.3 TCP/IP

 The relationship between the protocol stack, CORBA and ATM are shown in

Figure 2.1.1.3-1. CORBA interfaces with the protocol stack utilizing a sockets interface.

The protocol stack for the majority of COTS systems utilized for C3I systems are based

on the Internet protocols, Transmission Control Protocol/ Internet Protocol (TCP/IP) and

User Datagram Protocol/ Internet Protocol (UDP/IP). TCP/IP is the protocol which is

utilized for this thesis.

Protocol Stack Used

APPLICATION

CORBA

TCP

IP

ATM

Figure 2.1.1.3-1

 TCP provides reliable message services. Initially, TCP sets up a connection

between the local and remote hosts. This connection ensures that a route is provided in

the underlying layers. TCP ensures that data is received by the remote application by

requiring the receiver to acknowledge packet reception. Additionally, TCP ensures that

messages arrive in order, are not duplicated, and it provides flow control mechanisms to

ensure that the remote workstation is not being sent data faster than it can process it.

 The IP layer encapsulates the TCP segments. IP datagram routing is

connectionless and is classified as a “best effort service”. The IP layer provides a logical

address for the systems on the network. This allows the underlying layer details to be

transparent from the application layers (i.e. network type, Message Transfer Unit (MTU)

size). If necessary, when transmitting messages, the IP layer fragments data from TCP

 17

into the appropriate MTU size of the underlying network. When receiving messages, if

necessary, the IP layer reassembles message frames for the TCP layer.

 The TCP/IP protocol is implemented in the kernel of most POSIX compliant

operating systems of interest in this thesis. The operating system queues both incoming

messages and outgoing messages. Thus, a message needs to wait its turn before it is

transmitted on the network. There is no concept of message priority in TCP/IP.

2.1.1.4 ATM

 Asynchronous Transfer Mode (ATM) is an international standard for high-speed

networking technology. ATM provides a communication path between End Stations.

End Stations can be computers, video devices or audio devices. ATM functionality is

equivalent to the Physical, Data Link and a portion of the Network layer of the OSI

model. A description of the OSI model can be found in [23].

 An ATM data communication network is composed of workstations with ATM

Network Interface Cards (NIC) and ATM switches. ATM switches contain multiple ports

(i.e. 16). The workstations are connected directly to the ports by a physical interface

(fiber or copper) to a switch port. In addition to workstations, switch ports can be

connected to other switch ports. A path between any two end-stations is termed a virtual

circuit. Virtual circuits are composed of virtual paths. Each virtual path is further

composed of numerous virtual channels. Information which traverses the ATM network

is decomposed into 53 byte ATM cells. The cells consist of a 5 byte header and a 48 byte

payload. Two fields of the header identify the Virtual Path and the Virtual Channel

which the cell is to traverse. These fields are the Virtual Path Identifier (VPI) and the

Virtual Circuit Identifier (VCI). Each switch port has a data structure associated with it

which maps the incoming cells VPI/VCI pairing to the appropriate output switch port.

The output switch port also has a data structure associated with it which maps the current

VPI/VCI pairing with a potentially new VPI/VCI pairing.

 In order to support the various types of information that can traverse the ATM

network, ATM provides Quality of Service (QoS) parameters. For example, video

information requires the network to provide a low latency, constant bandwidth, while

 18

computer data is bursty and generally does not require low latency constant bit rate data.

The QoS parameters are used by the user to specify their requirements to the network. If

the network can support the user requirements, a traffic contract with the network is

established.

 For typical ATM communications the ATM reference model consists of 3 layers,

the ATM Adaptation layer (AAL), the ATM layer, and the Physical layer. The AAL layer

has the primary functions of interfacing with upper layers (i.e. the application or TCP/IP)

and cell disassembly/reassembly. There are 5 possible AALs to select from, depending

on the type of information to be supported by the network. The AAL mapping is as

follows:

AAL 0 “Best Effort” (QoS Parameters unspecified)

AAL 1 Circuit Emulation, CBR

AAL 2 VBR (Video/Audio)

AAL 3 Connection-Oriented Data

AAL 4 Connectionless Data

AAL 5 Tailored for data communications

 The ATM layer provides functions such as traffic control and congestion control.

Traffic control ensures that all cell flow is provided through the ATM network such that

the traffic contract is achieved. Congestion control provides mechanisms to avoid, detect

and recover from congestion. Congestion is the condition when the network load exceeds

the network design limits such that the traffic contract cannot be guaranteed. An

algorithm utilized at this layer for traffic control is the Leaky Bucket Algorithm. This

algorithm is analogous to a bucket (ATM cell queue) which has a hole in the bottom in

which the bucket contents leak (cell departure rate). Fluid is also poured into the top of

the bucket (cell arrival rate).

 The physical layer can be implemented on numerous standardized physical

mediums. A common medium is OC-3 Synchronous Optical Network (SONET).

SONET’s basic unit is a 9x90 array of bytes called a frame. ATM cells are packaged on

 19

to these frames on the physical medium. These frames are continuous, and if there is no

data to be sent, empty ATM cells are placed in the SONET frames. The physical layer is

synchronous.

 OC refers to the speed of the SONET frames. The basic 51.840 Mb/s channel is

OC-1. OC-n is used to indicate that n SONET channels are being utilized. Therefore

OC-3 indicates that the underlying physical medium has a rate of 155.2 Mb/s.

2.1.2 Message Communication Example

 Figure 2.1.2-1 provides an illustration of the subsystem components. Initially,

when ready to send data, the sending application awaits to be scheduled by the scheduler.

Once this occurs, the application’s CORBA clients binds to the server object. This

binding results in the execution of the orbixd deamon, which in turn establishes a

connection between the CORBA client and remote server. The ORB then establishes a

proxy object in the client’s address space. Once the bind is complete, the orbixd deamon

enters a sleep mode. Once the kernel reschedules the client process, the client invokes a

server method to pass data. For the purpose of this example, it is assumed that the

method invocation passes a 1KByte array as an ‘in’ parameter and returns a 1 KByte

array. The functionality to support the method invocations is implemented in the client

stub and server skeleton.

Message Flow

 20

 SOCKETS INTERFACE

 TCP

 IP

 NIC DRIVER

..........

 AAL
 ATM

 PHYSICAL

APPLICATION
THREAD OF
CONTROL AND
DATA

CORBA LAYER

APPLICATION
THREAD OF
CONTROL AND
DATA

CORBA LAYER

 SOCKETS INTERFACE

 TCP

 IP

 NIC DRIVER

..........

 AAL
 ATM

 PHYSICAL

APPLICATION
THREAD OF
CONTROL AND
DATA

CORBA LAYER

APPLICATION
THREAD OF
CONTROL AND
DATA

CORBA LAYER

Figure 2.1.2-1

 The ORB performs the required marshaling and utilizes a socket call to pass the

data to the TCP/IP protocol stack via the socket buffer. The data in the socket buffer is

then handled by the TCP protocol. The data is packaged into TCP segments. The TCP

protocol establishes a connection to its peer TCP layer at the receiving workstation. The

TCP segment is then further packaged into an IP datagram. The IP datagram is then

transferred from kernel memory to NIC memory. At this point the IP datagram is at the

ATM ALL layer. At this layer, the IP datagram is packaged into 53 byte cells as dictated

by the ALL being utilized. The cells are then handled by the ATM layer. This layer

provides the required traffic control and congestion control functions. The destination IP

address is associated with the ATM destination address by establishing the appropriate

VPI/VCI pairing. The cells are then packaged into the SONET frames by the ATM

physical layer. The cells are then sent to the ATM switch, where depending on their cell

header information, are switched through the ATM switching network to the receiving

 21

workstation. The reverse process is then accomplished at the receiving workstation. The

53 byte cells are combined into IP datagrams which are copied from NIC memory to

kernel memory. The IP datagrams are then decomposed into the TCP segments. TCP

performs error checking functions and if required will request any missing or corrupted

segments be resent. The TCP data is then redirect to the proper ports for applications to

utilize. When the CORBA server application is scheduled on the receiving workstation’s

CPU, the application can copy the socket data (i.e. the method’s ‘in’ parameter) to its user

space. The method executes and the CORBA run-time system fills the socket buffer

with the return data from the method invocation. This return data is sent to the original

host utilizing the same mechanisms that were just described.

2.2 Real-Time Considerations

2.2.1 Real-Time Overview

 Real-time systems are those systems which are constrained by time requirements.

A common time constraint is the concept of a deadline. A deadline is the time in which a

task is to be completed. As previoulsy stated, if the system is termed hard real-time,

tasks always have to complete before deadlines. If the task does not complete before the

deadline, a catastrophic event occurs. For soft real-time systems, if the deadline is

missed, no catastrophic event occurs, although the resulting computation may have a

degraded value.

 For a system to be hard real-time, its run-time behavior needs to be predictable. If

the system’s behavior is not predictable, it is not possible to guarantee that the system

will be able to meet its deadlines. Therefore, a nonpredictable system can not be

considered hard real-time. However, the system may be classified as soft real-time.

 A key concept in real-time theory is schedulability. Scheduling for real-time

systems is discussed in [4] and [6]. To meet deadlines, fast operation is not enough.

For a task to complete, it needs to be scheduled on system resources. If the resources are

not available in a timely fashion then timing constraints may be violated. Initial research

on real-time systems concentrated on the scheduling of tasks on the workstations CPUs.

Similar concepts can be applied to scheduling messages on system protocol stacks.

 22

Scheduling research has resulted into two general types of scheduling: static scheduling

and dynamic scheduling.

 In static scheduling, there is enough information about the system behavior to

perform scheduling a priori. To utilize static scheduling, the system operational states

need to be characterized a priori, which may be labor intensive. In addition, static

scheduling is inflexible, since run-time behavior can not be allowed to result in any states

other then the predefined operational states. Dynamic scheduling occurs during program

execution. Typically, dynamic scheduling is implemented by utilizing a priority-based

scheme for the scheduable tasks. In general, because of the disadvantages of static

scheduling, dynamic scheduling is preferable.

 Scheduling can be further characterized as either pre-emptive or nonpre-emptive.

Pre-emptive scheduling, immediately replace the current task that is utilizing the

resource, with the higher priority task. Nonpre-emptive scheduling, the high priority task

waits until either the lower priority task completes or it times out.

2.2.2 Real-Time Considerations of COTS Based Messaging

 In evaluating a COTS based messaging system’s ability to be real-time, the

system’s message latency characteristics need to be profiled and the system requirements

need to be defined. The latency characteristics required to perform this evaluation are the

maximum message latencies, and the message latency distributions. If the system latency

requirement is less then the maximum message latency, then the COTS based message

system can not be classified as hard real-time, because deadlines can not be guaranteed.

Graphically this is depicted in Figure 2.2.2.1. This figure represents a latency timeline,

where the left most point on the line represents 0 latency, and the right most point

represents maximum latency. The dashed line represents the system requirement. In the

figure the system’s maximum latency is greater then the system requirement, therefore the

system depicted in the figure can not be considered hard real-time. However, the system

may be considered soft-real-time if the deadline is exceeded within tolerable limits.

 23

These limits would need to be specified. In addition, the latency distribution of the

COTS system would need to be characterize inorder to evaluate if the system meets the

specified soft-real-time requirements.

min
latency

avg
latency

max
latency

SYSTEM
REQUIREMENT

SOFT REAL-TIME

Figure 2.2.2-1

 In Figure 2.2.2-2 the system requirement is always greater then the maximum

message latency. Therefore, the COTS system depicted in this figure can be used for a

hard real-time system.

min
latency

avg
latency

max
latency

HARD REAL-TIME
SYSTEM
REQUIREMENT

Figure 2.2.2-2

 Message latency has numerous sources in workstation-to-workstation

communication networks (see Figure 2.2.2-3). The two primary components of latency

are introduced by the workstations and the underlying ATM network. At the workstation,

the sources of latency are the operating system, overhead of the CORBA implementation,

and the processing done on the NIC. Operating system latencies are the result of process

scheduling, TCP/IP protocol stack algorithms and queuing, data copies from/to the

application to/from the physical network and memory management operations. The NICs

 24

typically contain a specialized processor, and for the purpose of this study, the latency

component of the NICs are assumed to be negligible. At the network level these latency

sources are switch latency, switch buffering schemes and the latency of the physical

medium (i.e. fiber). Since the distance between workstations is small, the latency of the

physical medium will also be assumed to be negligible.

System Latency Components

switch
(per port)

switch
buffering

latency of
medium

CORBA

protocol
stack

operating
system

CORBA

protocol
stack

operating
system

WORKSTATION WORKSTATIONNETWORK

Figure 2.2.2-3

 For a message to be sent, the sending process needs to be scheduled. The type of

process scheduling algorithm can significantly affect message latencies. In round robin

scheduling, the process sending the message will only be scheduled during the processes

time slice, which is not desirable for real-time. Message deadlines could be missed solely

on the basis of not being scheduled in a timely fashion. Assuming messages have equal

importance, a priority based scheduling scheme, where highest priority is given to the

event with the tightest time constraint, is required for real-time operation. However,

priority based scheduling is affected by the number of competing processes of equal or

higher priority. If the competition is high, there could be a certain degree of

unpredictability when the sending application would be scheduled on the processor.

 For data copies, latencies would be the time incurred from coping data between

the NIC and the kernel, and the time incurred from coping data between the kernal and

application user space. Latency effects due to data copies are influenced by hardware and

operating system implementations. It is probable that latencies due to data copies may be

 25

relatively predictable since they are low level operations requiring relatively simple

algorithms.

 The TCP/IP protocol stack may effect latencies due to its reliablity mechanisms

and/or by TCP/IP queuing. TCP/IP reliability mechanisms may effect latencies by the

regulation of flow of data and/or by requesting data to be resent. TCP/IP queuing may

have the most significant effects on latencies since this is a serial resource. Since TCP/IP

is effectively first in first out (FIFO), a high priority message has to wait until all previous

messages are drained from the queue. This can create a situation where low priority

messages are processed before high priority messages. In addition, if the queue is large,

the wait could be relatively long (i.e. latency due to queuing). In addition, certain

combinations of system parameters (i.e. socket buffer sizes, message sizes, MTU sizes,

ATM port buffer sizes) and their interaction with TCP/IP algorithms may also effect

latencies. Due to the above, TCP/IP effects on latencies is potentially highly

unpredictable.

 Performing reads/writes is also a significant cause of latencies due to slow disk

access times. Memory management’s effect on message latencies may occur when a new

process is started, resulting in page swapping in which latency is incurred since the

slower secondary memory is accessed. Memory management can also incur latency

when a process writes to a file which can again result in delays caused by accessing the

slower secondary storage. In addition, garbage collection may be an unexpected source of

latency. It is also possible that memory leaks could contribute to latencies, since these

leaks effectively reduce the size of main memory thus requiring additional memory

management operations. Latencies due to memory management may be fairly

unpredictable.

 Although, all the above factors affect latencies and introduce degrees of

unpredictability, it is still possible to craft the COTS message communication system to

support real-time requirements. This can be done, by constraining all the significant

factors which can effect latencies. For example, network loads, the number of processes,

process priority, socket buffer sizes, message traffic profiles, file writes, new process

 26

startups are all potentially constrainable. If the system is well understood and all the

required factors are constrained, then the system can be crafted to support hard real-time

requirements. If all the factors are not constrainable, then the crafted system may only be

able support soft real-time requirements.

2.3 Related Research Efforts

 There are several areas that are documented in the literature which relate to the

study performed by this thesis. These areas either provide additional insight on the work

accomplished by the thesis or provide interesting concepts, such as, QoS, on how this

thesis can be extended. There are four research areas of particular interest: message

passing in real-time distributed networks, the effects of the TCP/IP protocol stack on

real-time performance, the utilization of system Quality of Service (QoS) parameters to

guarantee resources and the real-time aspects of CORBA. In addition, it is of interest to

note the real-time research for the traditional COTS networking technologies (FDDI,

ethernet, etc.).

Distributed Real-Time Networks. Research directly related to real-time messaging in

distributed systems is of particular interest. The ARTS distributed system described in

[9] supports the concept of message priority. ARTS utilizes the Real-Time Protocol

(RTP) protocol. RTP supports message prioritization and utilizes a Time Fence

Mechanism to flag any message time violations. In addition, ARTS is careful to ensure

that priority inversions do not occur during message communication.

TCP/IP Research. There is a body of literature that discusses issues with TCP/IP over

ATM. A study describe in [5] shows that TCP/IP performance can be significantly

improved if ATM switch buffers are increased in size for the UBR traffic contract. A

study identifying a configuration for a deadlock condition with TCP/IP over ATM is

identified in [2].

 27

System QoS Research. Unlike traditional network technologies (Ethernet, Token Ring,

FDDI), ATM supports QoS parameters for its virtual connections. With ATM QoS

parameters, various types of information can be simultaneously supported (video, audio,

data) by the network. Systems utilizing a system-level QoS concept, have a form of

admission control in which it is first determine if there are enough system resources

available to support a connection for the specified QoS parameters. If there are resources

available to make the connection for the given QoS, then the connection is granted. This

is seen in GRAMS [8], which is an ATM based distributive system which utilizes a

distributed multimedia server. The QoS Broker described in [14] also utilizes similar

concept for the OS and ATM resources. The Chorus System identified in [3] also utilizes

QoS to establish a connection between communicating workstations. In this system, QoS

is system based, and is used to control CPU scheduling, workstation memory

management, in addition to ATM resource allocation. The required QoS is specified via

an API. Other work, such as, [7] has specified a set of QoS parameters. These

parameters are implemented at the transport layer.

Research on Real-Time CORBA. A framework identifying the syntax, semantics and

support required to support real-time distributed computing utilizing a CORBA based

system is identified in [1]. In this framework, timing constraints are made available to

applications by the utilization of CORBA context declarations. This work is further

expanded in [18] by providing additional implementational details. Research on

CORBA-level performance “bottlenecks” are identified in [19]. These results are similar

to the results derived by this thesis, and will be further addressed in Section 3.

Real-Time Research on Traditional Networking Technologies. It is worthy to note

some of the previous work concerning the real-time aspects of traditional network

technologies. Unlike ATM, traditional network technologies are limited in that they

shared the same physical medium. This physical medium is a shared resource in which is

 28

either arbitrated by a token or by sensing a “busy signal”. The real-time limitations of

Token Ring and Ethernet are simulated in [10]. Research has been accomplish in how to

make an Ethernet based system capable of being real-time. A Window Protocol using

real-time constraints for Ethernet is identified in [11]. Another approach [12] is to use a

token passing scheme implemented at the application level. For time token medium

access protocol, such as FDDI, a scheme is identified in [13] which message deadlines

may be guaranteed.

 29

3.0 Measurements

3.1 Measurement Background

 The primary objectives of the measurements are to obtain the latency

characteristics of the workstation and the underlying ATM network. These measurements

are to be used to establish a profile of the latency characteristics of the data message

communication components. These characteristics will be utilized in the implementation

of the latency estimation server, which is described in Section 4.

 In order to characterize the latencies of the various system components, the

measurements were taken at various layers in the COTS network message communication

paradigm: the CORBA-level layer, the underlying TCP/IP layer and the ATM network.

 The CORBA-level measurements are ultimately the most meaningful

measurements with respect to this work because they reflect what the applications

actually experience. I took the CORBA-level measurements by utilizing a round-trip

lanency measurement scheme between a CORBA-level based client and server. The

TCP/IP socket measurements also utilized a round-trip latency measurement scheme. By

taking the difference between the CORBA-level measurements and the socket

measurements, I identified the CORBA-level latency characteristics. To further identify

the latency components, I took ATM network measurements. By taking the difference

between the socket-level measurements and the ATM network measurements, I

charactierized the latencies for both the workstation component and the latencies of the

network. The network measurements were taken by utilizing the ADTECH network

analyzer [20]. This analyzer is able to generate/receive full bandwidth ATM cell traffic

streams. Since the analyzer both generates and receives the data stream, (i.e. the

generator and receiver are synchronized) the analyzer it is able to provide statistics such

as inter-cell arrival time and cell delay transfer time.

 30

3.2 CORBA Application-to-Application Latency Measurements

3.2.1 Measurement Configurations

 The configuration setup for which the measurements were taken are shown in

Figure 3.2.1-1. This configuration consists of two workstations, each containing a

CORBA-based envriornment over a TCP/IP protocol stack, each of which is over ATM

drivers. The workstations are interconnected by an ATM network. The ATM network

consists of two switches, connected by one OC-3 port. The workstations in this test

configuration are connected to different ATM switches.

 The workstations in this configuration (depending on the test cases) were either

TAC-3 or TAC-4 workstations. The TAC-3 workstation consists of a HP 755 processor

running with a HP-UX 9.01 operating system. The TAC-3 used Iona Technologies Orbix

2.0.1 for the CORBA implementation. The TAC-4 workstation consists of a HP 770

processor running with a HP-UX 10.0 operating system. The TAC-4 used Iona

Technologies Orbix 2.0 for the CORBA implementation. The ATM NICs and drivers

for both the TAC-3 and TAC-4 workstation configuration are also HP products. FORE

Systems ASX-1000 ATM switches were used for the underlying network.

 Figure 3.2.1-1 depicts the measurement points of interest (#1,#2 and #3 in the

figure). The Iona CORBA-level client/server measurements taken are represented by

measurement point #1. The units of measurement for measurement point #1 are

milliseconds. Measurement point #2 in the figure depicts the operating system CPU

utilization. The units of measurement for measurement point #2 are the percentage of

utilized time slices. Measurement point #3 represents the loading of the intermediate port

between the ATM switched. The units of measurement for measurement point #3 in a

non-load state are in microseconds. The ATM switch for both CORBA-level and

TCP/IP-level application-to-application measurements is in a non-load state.

 31

CORBA Test Configuration

ATM SWITCH ATM SWITCH

APPLICATION

CORBA

TCP/IP

DRIVERS

OPERATING SYSTEM

1
APPLICATION

CORBA

TCP/IP

DRIVERS

OPERATING SYSTEM

1

33

4

22

Figure 3.2.1-1

 Specific latency measurements were taken under for the following hardware

configurations:

• TAC-4 to TAC-4

• TAC-3 to TAC-3

 For the above hardware configurations, measurements were taken for

workstations CPU utilization’s for the following ranges:

• 33% CPU utilization

• 66% CPU utilization

• 100% CPU utilization

 32

 CPU utilization was recorded by HP-UX’s sar and top utilities. These utilities

provide average CPU utilization’s over selected time intervals. The utilization numbers

are the percentage of idle schedulable time slices.

 Latency measurements for the various workstation sender CPU utilization and

receiver CPU utilizations were recorded for each sender/receiver combination. Latency

measurements were taken for 64 byte, 128 byte, 256 byte, 512 byte, 1 kbyte, 2 kbyte, 4

kbyte and 8 kbyte message sizes. These sizes represent the likely range of NSSN C3I

System messages.

 The measurement tables for each message size contain nine possible CPU loading

combinations. Since there are several combinations that have the same loading

configuration except for the server/client being reversed, only six unique sets of

measurements are really needed for any given message size. Table 3.2.1-2 illustrates the

loading configurations that I used to obtain the measurements. The load programs were

socket-based programs that transmitted a constant stream of 1 Kbyte messages utilizing

TCP/IP between the workstations. The rate in which the 1 Kbyte messages were sent was

controllable, as were the socket-buffer sizes. For the case in which each workstation was

utilized between 0-33% CPU, the load test drivers were not required since this was the no

load state. The load test drivers used to obtain the various CPU load states for each

message size is shown in Table 3.2.1-1. It should be noted that the round-trip

measurement driver and the loading drivers were at the same user priorities. Maximum

socket-buffer sizes were utilized by the load drivers in attempt to maximize the effect of

TCP/IP queuing on message latencies. I speculate that using maximum socket-buffer

sizes would result in larger TCP/IP queue sizes. Therefore, there is likelihood of

increased message delay, since messages would be required to wait longer for the larger

TCP/IP queues to “drain”.

Port Loading Table

 33

WORKSTATION A WORKSTATION B LOAD DRIVER CONFIGURATION
(load drivers utilized)

0-33% 0-33% N/A

0-33% 34-66% load drivers 3

0-33% 67-100% load drivers 3

34-66% 34-66% load drivers 1 & 2

34-66% 67-100% load drivers 1 & 2 & 3

67-100% 67-100% load drivers 1 & 2

Table 3.2.1-1

 Latency effects due to memory management were kept to a minimum since the

same applications were constantly executed (i.e. page swapping was at a minimum) and

since no file writes were accomplished by the test applications during the measurements.

 Measurement results for average and maximum latencies are provided in

Appendix A. Measurements were taken to a 1 microsecond resolution. For each

measurement configuration, each individual latency measurement was grouped into one

of 100, 1 millisecond “bins”. This grouping provided a latency distribution for the

measurement configuration since it showed the measurement range charactersistics of the

latency measurement samples. For selected key configurations, this latency distrubution

data is presented as a bar graph in later sections of this thesis. The bar graphs show the

number of measurements in each “bin” from 0 to 100 millisecond. The latency

distribution data is also utilized by the Latency Server which will be described in Section

4.

 For each CPU measurement combination, 10K samples were taken for each

message size. For the TAC-4 configurations when both workstations had a CPU

utilization between 0-33% loaded (lightly loaded), an additional 100K samples were

taken for each message size. More samples were taken for the lightly loaded conditions

since these measurements were used as a baseline case to compare average message

latency, maximum message latency, and latency distributions of the CORBA-level and of

the TCP/IP-level. In addition, for the TAC-4 configuration, to further facilitate the

 34

comparisons, 100K samples were taken for the 256 byte message size when both

workstations had a CPU utilization between 67% - 100% loaded (heavily loaded). In

general, there was no significant differences in results between taking 10K vs 100K

samples. This can be seen for the average latency times (1.365 ms for the 10k sample

case vs 1.385 ms for the 100k sample case for the light-load configuration for the 256

Byte message) and very similar latency measurement distributions (i.e. for both the 10K

and 100K cases, 99.5% of the measurements were accomplished within 3 ms for the

heavily loaded condition).

 The test driver utilized to take the latency measurements was a CORBA-level

client passing to a server method an array passed as an “in” parameter. The Server

method returned to the client the array. This required no additional application overhead,

all latencies incurred were due to the data passing mechanisms.

R O UN D -TR IP
M EASU R EM ENT DR IV ER

LOA D DR IVER 1
 (SEN D ER)

R O UN D -TR IP
M EASUR EM EN T DR IV ER

LOA D D R IV ER 1
 (R EC EIV ER)

 LO AD CO NFIGU RATION

LO A D DR IVER 2
 (SEND ER)

LOA D D R IV ER 2
 (REC EIVE R)

LOA D DR IVER 3
 (SEN D ER)

 TO RE CE IV ER O N TA C W O R K STA T IO N

W OR KSA TIO N A W OR KSA TIO N B

Figure 3.2.1-2

 35

3.2.2 Measurement Analysis

ANALYSIS OF LATENCY AVERAGE (TAC-3 & TAC-4)

 For the average latency numbers (see Appendix A), the following high level

observations were made:

 1) Message latencies increase with CPU utilization;

 2) Message latencies increase with message sizes.

 As the load drivers throughput was increased, the workstation CPU utilization

increased. This resulted in an increased Orbix client/server round-trip latency. Increased

latencies due to CPU utilization can either be explained by the fact that it is harder to

schedule processes on the CPU due to the increased competition of additional processes

needing to be scheduled or by additional queuing on the TCP/IP protocol stack, or a

combination of the two. Latency was increased to a greatest extent when both the client

and server workstations were fully loaded.

 In Section 3.5 it is demonstrated that for the configuration tested, that TCP/IP

queuing has a significant effect on latency distribution in a loaded state. However, it was

was beyond the scope of this thesis to distinguish between the latencies due to TCP/IP

queuing and the latencies due to CPU scheduling.

 Latencies increased with message size since larger messages require additional

processing. On the workstation this required increased buffering and longer memory

copies. From the network perspective, the increased message size resulted in an increase

time in which ATM cell streams were traversing the ATM switches.

ANALYSIS OF LATENCY DISTRIBUTION

TAC-4 to TAC-4

 36

 For message up to 4 Kbytes, the maximum latency was 75 milliseconds. In this

case, the maximum latency appears to be unaffected by message size. Maximum

latencies were, in general, least when both CPU utilizations were in the low load

condition (33% or less). For all other CPU states, maximum latencies generally appeared

to be higher than the low-load condition, and unaffected by other CPU utilization

combinations or message sizes. The reason that maximum latencies were lower in the

low load condition was that the round-trip latency driver process was continuously

scheduled on the CPU resource because there were no competing user-level application

processes.

 Maximum latencies for 8KByte messages were consistently as high as 200 ms.

These maximum latencies always occurred when the latency measurement driver is first

invoked. In addition, this maximum latency always occurred within the first two

samples of the measurement set. Other than these first two samples, the latency

distribution is similar to that of the latency distribution of the smaller size messages.

Since this anomaly did not occur in the TAC-3 configuration, I assume that there is a

quirk with Orbix 2.0 or HP-UX-10.0.

 A representative distribution when both CPUs are between 0-33% (i.e. low load

condition) utilized for the 256 Byte message is shown in Figure 3.2.2-1. A representative

distribution when both CPUs are between 67-100% (i.e. heavy load condition) utilized for

the 256 Byte message is shown in Figure 3.2.2-2. For the low load condition, over 99%

of the measurements are taken between 1-2 ms. For the heavy load condition, there is a

spread to the measurements. As previously discussed, the suspected cause of this latency

distribution spread for the heavily loaded condition is either due to scheduling of

competing processes and/or TCP/IP queuing. This will be further discussed in Section

3.5.

 37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

99551

198 38 21 4 14 10 19 12 41 57 6 20 2 1 1 0 3
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

N
u

m
b

er
 o

f
E

ve
n

ts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Latency (mS)

CORBA Latency Data 256 Bytes (light load)

CORBA

note: 1 measurement off scale (> 20mS)

 Figure 3.2.2-1

 38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

3846

12470

8672

28574

35398

4719
3538

2059
487 147 31 18 17 11 5 5 1 1

0

5000

10000

15000

20000

25000

30000

35000

40000

N
u

m
b

er
 o

f
E

ve
n

ts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Latency (mS)

CORBA Latency Data 256 Bytes (heavily loaded)

CORBA

note: 1 measurement off scale (> 20mS)

 Figure 3.2.2-2

TAC-3 to TAC-3

 With the exception of 8 Kbyte messages, maximum latencies for the TAC-3

configurations were generally greater and more frequent (80 ms and greater maximum

latency measurements were frequent) than the maximum latencies for the TAC-4

configurations. For the number of samples taken, message size did not appear to effect

maximum latency. However, the value of maximum latency tended to increase with

CPU utilization. This increase in maximum latencies could possibly be the result of the

increased competition of other processes competing with the latency measurement driver

process for the CPU resource. The higher the CPU utilization results in more

competition amongst user processes, thus there is a higher probability that the

measurement driver process would be delayed in obtaining the CPU resource which

results in an increase likelihood of higher maximum message latencies.

 39

 It is interesting to note that, other than the low-load CPU combination, the TAC-

4 did not exhibit the same behavior. Possibly, if more measurement samples were taken

for each loading TAC-4 configuration (i.e. 1 million), a correlation between maximum

latency and CPU utilization could be established. The reason for this would be the same

as for the TAC-3 configuration: the average increased run-time added by Orbix may

result in more required clock ticks, which increases the liklihood of the application

process being pre-empted. However, it appears that the effect (if there is one) of CPU

loading on maximum CORBA-level latencies for the TAC-4 configuration is

signaficantly less than that of the TAC-3 configuration. This may be the result of the

TAC-3 being a slower machine than the TAC-4. There is less work accomplished during

a TAC-3 time slice versus a TAC-4 time slice. The result of this experiment is that the

test driver processes need to be scheduled for more time slices for the TAC-3 than the

TAC-4. Therefore, maximum message latencies are generally greater for the TAC-3

versus than the TAC-4.

 Latency distributions for the TAC-3 configurations were similar to the latency

distributions of the TAC-4 configurations. However, it should be noted that the 200 ms

maximum latency for 8KByte messages was not seen with the TAC-3 configuration.

3.3 Application-to-Application Measurements Utilizing TCP/IP

3.3.1 TCP/IP Measurement Setup

 Figure 3.3.1-1 identifies the test configuration utilized to obtain the TCP/IP-level

measurements. The only difference between Figure 3.3.1-1 and the Figure identifying the

CORBA-level measurement configuration (Figure 3.2.1-1), is that the CORBA-level

layer is removed. The TCP/IP-level measurements were taken by test applications at

point #1 on Figure 3.3.1-1. The measurement methodology and configurations for the

TCP/IP-level measurements were the same as the CORBA-level measurements so that

direct comparison between CORBA-level and TCP/IP-level could be made.

Measurement results for average, and maximum latencies are provided in Appendix A.

 40

TCP/IP MEASUREMENT CONFIGURATION

A P P L IC A T IO N

T C P /IP

D R IV E R S

O P E R A T IN G S Y S T E M

A P P L IC A T IO N

T C P /IP

D R IV E R S

O P E R A T IN G S Y S T E M

A T M S W IT C H A T M S W IT C H

1 1

2 2

3
3

Figure 3.3.1-1

3.3.2 TCP/IP Measurement Analysis

ANALYSIS OF LATENCY AVERAGE (TAC-3 & TAC-4)

 As with the CORBA-level latency measurements, the TCP/IP measurements

resulted in the same high-level observations plus an additional observation:

 For the average latency numbers (see Appendix A), the following high level

observations were made:

 1) Message latencies increase with CPU utilization;

 2) Message latencies increase with message sizes and;

 3) Suprisingly, TAC-3 TCP/IP-level message latencies were less than the TAC-4

 TCP/IP-level message latencies.

 41

 The explanation for the first two observations are the same as for the CORBA-

level measurements. Increased latencies due to CPU utilization can either be explained

by the fact that it is harder to schedule processes on the CPU due to the increased

competition of additional processes needing to be scheduled or by additional queuing on

the TCP/IP protocol stack, or a combination of the two. Latency was increased to a

greatest extent when both the client and server workstations were fully loaded.

 Latencies increased with message size since larger messages require additional

processing. On the workstation this increased message size required increased buffering

and longer memory copies. From the network perspective, the increased message size

resulted in an increase time in which ATM cell streams were traversing the ATM

switches.

 When compared to the Orbix client/server measurements, the average latencies of

the TAC-4 TCP/IP measurements, for the low-load conditions, are less than 1 ms smaller

then the TAC-4 Orbix measurements. For loaded conditions, the Orbix measurements

were generally no more then 1.5 ms greater than the TCP/IP measurements.

 The TAC-4 is a faster machine than the TAC-3. The TAC-4 is a120 Mhz

machine rated at 176 Million of Instructions per Second (MIPS) while the TAC-3 is a 100

Mhz rated at 124 MIPS. However, the TAC-3 TCP/IP latencies were consistently less

then the TAC-4 TCP/IP message latencies. In addition, from previous testing efforts[21]

it has been demonstrated that the actual throughput between two TAC-3 machines was

greater than the throughput between two TAC-4 machines. The TAC-3 and TAC-4 have

the same backplane, NIC and comparable memory components. This indicates that the

implementation of the operating system (specifically the TCP/IP protocol stack) plays a

significant role in performance results. I conject that it is the implementation of the

kernel which is resulting in the unexpected performance results. Analyzing the

differences between the two types of machines can be complex. It is not an objective of

this thesis to analyze performance differences between the TAC-3 and TAC-4.

ANALYSIS OF LATENCY DISTRIBUTIONS

TAC-4 to TAC-4

 42

 Maximum message latencies for TCP/IP were comparable to that of CORBA-

level maximum latencies. The only exception was that there were no 200 ms maximum

latencies for 8 Kbyte messages, as was observed with Orbix. A representative

distribution when both CPUs are utilized between 0-33% for the 256 Byte message is

shown in Figure 3.3.2-1. A representative distribution when both CPUs are utilized

between 67-100% for the 256 Byte message is shown in Figure 3.3.2-2. These

distributions are very similar to the Orbix client/server latency distributions

(Figures3.3.2-1 and 3.3.2-2).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

95055

4562
19372 9 7 19 10 3 2 36 8 17 1 1 0 2 1 00

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

N
u

m
b

er
 o

f
E

ve
n

ts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Latency (mS)

TCP/IP Latency Data 256 Bytes (light load)

TCP/IP

note: 2 measurements off scale (> 20mS)

Figure 3.3.2-1

 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

3810

22840

9563

13329

20823

15173

6300

4802

2046

489 256 231 150 69 41 16 13 10 22
0

5000

10000

15000

20000

25000

N
u

m
b

er
 o

f
E

ve
n

ts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Latency (mS)

TCP/IP Latency Data 256 Bytes (heavily loaded)

TCP/IP

note: 1 7 measurements off scale (> 20mS)

 Figure 3.3.2-2

TAC-3 to TAC-3

 Although for many cases, TAC-3 to TAC-3 maximum latencies were greater than

TAC-4 to TAC-4 latencies, the latency distribution was similar to that of a TAC-4 to

TAC-4 configuration.

3.4 Analysis of CORBA Vs TCP/IP

 The measurement results indicate that while CORBA-level increases average

latency, it does not significantly alter latency distribution. For lightly loaded scenarios,

(i.e. each Workstation has a CPU utilization of less than 33%), for the TAC-4

configuration, CORBA-level increases the average latencies by less 1 ms. This is seen in

Figure 3.4-1. For the configurations which are in a loaded state, with the exception of 8

kbyte messages, CORBA-level increases the average over TCP/IP-level average latencies

were generally less than 1.5 ms. This slight increase in average latency in the loaded

 44

configurations, is due to the increased probability that the CORBA-level latency

measurement process has a higher probability of losing the CPU resource due to its

slightly higher average measurement processing time versus the TCP/IP-level latency

measurement process. In the low-load configuration, the measurement process never lost

the CPU for an extended period of time since there are no significant competing user

application processes.

 For average latencies, the TAC-3 configuration results are very similar to the

TAC-4 results. The only significant difference is that the difference between the average

CORBA-level latencies and the average TCP/IP-level latency is greater then the

difference for the TAC-4. This is because that TAC-3 TCP/IP-level latencies are less

then the TAC-4 TCP/IP-level latencies, but the CORBA-level latencies of the TAC-3 and

TAC-4 are similar. The reason for this could be that the TAC-3 TCP/IP-level kernel

component is more efficiently implemented than the TAC-4 TCP/IP-level kernel

component.

 For 8 Kbyte messages, the TAC-3 Orbix increases the average latencies up to 4 to

5 ms over the TCP/IP average latencies. Latency increases due to Orbix in the TAC-4 for

8 Kbyte messages are up to 2.1 ms greater than the TCP/IP-level latency measurements.

The reason for the increased overhead for the 8 Kbyte message may be related to

fragmentation. The Maximum Transfer Unit (MTU) size of ATM network used was

9120 bytes. The MTU is the maximum packet size that can be transported on the

underlying network. It is possible that the 8 Kbyte data being sent by the CORBA-level

method invocation with the additional CORBA-level header overheads, may exceed the

ATM MTU size. This would result in the method data and associated CORBA-level

data to be fragmented in two different network “packets”. The time delay due to this

fragmentation may be the observed increased in average latencies for 8 Kbyte messages.

 For lightly loaded conditions in the TAC 4 configuration, it can be shown (see

Figure 3.4-2) that the CORBA-level and TCP/IP-level maximum latencies for 100K

samples are very similar, with the exception of the 512 TCP/IP Byte test case. For this

test case, a maximum message latency of 150 ms was observed. All other measured

latencies for this test case were under 40 ms. The high latency measurement was most

 45

likely caused by the test driver application being pre-empted by a higher priority process

during the measurement. To demonstrate the low probability that this event would

reoccur, I took another 500K samples resulting in maximum latency of only 40 ms.

 Note that for the loaded configurations, it would not be unexpected to see a slight

increase in CORBA-level maximum latencies versus TCP/IP-level maximum latencies as

CPU utilizations increased. This is because of the CORBA-level overhead. There is a

higher probability that a CORBA-level process may need to wait for more CPU time-

slices. Since the CPU time slices are harder to come by when there is loading (i.e.

competing processes have to share a single CPU), it is likely that a CORBA-level process

may have a higher maximum latency. For the TAC-3, when at least one of the

workstations was heavily loaded, CORBA-level maximum latencies were consistently

greater than TCP/IP-level maximum latencies. The other loading configurations would

need to be rerun with a much larger number of latency measurement samples to see if this

effect on maximum loading is true at lower loading configurations. With the TAC-4

configurations, this relationship between CORBA-level and TCP/IP-level maximum

latencies was not all apparent. However, this does not mean it does not exist. A large

number of latency measurement samples would be required to verify or rule out this

effect for TAC-4 configurations.

 More significant than similar maximum latencies, is the observation that CORBA-

level and TCP/IP-level latency distributions are very similar. The graphs shown in the

previous sections for both the lightly loaded and the heavily loaded conditions (Figures

3.2.2-1, 3.2.3-1, 3.2.2-2 and 3.2.3-2), have shown that the CORBA-level and TCP/IP-

level measurements have similar latency distribution characteristics. For the lightly

loaded conditions the graphs have the vast majority of the measurements in the first

couple of bins with very few measurements in any of the other bins. The most

significant difference is that CORBA-level measurements are out 1 bin further then the

TCP/IP-level measurements, demonstrating the higher averages. For example, for the

lightly loaded TCP/IP-level condition, close to 96% of the measurements were taken

with in 1 ms. Over 99.5% of the measurements were accomplished within 3 ms. For the

corresponding CORBA-level test, 0 measurements were completed before 1 ms, while

 46

over 99% were accomplished within 2 ms. For the heavily loaded conditions, both

TCP/IP-level and CORBA-level graphs show similar characteristics indicating the

TCP/IP queuing. There is no consistently distinguishable differences between the

CORBA-level and TCP/IP-level measurements for the heavily loaded conditions. As can

be seen from the latency distribution graphs (Figures 3.2.2-2 and 3.3.2-2), the graphs are

very similar when the percentage of measurements taken versus time in latencies are

compared. For example, the TCP/IP-level and CORBA-level full-load latency graphs

show the characteristics as identified in Table 3.4-1. This table compares the CORBA-

level and TCP/IP-level measurement distributions. The table shows a relation between a

selective percentage of 10K measurements taken, and the time in milliseconds which was

required to take the measurements. As can be seen by this table, the latency distributions

for the CORBA-level and TCP/IP-level are very similiar. The distributions are similar for

all message sizes for both the TAC-3s and TAC-4s.

Percentage of Samples vs Time

Percentage of Samples

(number of samples)

CORBA-level

Time in milliseconds

TCP/IP-level

Time in milliseconds

90% 7 7

95% 8 8

99% 9 10

99.4% 10 11

Table 3.4-1

 47

64 128 256 512 1024 2048 4096 8192

0.781

1.14

0.787

1.249

0.902

1.385

1.001

1.493

1.17

1.7209

1.275

1.8235 1.762

2.4764

2.652

3.7519

0

0.5

1

1.5

2

2.5

3

3.5

4

L
at

en
cy

 (
m

S
)

64 128 256 512 1024 2048 4096 8192
Message Size (Bytes)

Average Round-Trip Message Latency

TCP/IP

CORBA

 Figure 3.4-1

 48

64 128 256 512 1024 2048 4096

26.91929.226 27.08926.853
30.93230.591

150.412

25.86 23.468

30.33 30.462

13.032

28.651

41.599

0

20

40

60

80

100

120

140

160

L
at

en
cy

 (
m

S
)

64 128 256 512 1024 2048 4096
Message Sixe (Bytes)

100K Sample Maximum Latency Measurement (user priority level)

TCP/IP

CORBA

 Figure 3.4-2

3.5 Scheduling Process with rtprio

 I utilized the HP-UX rtprio command to raise the priorities of the test driver

processes. With rtprio, user process priorities can be set from 0 (highest priority) to 127

(lowest priority). I re-ran the test cases for the 256 byte message, under a light loading

condition, for both CORBA-level and TCP/IP-level measurements. The test driver

priorities were set to 0. The results of these tests are shown in Figure 3.5-1. The

resulting maximum latencies ranged between 10.5 -12.5 ms. My speculation is that these

results are due to the receiving process occasionally giving up the CPU and having to

wait for a clock “tick” of 10ms to be rescheduled on the CPU. The extra latency is

therefore due to the 10 ms clock “tick” plus the average latency of the message transfer.

This test demonstrated that rtprio could be used to reduce maximum message latency

bounds due to higher priority processes.

 49

64 128 256 512 1024 2048 4096

10

10.5

11

11.5

12

12.5

L
at

en
cy

 (
m

S
)

64 128 256 512 1024 2048 4096
Message Size (Bytes)

Maximum Latencies with rtprio

TCP/IP

CORBA

 Figure 3.5-1

 In another test, I utilized the network load drivers to fully load both CPUs. The

network latency test drivers were set to the highest user priority (rtprio 0). Surprisingly,

the latency distributions for this configuration were very similar to that of the fully loaded

distributions for both the CORBA-level and the TCP/IP-level in which the network

latency driver was at user priority. This result indicates that the cause for the spreading is

not primarily related to process scheduling, but due to queuing by the TCP/IP protocol

stack. Since the round-trip latency measurement driver process is at highest user priority,

the process should not of been delayed by more than the sum of the 10 ms “tick” and the

average light-load message latency. It is still possible that this process will be blocked by

a higher priority system-initiated process, however, this blocking is extremely rare. This

leaves the TCP/IP queuing as the most probable cause of the spreading. There are

actually two queuing effects that are being observed: the queuing effect from workstation

A to workstation B, and the return, the queuing effect from workstation B to workstation

 50

A. The case in which the queuing is most prevalent is the case when the load drivers are

generating messages at the maximum rate (i.e. the fully loaded condition). For this

configuration, each 1kbyte message data stream has an approximate throughput rate of

about 40Mbits/S, which is causing the TCP/IP queues to fill. Since the socket buffer size

is at a maximum (255 Kbytes), it is conceivably possible, that for a worse case scenario,

that a message from the latency driver will be delayed until 255 Kbits of data are sent (i.e.

the queue need to be drained). This could potentially occur in both directions, thus

doubling the latency due to TCP/IP queuing.

3.6 ATM Switch Measurements

 The first set of switch measurements in Section 3.6.1 measures ATM switch

latencies as a function of the number of ports traversed and as a function of port loading.

Section 3.6.2 provides measurements to characterize the port loading effects on TCP/IP

traffic stream latencies.

3.6.1 Characterizing ATM Switch Latencies

 ATM switch latency tests were performed using the ADTECH analyzer. These

tests utilized the ADTECH analyzer to generate and transmitted a periodic stream of test

cells through multiple ATM switch ports, which were daisy chained together, back to the

ADTECH’s receiving receptacle. The ADTECH analyzer was then used to record cell

transfer delays, lost cells, and cell error rates. Results were obtained for varying degrees

of throughput (25%-100%) and the number of ports (2,4, and 9) which the cell stream

traversed (see Figures 3.6.1-1 - 3.6.1-3).

Two Port ATM Switch Test Configuration

 51

ADTECH SWITCH

Figure 3.6.1-1

Four Port ATM Switch Test Configuration

ADTECH SWITCH

Figure 3.6.1-2

Nine Port ATM Switch Test Configuration
A D T E C H S W I T C H

Figure 3.6.1-3

 52

 Latency, and the variation of latency, were measured by utilizing the ADTECH’s

capability to measure cell delay variation. To determine cell delay variation time the

ADTECH analyzer timestamps each of the transmitted cells. For each transmitted cell,

the cell delay variation is calculated by subtracting the time from which the cell was

received at the port from the time that the cell was transmitted from the port. Cell delay

variation times can be determined to within 0.5 nanosecond accuracy.

 The results of the measurements are shown in Table 3.6.1-1 for both the range of

the cell delay variation and the mean value of the cell delay. As shown by the table, cell

delay variation increases as both the number of ports increase, and as the cell throughput

increases. The results indicate that for throughput rates less than 90% of the ATM OC-3

rates, cell delay variation is most affected by the number of ports that the cell stream

traverses. However, there is some spreading of cell delay variation as the cell rate is

increased. Above 90% capacity, the effect of cell throughput on cell delay variation is

increasingly affected by an increase in cell throughput. This is probably a result of switch

buffering. At 100% capacity, latency increases dramatically. In addition, at 100%

capacity, cell loss eventually occurred with all the configurations. During 100%

capacity, the cell delay variation is continuously increasing. This is probably the result of

the buffers in the switches overflowing as the incoming cell rate into the switch is greater

than the switch’s capability to forward the data. Eventually, the switch’s buffers

overflow and cells are lost. The cell loss is observed at the ADTECH analyzer. With the

9 port configuration, cell loss was typically observed within 30 seconds, the 4 port

configuration cell loss appeared within 14 minutes and in the 2 port configuration cell

loss occurred within 30 minutes.

 53

Cell Delay Variation

% BANDWIDTH 2 PORT 4 PORT 9 PORT
 25% 29-42.5

 (35.31)
62 - 77
(68.4)

134.5-169
(147.62)

 50% 29-42.5
(35.42)

62.5 - 81.5
(69.43)

136.5-166
(150.42)

 75% 29-43.5
(35.78)

63 - 92
(70.97)

139.5-178.5
(153.81)

85% 29.5 - 110
(36.05)

63.5 - 158.5
(71.86)

140 - 246.5
(157.40)

 90% 30 - 156
(36.21)

65 - 207.5
(72.32)

145 - 290
(158.52)

 95% 30 - 209
(36.56)

64 - 252
(73.02)

140 - 346
 (159.08)

 97% 30.5-219.5
 (36.88)

65-261
(73.25)

143.5 -350
(160. 72)

 98% 31.5-235.5
(37.57)

68 - 271
(74.36)

145-366
 (163.93)

100%

increasing over time increasing over time increasing over
time

Note: All times in microseconds. Top numbers represent the range of delay observed. Number in parenthesis represents the average
delay.

Table 3.6.1-1

3.6.2 ATM Switch Latency for TCP/IP

 TCP/IP message latency due to ATM buffering was demonstrated with the lab

configuration as shown in Figure 3.6.2-1. In this configuration two TAC-3 workstations

where connected to the same ATM network modules. PVCs were set up such that an

intermediate port was traversed. On the remaining port on the network module the

Adteck was connected and a PVC was established to the intermediate port. The test

consisted of running the latency application on the TAC computers and using the

ADTECH to load the intermediate port.

 54

Latency Test Configuration

SWITCH

ADTECH

SENDING
APPLICATION

RECEIVING
APPLICATION

Figure 3.6.2-1

 As seen by Table 3.6.2-1, latency increased significantly when the intermediate

port was loaded at 95%. When the loading was 98%, the resultant latency was an order

of magnitude greater then the unloaded configuration. The instrumentation did not

support taking measurements of loading down the port at greater than 98%. Message

length also attributed greatly to latency. This can be seen by the fact that latency with

respect to message size increased at a much greater rate at 98% (37.028 ms for 8 Kbyte

messages) loading versus 95% (12.341 ms for 8 Kbyte) loading. This could be simply

that large messages occupy buffer space at a faster rate then smaller messages.

 55

TCP Loading Latency

95% LOADINGAVG LATENCY
(NO LOADING)

MESSAGE SIZE 98% LOADING

1K

2K

4K

8K

 968

1196

1643

2688 12341

5161

2562

37028

15054

7616

3940 1339

 Table 3.6.2-1

3.7 Comparison With Other Published Results
 As previously identified in Section 2.4, [19] documents the results of a

Washington University study which measured the effects of the CORBA-level on

message communication performance. The results of the study are significant with

respect to this thesis, in that the test configurations were similar, as were the results. In

addition, the study provides additional detail on the performance bottlenecks of the

CORBA-level software.

 The Washington University study utilized throughput measurements to compare

throughput rates for TCP/IP-level measurements and CORBA-level measurements. Two

CORBA implementations were utilized, one of which was Orbix 2.0, which was the

CORBA implementation utilized for this thesis. In addition, the measurements were

accomplished over an ATM network. The workstations used were SPARCstation 20

Model 712s running SunOS 5.4. This study varied the types of data passed (short, long,

struct, ect), data size (increments of power of 2 from 1 Kbytes to 128 Kbytes), and the

size of the socket buffer size.

 The significant results of the Washington University study in relation to this

thesis, is that the throughput for the CORBA-level was approximately 75% to 80% that of

the throughput for the TCP/IP-level for passing scalar types and only around 33% of the

throughput for sending complex data types, such as, structs. The decreased performance

for structs was attributed to the effects of marshaling/demarshalling and data copies by

the CORBA-level implementations.

 56

 When the TCP/IP-level and CORBA-level latency measurement time results

from my thesis work are compared (Section 3.4), it is obvious that the CORBA-level adds

additional overhead. The TCP/IP-level latency measurement times, for the lightly loaded

TAC-4 configurations, were at best, approximately 73% of the corresponding CORBA-

level latency measurement times measurements. For the TAC-3 configurations, the

TCP/IP-level latency measurements times was at best, approximately 61% of the

corresponding CORBA-level latency measurement times. In my opinion, the results for

my thesis work, were consistent with the results of the study. Differences between my

work and the Washington University study could be due to any combination of the

following: hardware, operating systems, or how the data was passed. I used a 2

dimensional array of longs for my data measurements. The Washington University study

utilized various types of data. The closest type which was utilized by the Washington

University study to the type I used was a sequence of longs.

 It is interesting to note that the authors of the Washington University study

seemed to be disappointed with the results. This was because, with their application

domain (Medical Imaging) high speed is of significant importance. In the C3I system

domain, high speed is not as important. From my measurements, it was shown that

CORBA-level software typically added less than 2 ms to message latency. This is fairly

insignificant when compared to the other larger contributors of message latency. In short,

it is important to note that the significance of performance results are dependent on the

domain to which they apply.

3.8 Latency Measurement Summary

 Measured round-trip CORBA-level latencies were typically in the range of low

milliseconds (less than 10 ms). The most significant sources of latencies were due to the

workstations. For network utilization’s of 90% or less, network contributions to latency

was minimal, only in the tens of microseconds. A high level comparison of message

latency contributors are shown in Table 3.8-1.

 57

 Relative Latency Effects of Components
LATENCY

CONTRIBUTOR

EFFECT ON MESSAGE LATENCY

ATM Switch Ports (<90% loaded) ten’s of microseconds

Effect of high priority processes up to low hundreds of milliseconds

CPU Scheduling Granularity 10 milliseconds

TCP/IP Queuing up to ten’s of milliseconds

CORBA “Middleware” less then 2 milliseconds

 Table 3.8-1

 The measurements demonstrated that ATM port latencies were effected by both

the number of ports traversed and port utilization. It was demonstrated that only under

heavily loaded conditions, greater than 90% utilization, that ATM port queuing would

add significant latencies to overall system’s message latencies.

 From a workstation perspective, the most significant and most unpredictable

causes of latencies were system initiated processes which had higher priorities then User

processes (i.e. test drivers). These latency sources resulted in the largest latencies and

were the least frequently occuring. This cause of latency is the most unpredictable since

it is not known when a higher priority system task is going to request the CPU resource,

nor for how long this higher priority process will require the CPU resource. This was

most dramatically seen during the 512 byte TCP/IP measurements in which a 150 ms

latency was observed. These sporadic latencies can be significantly reduced if the test

drivers were assigned a higher priority.

 The next most significant source of latencies which were observed, were the

latencies resulting from TCP/IP protocol stack queuing. For the configuration under test,

the latencies attributed to TCP/IP queuing were fairly predictable in the sense that the

queuing effect on message latencies was frequently observered under the loaded

conditions and that the magnitude of the TCP/IP queuing effect (20-40 ms) seemed to be

 58

related to the socket buffer size. The latencies due to the protocol stack could be reduced

in both frequency and magnitude by using either utilizing smaller buffer sizes or by

limiting message traffic between workstations.

 The non-preemptive nature of the scheduler was an additional measured

contributor to system latency. Since a clock ‘tick’ is 10 ms, the scheduler could result in

latencies of 10 ms.

 From a network perspective, the last measured contributor to system latency was

CORBA-level. For the system under test, this implementation of CORBA-level typically

contributed less than 2 ms to system latencies. Most significantly, CORBA-levels latency

component was predictable, it did not add to system maximum latencies.

3.9 Implications of Measurement Results for Soft/Hard Real-Time Systems

 The measurements taken suggest that, for the specified configurations, a soft real-

time system could be supported. For the configurations under test, the maximum

latencies for round-trip latencies, was approximately 100 ms (TAC-4 to TAC-4 8K

messages are an exception). Making the assumption that a one-way latency is one-half

the round trip latency, the maximum latency is approximately 50 ms. However, it is

important that these maximum latencies assume minimum memory management and only

a minimum of competing application processes. Page swapping was virtually

nonexistent (only a minimum set of applications were executing) and there were no writes

to files during the measurements. This maximum latency bound could be improved if the

applications are given higher priorities. If message communication is relatively light and

the default socket buffer sizes (32 kbytes) are used, it is reasonable to assume that the

round trip latency would be less then 15 ms (the 10 ms clock ‘tick’ plus the average

round-trip latency). The exact lower bound latency requirement in which HP-UX could

support is dependent on the CPU loading profiles and the size of the message.

 However, even under these conditions, the system still can not be considered hard

real-time, unless the requirements allow for significant time to meet deadlines. This is

because it is still possible that there are other system initiated processes which could

have a priority higher than the maximum user priority assignable by rtprio. This makes

 59

the system unpredictable since it is still possible that the maximum latencies could exceed

system time requirements.

 Another point worth noting is that the implementation of CORBA (Orbix)

utilized, only required a separate process to be run at the time of an object bind. After the

connection was made, the Orbix daemon did not need to execute. This meant that this

daemon did not need to be scheduled and was not vying for processor resources. It is

possible that other CORBA implementations or the utilization of additional CORBA

services would result in a more active daemon or additional daemons which would

require system resources. The execution of this deamon could result in increase latencies.

 Assuming that the deadline requirements are at least 15 ms but not significantly

long in duration (i.e. 1 Second), the system configuration under study could support hard

real-time requirements only if significant constrains are placed on the system. These

constrains include:

1. time critical processes be given sufficient priorities relative to each other and

it is determine system initiated processes will not result in time constraints to

be violated

2. message traffic is low enough so that TCP/IP queuing is not a factor

3. ATM port utilization is less than 90% of maximum bandwidth

4. application’s minimize memory management effects

The first constraint requires a system study to analyze all possible conditions in which

higher priority processes then the time critical process could occur. The system design

would have to take into account the system initiated tasks which have a lower priority

then what can be set by rtprio. Message traffic to and from the workstation would need to

be controlled to ensure that TCP/IP queuing effects are constrained to tolerable limits. In

addition, application programmers need to ensure that applications are written so that

memory management effects (i.e. page swapping, file writes and memory leaks) are also

within acceptable limits. Also from a workstation perspective, possible priority inversion

scenarios between resources would have to be explored.

 60

 ATM port utilization is a network architecture issue. Unless, multiple

workstations are passing data through one common port (i.e. the connection between

ATM switches), it is unlikely that ATM port loading will be a significant design

limitation for hard-real-time messaging systems.

 61

4.0 Latency Server

 The Latency Server dynamically provides estimates on message latencies between

two communicating applications on different workstations. This section discusses the

methodology, design and test setup of the Latency Server.

4.1 Latency Server Methodology

 For real-time systems, it is necessary to know the latencies of the underlying data

communications path so that current application deadlines can properly be established.

As seen from the measurements in Section 3, these latencies can vary due to multiple

factors, such as network loading and end-station loading. It would be the function of the

Latency Server to provide the current estimated message latencies for pairs of end-station

connections.

 In providing network latencies, the Latency Server needs to account for the

following:

1. The required “hardness of bound”, which refers to the percentage of

measurements in which the latency must bound hold;

2. The latency estimates should not be overly cautious (i.e. latency estimates should

not be higher than actually required);

3. The bandwidth required to make the latency measurement.

 The first consideration refers to the need to have the estimated value greater than a

certain percentage of the possible actual latencies. For instance, it may be desirable that

the value of the returned estimate latency time be greater then the actual message

latencies 96% of the time (i.e. an upper latency bound of 96%).

 The second consideration refers to the need in which the estimate not be overly

cautious (i.e. “excessively hard”). It may be acceptable to miss message deadlines in

certain circumstances since it may be more important that other components of the

system are given execution time to complete their tasks. For this case, average message

latencies would be desirable.

 62

 The third consideration refers to the amount of available bandwidth to support the

latency measurements. Some systems may not be able to afford to provide the required

bandwidth to make the measurements, while other systems may be able to afford the

bandwidth costs if it will ensure an accurate message latency value.

 There are 3 possible approaches in providing a latency number for the data

communications path:

1) Provide a static estimated value (i.e. network latency = 3 ms)

2) Measure the latency

3) Use known system parameters to dynamically estimate the current latency

The prototype Latency Server uses Approaches 2 and 3.

 Providing a static estimate value has the advantage that no resources are needed at

run-time to maintain the value. The disadvantages are that the latency characteristics of

the message communication system are dynamic, therefore message latencies are

dependent on workstation and network states. If the static estimated value is too low,

then deadlines will be missed. If the estimated value is too high, applications may be

forced to complete their tasks earlier than necessary. If the system is required to be hard

real-time, the estimated value must always be high to account for the worse-case network

latency.

 Measuring the actual network latency can be accomplished by performing round-

trip latency measurements. These measurements should be accomplished when a system

state change occurs (i.e. network and/or CPU loading change) that could significantly

effect message latency. The advantage to this approach is that if enough round-trip

measurements are made, a confidence interval could be established for the actual message

latencies for the current communications system state. The disadvantage of this approach

is that substantial network bandwidth can be utilized in taking latency measurements.

This is due to the fact that round trip measurements will need to be performed for each

end-station-to-end-station communications pair. This is compounded by the fact that

these round-trip measurements should consist of multiple messages (i.e. 1000) at the

message size of interest.

 63

 Assuming that the network has a system management system and that the network

latencies can be correlated to the system management state parameters, it may be

desirable to calculate message latencies utilizing current system state information. There

are numerous COTS system management products available that track the state of

LANS. The state information (network throughput, workstation CPU utilization,

workstation availability, ect.) can be stored in Management Information Bases (MIBS)

(MIB standards exist). To retrieve state information from entities on the network the

standardize Simple Network Management Protocol (SNMP) can be employed. The

advantage of this approach is that message latencies can be dynamically provided without

increasing network bandwidth. The disadvantages is that this approached requires system

resources, such as a system management application. Not all networked systems have a

system management application. Another disadvantage is that, depending on the design,

the system may need to completely characterize latencies for each system state a priori, so

that this information can be made available to the Latency Server. Aquiring the required

measurements a priori may require significant effort.

 As previously mentioned, the Latency Server prototype can utilize either approach

2 (message latency is measured) or approach 3 (message latency is estimated). In

addition, for each approach, the Latency Server can provide either the average message

latency or a latency bound. The average latency is a time in milliseconds which is the

mean of the number of round-trip sample latencies. The latency bound is a time (in

milliseconds) in which a predetermined percentage of the sampled measured message

latencies times are equal to or less than it.

 To specifically identify the required approach to provide the latency estimate, the

prototyped Latency Server provides one of four Quality of Service (QoS) levels for each

connection. A connection is the message communication path between two workstation.

The QoS levels are as follows:

• QoS 1: Estimate the average latencies using system state information and a

priori data:

 64

• QoS 2: Estimate latency bounds using system state information and a priori

data:

• QoS 3: Measure average latencies for connection:

• QoS 4: Dynamically record a sample message latency distribution for

connection and provide an estimated latency bound.

 For QoS 1 and QoS 2 settings, the average latency time and latency bound time

are determined from the latency measurements from Section 3. For QoS 3 and QoS 4

settings, latency measurement times are dynamically taken by the distributed components

of the Latency Server. From these sample measurements, the average latency time and

the latency bound time are determined for the current message communications system

state.

4.2 Prototype Latency Server Design

4.2.1 Prototype Latency Server Application Program Interface

 The connection data from the prototype Latency Server can be retrieved by

binding to the Latency Server object. The obtain the latency data for a connection, a

client application would invoke the “RequestStatus” method. The prototype for this

method is:

 IdlStatusToClient RequestStatus(in short client_ref);

The in parameter “client_ref” is the unique connection identifier. The method invocation

returns the type “IdlStatusToClient”. This type is defined as follows:

 struct IdlStatusToClient {
 short index_ref;

 65

 short quality;
 short server_acknowledges_client;
 float latency_estimate;
 float upper_bound_estimate;
 float lower_bound_estimate;
 short update_required_flag; };

 The update_required_flag provides the status of the connection (i.e. the Latency

Server is providing latency estimates). The quality variable provides the QoS which is

used for the connection. The QoS for each connection was defined at the Latency Server

startup time, and it can not be altered during run-time. If the QoS is equal to 1 or 3, then

the latency_estimate variable is the time in milliseconds of the measured average

message latency. The upper_bound_estimate float and lower_bound_estimate

variables define the range in which there is a statistical 95% confidence that the average

latency will fall within. If the QoS is equal to 2 or 4, then the latency_estimate

variable is the time in milliseconds for the measured latency bound. The latency bound

for the connection was identified in a configuration file, which was read at the time of the

prototype Latency Server startup. The upper_bound_estimate and

lower_bound_estimate variables represent the 95% confidence interval for the

percentage of message latency times in which the latency bound is greater then the

message latencies. The update_required_flag indication is only significant if the QoS is

equal to 2 or 4. If the update_required_flag variable has a value of 1, than the Latency

Server is waiting for the results of measurements, and that the latency estimate value is

soon likely to change. If the value is not 1, then the latency estimate value is valid.

 For example, assume a client is bound to the Latency Server and invokes:

RequestStatus(1). Assume that the configured latency bound for connection 1 was 96%.

Also, assume that the following values are returned:

 index_ref : 1
 quality: 4
 server_acknowledges_client: 1

 66

 latency_estimate: 5
 upper_bound_estimate: 98
 lower_bound_estimate: 97
 update_required_flag: 0

This returned value indicates that the connection is good since the

server_acknowledges_client is 1. The QoS is 4, indicating that a dynamically measured

latency bound was provided. Since the update_required_flag is 0, the value is valid since

there is no pending measurement to be made. The latency bound estimate is 5

milliseconds. From this result the following conclusion can be made: There is a 95%

confidence that between 97% to 98% of actual message latencies are less than 5

milliseconds.

 An example to demonstrate average message latencies may result in the following

returned values:

 index_ref : 2
 quality: 3
 server_acknowledges_client: 1
 latency_estimate: 1.46
 upper_bound_estimate: 1.56
 lower_bound_estimate: 1.36
 update_required_flag: 0

This result leads to the conclusion that there is a 95% confidence that the actual average

latency is between 1.36 ms to 1.56 ms.

4.2.2 Prototype Latency Server System Description

 The implementation of the Latency Server prototype accomplished for this thesis

consists of the following CORBA-level components:

• The Latency Server which either provides estimates or requests new

measurements from its distributed components (i.e. Client and Peer

applications);

• N Client applications, which reside on one of the workstations (Client

workstation) for each connection. When requested by the Latency Server, the

 67

Client application initiates round-trip latency measurements with its Peer

Server application, that resides on the second workstation (Peer workstation)

comprising the connection;

• N Peer Server applications, which reside on the Peer workstation to support

round-trip measurements;

• A SNMP Emulator application, which emulates the required MIB variables;

• A Status application, which is used to monitor servers performance;

 Figure 4.2.1-1 shows a logical representation of the CORBA-level components

from a software bus viewpoint (i.e. is a level of abstraction above the network

implementation details). The figures depicts the Latency Server and all of its distributed

applications. Each box in the figure represents a workstation. A connection is defined

by the message communications path between a Client application and a remote Peer

Server application.

Latency Server High Level Diagram

SOFTWARE BUS

LATENCY
SERVER

CLIENT
Application

1
PEER 1
Server
Application

CLIENT K
Application

CLIENT N
Application

PEER K
Server
Application

PEER N
Server
Application

....

SNMP
EMULATOR

....

STATUS
Application

Figure 4.2.1-1

 The Latency Server is implemented as a CORBA-level server that provides a

latency estimate to requesting applications. The Latency Server uses emulated SNMP

data (CPU and network utilization) to monitor the state of the system. When the Latency

 68

Server detects a state change for a connection, it will either calculate a new estimated

latency, or request a latency measurement between the Client application and Peer Server

application. The method of determining the latency estimate is depended on the

connections preconfigured QoS value.

 The SNMP Emulator application, also a CORBA-level client, provides emulated

CPU utilization data for the client and peer workstations. In addition, it provides the

network loading (i.e. the port utilization for the intermediate ATM port). The Status

application, another CORBA-level client, provides an operator a view of the system’s

current state and the state of each connection.

4.2.3 Latency Server Scope and Assumptions

 The prototype Latency Server makes numerous assumptions about the network.

These assumptions include:

1. The network configuration consists of two ATM switches, interconnected by 1 OC-3

port. The client and peer workstations are not connected to the same switch.

2. The ATM virtual connections utilize the UBR traffic contract between the End

Stations and the ATM switches.

3. Since actual ATM network latency measurements were not accomplished

simultaneously for both ATM port loading greater than 90% and workstation CPU

loading (i.e. for network measurements both workstations were always lightly

loaded), ATM port loading is assumed to be negligible (i.e. < 90%) when the

estimated latency bound is given.

4. Since actual latency measurements were not accomplish simultaneously for both

ATM port loading greater than 90% and the workstation CPU loading, the Latency

Server assumes that latency due to port loading and CPU loading is additive in nature

when estimated average latencies are provided. In calculating average latencies, it is

assumed that the effect of ATM port loading under 90% adds negligible latency.

When ATM port loading is greater than 90%, the port latency contribution is

 69

calculated by (1/1- (network load)), where network load = (ATM port utilization -

91)/10. The equation (1/1-network load) is a general result in describing queue

loading effects [22].

5. All measurements are round-trip latencies.

6. Workstations are either TAC-3s or TAC-4s running applications over CORBA and

 TCP/IP.

7. Depending on the selected QoS, connections will only be TAC-4 to TAC-4 or TAC-3

to TAC-3.

8. The SNMP Emulator is the source of emulated SNMP data at a rate of 10 Hz.

9. The Latency Server will only provide estimates for a specific message size:

 64B, 128B, 256B, 512B, 1kB, 2KB, 4KB & 8KB

 The Latency Server is dependent on the measurements that were accomplished in

Section 3. Therefore, the same hardware configuration, message sizes and measurement

techniques need to be reflected in the Latency Servers network configuration and design.

 The ATM network was is a lightly loaded state when the workstation CPU

measurements were taken in Section 3. Likewise, the workstations were in a lightly

loaded state when the ATM network measurements were taken. There were no

measurements taken when both the ATM network and the workstations were both in a

heavily loaded condition. Therefore, there is no a priori measurement data which the

Latency Server can utilize when providing latency estimates for QoS 1 and QoS 2. To

provide average latency estimates for QoS 1, the Latency Server assumes that the loading

effects of the workstation and ATM network components are additive. In addition, it is

assumed that the network loading is defined by the equation identified in constraint

number 4. This equation is a rough approximation of the queuing seen by TCP when the

ATM ports are loaded to greater than 90% of their maximum capacity. No distinction for

port loading is made in regard to message size.

 Since no system management application was available to support this work, a

simple script provide system state information was developed. This script runs at 10 Hz

rate, which is representative of a fairly fast system management polling rate.

 70

4.2.4 Latency Server High Level Design

 The physical configuration of the Latency Server system is depicted in Figure

4.2.3-1. The Latency Server, SNMP Emulator application and Status application can be

all collocated in one workstation or be distributed amongst numerous workstations.

Each connection that has a QoS of 3 or 4 requires a Client application in the client

workstation and the Peer Server application in the peer workstation. The Latency Server

provides the round-trip latency measurements. The number of Client applications and

Peer Server application pairings is dependent on the number of connections of interest,

and on the configuration of the system.

 Initially, the Latency Server is provided pre-configured information for each

connection. This information consists of the workstation type,the size of message and the

QoS value. The workstation types and message sizes were defined in Section 4.2.2. As

previously discussed, there are four QoS values to choose from. These values result in

one of the following actions:

1. Utilize profile data to determine new average message latency.

2. Utilize profile data to determine the latency bound value in which x% of the

actual round-trip message latencies times must be less than it.

3. Take actual latency measurement and provide new latency average.

4. Take actual latency measurement and provide the latency bound value in

which x% of the actual round trip message latencies times must be less than it.

 The Latency Server provides a new estimated latency value when the CPU

utilization states change between the client and peer workstations or when the ATM port

state changes. The CPU states represent a range of processor utilization (0-33%, 34-66%,

67-100%). Since both processors are accounted for, there are nine possible combinations

of CPU utilizations. These are the same combinations in which the measurements in

Section 3 were recorded. The ATM port state changes as follows:

1. Port utilization increases from less then 90% to greater then 90%;

2. Port utilization decreases from greater then 90% to less then 90%; and

3. Port utilization is above 90%, and changes, but is still above 90%.

 71

 The first two QoS cases do not require actual latency measurements. The

advantage of this approach is that no network resources and minimum workstation

resources are used to determine the estimated latencies.

 For QoS Case 1, the average message latencies are based on the sum of a CPU

latency component and a network latency component. The CPU latency component is

determined by performing a look up of previously profiled latency data for the CPU state

and message size of interest. The port contribution is estimated as defined by Constraint

4 in Section 4.2.2. This latency estimate may be desirable for systems which can not

have an overly-restrictive message latency estimate, and can miss message latency

deadlines.

 For QoS Case 2, the estimated latency bound is the time in which x% of the

measured average round-trip latencies are less than it. As previously stated, the bound for

this QoS is dependent on CPU state only. The bound is determined from previously-

recorded latency distribution data (Section 3) when the Latency Server initially starts up.

This bound is beneficial when it is known what percentage of the time the latency bound

is required to be greater than message latencies.

 The next two QoS cases have the advantage that they provide the actual latencies

for the current system state. The disadvantage is that substantial network and workstation

resources are required to obtain the “estimates”. For QoS Case 3, the estimate latency is

the average of the actual measured latencies. The rationale for this QoS is similar to the

rationale for QoS Case 1. For QoS Case 4, the estimated latency bound is the time in

which x% of the measured average round-trip latencies are less then. The rationale for

this QoS is similar to the rationale for QoS Case 2.

 The confidence interval for the average message latencies (QoS Cases 1 and 3) are

determined by Equation 1. All statistical equations in this thesis are from [16]. These

values represent the range in milliseconds in which there is a 95% statistical confidence

that the actual mean message latency falls within. Using Equation 2 and assuming the

standard deviation is 5 ms, the sampling error is about .1 ms for 10000 samples (QoS =

1) and less then .3 ms for 1000 samples (QoS = 3).

 72

 x ±z(a/2)
. s/¥n (1)

 where:

 x = average sample message latency mean

 z(a/2) = 1.96 (the z-value underneath the standard normal curve for 95% of the area)

 s = ¥(((x2) - (x)2)/n(n-1))

 and n = number of samples ; (n=10000 for QoS =1 and n = 1000 for QoS = 3)

 and x = sampled value

 n = [(z(a/2).)E]2 (2)

 where: E = the error and = standard deviations

The Latency Server provides both the lower and upper message latency values for the

95% percent confidence level for QoS 1 and 3.

 To determine the maximum latency bound, Equation 3 is utilized, which is used to

calculate confidence intervals for a proportion.

 p ±z(a/2)
. ¥(p(1 - p)/n) (3)

 where p = x/n; where x is the sample statistic and n is the number of samples

The proportion for this equation, is the proportion of samples that contain a specific

attribute in relation to the total number of samples taken. The samples of interest are the

ones with the characteristics that the average round-trip latency is less then the calculated

latency bound, t. Therefore, the proportion of interest is the percentage of average latency

values which are less than the latency bound.

 The latency bound is first calculated by determining the number of samples which

need to be less then the latency bound. For example, if a 90% latency bound is required,

and 10000 samples are taken, then at least 9000 samples must be less then the latency

bound. As in Section 3 of this thesis, the latency distributions for message latencies for

both the a priori measurements and for the dynamic measurements are recorded in 100, 1

ms bins. Each bin contains the number of latency measurements for the specific 1 ms

window. To determine the latency bound, starting from the first bin, the number of

measurements of each bin in the latency distribution are cumulatively added until the total

 73

number of measurements are equal to or greater then the required number of

measurements. The upper time value in milliseconds of the last bin added is the latency

value that the Latency Server returned. Also returned, as calculated by Equation 3, are

the 95% confidence interval for the value returned. For example, suppose the latency

distribution is described by the bar graph in Figure 3.2.2-2 and that the user specified

latency bound is 93%. The graph represents 100K samples. The latency time of 7 ms, is

the smallest latency time on the graph, in which 93K (93% of 100K) of the samples are

less than. On this graph, 7 ms represents the point in which 93.679K measurements were

accomplished. Using the confidence interval equations we arrive at the following result:

There is a 95% confidence that between 93.52 - 93.82% of actual message latencies are

less than the 7 ms.

 Table 4.2.3-1 provides the IDL for the Latency Server. There are 4 structures

defined. The structures are:

• TableRow,

• IdlBaselineMeasurements,

• IdlStatusToClient, and

• IdlMibUpdates.

 The Latency Server is designed around a table (an array of structures) which

contains the required information for each active connection. The data structure utilized

is the same structure layout which is defined in the IDL TableRow struct type. All

Latency Server data is stored in the table.

 The data in the Latency Server is logically structured into 6 different data types.

More specifically the table contains the following type of data:

• configuration data,

• connection status data (server to requesting application),

• client generated data,

• MIB update data,

• MIB historical data and,

• connection state information.

 74

 The configuration information is known a priori and is read from a configuration

file at time of system start up. This contains basic paramatic information, workstation

types, message size and required quality of service, which are utilized in the calculation

of the estimates.

 The connection status data is provided by the Latency Server to any requesting

client. The type of information contains all pertinent information of the status of the

connection. The primary information of this type is the latency estimate and the request

flag to the client to provide an actual measurement. The requesting client can receive this

information for a specific connection by invoking the RequestStatus method.

 The Client application generates data which consists of the measured latency data

(average and maximum latency bound) for the Latency Server to update its status table.

This data is required if the connection is set with a QoS 3 or 4. This data is provided to

the Latency Server by invocation of the UpdateResponse method.

 The MIB update data is the latest SNMP measurement data. For each connection,

this data consists of emulated CPU utilization data for both the Client and Peer

workstations. In addition an emulated ATM port utilization data is also provided. The

SNMP Emulation application client updates the Latency Server with this data by invoking

the PutMibUpdates method. The historical MIB data was the previous SNMP

measurement data.

 The connection state information provides the current state of the CPU utilization

and ATM port utilization states.

 The Latency Server has 2 phases of operation: A phase in which the Latency

Server is available to provide data to any requesting clients or receive data from the

Client applications; and a second phase in which the server updates the data table. These

two phase are encapsulated by an infinite loop. During program startup, the Latency

Server’s data table is created. After initialization, the loop is entered. The first phase of

operation is to instantitiate the CORBA-level server object so that it can service any

requesting clients. If no clients invoke any of the server’s methods for a period of 1

second, the CORBA-level object instantiation times-out and the Latency Server performs

 75

its’ required calculations and appropriately updates the Status Information Structure for

each connection (Phase 2). After each connection has been updated Phase 2 completes

and Phase 1 is entered by instantiating the CORBA-level server object.

 The SNMP Emulator application client provides updates to CPU and port

utilizations for all the connections every 10 seconds. The SNMP Emulator application

client reads from a file a script of emulated SNMP data for each connection.

 The Client application requests status data every 5 seconds for a particular

connection. If the update required flag is set, and the QoS level is either 3 or 4, the

Client application performs 1000 round-trip measurements for the message size of

interest with its’ Peer Server application. The IDL for the Client application and Peer

Server round-trip latency measurements are shown in table 4.2.3-2. The IDL defines a

two dimensional array type for each of the 8 possible message sizes and the methods to

pass the data. The average latencies and latency bounds of this data are calculated by the

Client application and these values are then sent to the Latency Server. If the connection

QoS is either 1 or 2 for the connection, latency measurements will never be taken.

 The Status application client allows an user (Latency Server operator) to get the

state of the Latency Server data table. This is accomplished by invoking the

RequestTableStatus method.

 Latency Server IDL

interface Latserv {
// DEFINITIONS OF DATA ELEMENTS (STRUCTURES)

// this data structure contains all the data in the latency server data structure
 struct TableRow {
 short index_ref; // connection reference
 //configuration data
 short client_workstation_type; //TAC-3 or TAC-4
 short peer_workstation_type; //TAC-3 or TAC-4
 short quality; // QoS of connection
 short message_size; // latency for message size
 short client_node; //workstation identifier
 short peer_node; // workstation identifier
 // server to whoever - status of connection
 short server_acknowledges_client; //indicates if Latency Server is servicing connection
 float latency_estimate; //interpurtaton depends on quality; either measured
latency or bound
 float upper_bound_estimate; //upper range value of 95% confidence interval
 float lower_bound_estimate; //lower range value of 95% confidence interval
 short update_required_flag; //for QoS 3 or 4, identifies in new measurement is required
 // client to server
 float latency_avg; //for QoS 3 provides measured average latency in milliseconds
 float latency_bound; //for QoS 4 provides latency bound time
 short latency_data_provided; //flag indicating valid data provided

 76

 // SNMP Update data short latest_client_mib_cpu; //Client workstation CPU utilization
 short latest_peer_mib_cpu; //Peer workstation CPU utilization
 short latest_mib_port; //Percentage of ATM port loading
 // previous SNMP data
 short previous_client_mib_cpu; //last Client workstation CPU utilization
 short previous_peer_mib_cpu; //last Peer workstation CPU utilization
 short previous_mib_port; //last percentate of ATM port loading
 // connection state information
 short cpu_state; //current CPU state for connection
 short port_state; }; //current ATM port state for connection

// the following structures partition the Latency Server table data in logical groupings; the data is the same as previously defined
// provides baseline measurement information from client to Latency Server
 struct IdlBaselineMeasurements {
 short index_ref;
 float latency_avg;
 float latency_bound;
 float latency_estimate;
 float upper_bound_estimate;
 float lower_bound_estimate;
 short latency_data_provided; };

// current server status; available to any client which binds to the Latency Server
 struct IdlStatusToClient {
 short index_ref;
 short quality;
 short server_acknowledges_client;
 float latency_estimate;
 float latency_estimate;
 float upper_bound_estimate;
 float lower_bound_estimate;
 short update_required_flag; };

// mib data updates; these values are provided by the SNMP Emulator application to the Latency Server
 struct IdlMibUpdates {
 short index_ref;
 short latest_client_mib_cpu;
 short latest_peer_mib_cpu;
 short latest_mib_port; };

 // METHODS
IdlStatusToClient RequestStatus(in short client_ref); // provides connection status to whoever
void UpdateResponse(in IdlBaselineMeasurements baseline_status,in short client_ref); // client provide latency to server
void PutMibUpdates(in IdlMibUpdates mib_updates,in short client_ref); // MIB updates supplied to server
TableRow RequestTableStatus(in short client_ref); }; // provides look inside server;

Table 4.2.3-1

Round-trip Measurement IDL

typedef long fixedArray_64[2][8]; // used for 64 byted fixed array tests
typedef long fixedArray_128[4][8]; // used for 128 byted fixed array tests
typedef long fixedArray_256[8][8]; // used for 256 byted fixed array tests
typedef long fixedArray_512[16][8]; // used for 512 byted fixed array tests
typedef long fixedArray_1k[32][8]; // used for 1K byted fixed array tests
typedef long fixedArray_2k[64][8]; // used for 2K byted fixed array tests
typedef long fixedArray_4k[128][8]; // used for 4K byted fixed array tests
typedef long fixedArray_8k[256][8]; // used for 8K byted fixed array tests
interface fm1{
 fixedArray_64 fixed_array_test_64 (in fixedArray_64 fix_array_var_64);
 fixedArray_128 fixed_array_test_128 (in fixedArray_128 fix_array_var_128);

 77

 fixedArray_256 fixed_array_test_256 (in fixedArray_256 fix_array_var_256);
 fixedArray_512 fixed_array_test_512 (in fixedArray_512 fix_array_var_512);
 fixedArray_1k fixed_array_test_1k (in fixedArray_1k fix_array_var_1k);
 fixedArray_2k fixed_array_test_2k (in fixedArray_2k fix_array_var_2k);
 fixedArray_4k fixed_array_test_4k (in fixedArray_4k fix_array_var_4k);
 fixedArray_8k fixed_array_test_8k (in fixedArray_8k fix_array_var_8k); };

Table 4.2.3-2

4.3 Latency Server Verification Results

 The purpose of the this section is to identify how the Latency Server was verified.

The objective of the verifications tests was to verify that the Latency Server performed as

described in this thesis report. These tests were not exhaustive. In general, once a

capability was verified, it was not reverified by utilizing another combination of inputs.

The testbed in which the Latency Server was verified is identified in Figure 4.3.1. The

set of tests to verify the Latency Server are as follows:

1. Verification of SNMP Emulator and current State Logic;

2. Verification of QoS 1 Estimates,

3. Verification of QoS 2 Estimates,

4. Verification of QoS 3 Estimates,

5. Verification of QoS 4 Estimates, and

6. Multiple Connections.

The first set of tests utilized the SNMP Emulator client to provide the various state

information for each connection to the Latency Server. It was verified that the Latency

Server assigned the correct state for each of the connections. All possible CPU loading

combinations were verified with ATM port loading less than 90%, all possible CPU

loading combinations were verified with ATM port loading at greater than 90%, and all

possible ATM loading configurations were verified with a low load CPU loading

combination. The second test verified that the Latency Server provided the correct QoS

1 estimates for each message size and each of the loading states. The next 3 tests all

utilized a message size of 256 Bytes. The third test verified that for numerous user

 78

specified latency bounds, that the Latency Server provided the correct time estimate for

the connection. The fourth test verified that for QoS 3 that the Latency Server provided

latency estimates that were consistent with the QoS 1 estimates. This was accomplished

for all the CPU states. For this test ATM port loading was less than 90%. For the fifth

test, it was verified that for QoS 4, the Latency Server provided a realistic latency bound.

It was verified that the returned latency bound estimate either stayed the same or

increased as the user specified latency bound value increased. The last test,

demonstrated that the latency server could support multiple connections (two QoS 1

connections, one QoS 2 connection, two QoS 3 connections, and one QoS 4 connection)

simultaneously.

Verification Configuration

 79

ROUTER

VIEW
STATUS

CLIENT

LAT MEASURE

CLIENT

LAT MEASURE

CLIENT

LAT MEASURE

CLIENT

LAT MEASURE

ATM
SWITCH

SERVER

SNMP
SIM

TAC 4

TAC 4
TAC 4

TAC 3 TAC 3

ATM
SWITCH

Figure 4.3-1

4.4 Latency Server Conclusions

 The prototype Latency Server performed as expected. It is not expected that the

concept of the Latency Server will be utilized by NSSN C3I System. It is anticipated that

the NSSN C3I System design will assume a worse case scenario for workstation latencies

and that the ATM network port loading will not exceed 90%.

 However, the Latency Server concept may have applicability in real-time

distributed systems in which the workstation and/or the underlying network may be a

significant contributor to message latency variation. As an example, consider a system

that has significant message latency variation due to processor scheduling. Mechanisms

could be built into the Latency Server which would either provide latency estimates or

requests for latency measurements based on process scheduling. Distributed systems

based on network technologies other than ATM may also benefit from the Latency Server

concept. For example, networks based on Ethernet, which are sensitive to network

loading due to collisions, may benefit from the Latency Server concept. For these types

 80

of networks, the Latency Server should utilize collision information in determining

connection latencies. Also, distributed systems could theoretically be a combination of

numerous network technologies (FDDI, ethernet, token ring, ect.) interconnect by routers.

In this case, the Latency Server could use numerous system-level parameters to make the

latency estimate decisions. The Latency Server concept could also be extended to

systems that are based on Wide Area Networks (WANs). WANs introduce an additional

latency component since the latency of the physical medium becomes significant.

 The implementation of the prototype Latency Server could be improved if threads

are utilized. The utilization of threads could help address the potential of any timing

problems between server invocations and maintaining the Latency Server data table.

With a thread implementation, a thread could be created to continuously update the

latency table data structure. Another thread could be created to execute the server method

invocations. The latency table data structure would require data locking mechanisms to

ensure data consistency.

 81

5.0 Applicability of Thesis Results to Other Work

 This section discusses two areas of current work in which the results of this thesis

may be of benefit. These areas are:

• NSSN C3I System and

• University of Rhode Island (URI) Real-time CORBA Research.

Potential Benefits to the NSSN Community. Currently, the NSSN community is

utilizing the standards which were identified in Table 1.1-1, to construct a NSSN C3I

System. One of the concerns in building this C3I System is the ability of the system to be

real-time. Of particular interest are the latencies contributions of the message

communications system. The measurements of Section 3 can provide the NSSN

community the following useful information concerning the COTS message latency

contributions:

• The aggegrate latency total of the COTS messaging components,

• The COTS components which contribute to latencies and the relative

magnitude of the latency contributions,

• Guidance on how the components can be constrained to achieve real-time

requirements, and

• The identification of the importance of how implementations of COTS

products may affect latency characteristics.

The identification of the aggegrate latency of the COTS messaging components is

important since this indicates potential problems with requirements and/or the proposed

implementation. Knowing information concerning relative latency contributions of the

COTS message communication system and guidance on how to constrain these

contributions, provides a means to alter the system design such that the requirements can

be met. For example, the most common maximum latencies identified in the NSSN

Specifications are 1 ms, 10 ms, 50 ms and 100 ms. Making the assumption that these

times reflect only network communication times, 50 ms is a realistic maximum soft real-

 82

time latency requirement for the network’s message communication system. For

requirements that require message latencies of 10 ms - 20 ms or less, a real-time

operating system would be required (see section 3.9). This is due to HP-UX’s non-pre-

emptible timeslice of 10 ms. Because of the time-slice, the application maybe delayed up

to 10 ms before it is even scheduled. Even if a real-time operating system is utilized,

message size, CPU utilization and TCP/IP queuing may need to be accounted for.

 This thesis also identified the issue that different configurations of COTS

components, and even different versions of the same COTS product, may produce

unexpected results. For example, it was shown that Orbix 2.0 had unusual results when

8K messages were passed, and that the TCP/IP measurements were actually worse

(slower) with HP-UX 10.0 running on a TAC-4 then with HP-UX-9 running on a TAC-3.

From findings such as these, it is recommended that the NSSN community properly

characterize the performance of each new COTS component when it is incorporated in

the C3I System.

Potential Benefits to the University of Rhode Island (URI) Research.

 The real-time CORBA research team at URI is investigating approached to add

real-time extensions to CORBA. The research is primarily concerned to adding end-to-

end real-time constraints to method invocations. This research was initially identified in

[1]. To support real-time method invocations, one of the identified requirements was that

network latencies need to be known.

 This research was further extended in [18]. Implementations were developed to

demonstrate the required interface facilities and the required support services to support

the end-to-end time constraints. The interface facilities contained time constraint

parameters: task importance, task deadlines, and Quality of Service. The required

CORBA support services were a Global Priority Service and a modification of the

Concurrency Control Service to support real-time constraints.

 The potential contributions of this thesis to the URI work are as follows:

• Provide informaction concerning the dynamic latency characteristics of the

underlying message communication components;

 83

• Provide a methodology on how to measure the latencies of the underlying

network;

• Identify the process scheduling has a significant effect on maximum message

latencies;

• Provide the concept of the Latency Server.

This thesis demonstrated that message latency can vary significantly depending on system

conditions. A static message latency value may be undesirable. This thesis identified the

system components and conditions which can effect system latency, provided metrics to

assess message latency (average latency, maximum latency, and latency distribution) and

provided a methodology to measure latencies. This research may assist the URI research

team in how to determine message latencies to support their reaserch needs.

 In addition, process scheduling was identified to be the most significant factor

influencing maximum message latency. This should be guidance to ensure that

processes involved in message communication be given sufficient priority to allow for

messages to meet their time constraints.

 Perhaps the most significant contribution of this work to the URI research is the

concept of the Latency Server. The Latency Server can dynamically provide the message

latencies for each connection. The concept of the Latency Server could become a

CORBA service which could be utilize to support the real-time method invocations. This

would be beneficial in that fairly accurate message latencies would be provided, ensuring

that the latency estimates are not too low (to prevent missed deadlines) nor are to high (to

ensure that applications are allotted a maximum amount of time).

 84

6.0 Recommended Changes to Standards

 This section provides recommendations to the standards which were utilized for

this thesis research. The standards of interest are ATM, TCP/IP and CORBA.

6.1 ATM Recommended Changes

 The ATM virtual circuits that were utilized in this thesis work were based on an

Unspecified Bit Rate (UBR) contract. This means that if ATM cell traffic exceeds the

available virtual connection bandwidth, then ATM cells can be lost. Cell loss was

demonstrated in Section 3.6.2-1. In addition, UBR cell is also demonstrated in [21]. Cell

loss is undesirable for real-time systems in that data is lost. If the lost data is time-critical

and if this data is not resent, then effectively the data latency is infinite, which will cause

real-time requirements not to be met. If the data is resent, then additional latency is

incurred due to the data being resent. This additional latency may potentially cause time

constraints to be violated.

 ATM provides the ability to ensure that cell loss does not occur by setting up

either Constant Bit Rate (CBR) or Variable Bit Rate (VBR) traffic contract for a virtual

connection. This traffic contract is between the End Stations and the ATM network. The

viability of using an ATM CBR traffic contract to prevent ATM cell loss was

demonstrated in [21].

 The current ATM Standards only allow the CBR and VBR traffic contracts to be

set up a priori by utilizing Permanent Virtual Circuits (PVC). To allow maximum

flexibility for the run-time environment it would be desirable for applications to specify

traffic contracts for connections dynamically by utilizing Switched Virtual Circuits

(SVCs). The traffic contract could be specified by an application through the appropriate

(Application Programmer’s Interface) API. This enhancement would provide an ability

for the run-time environment to ensure that the virtual connection is at the appropriate

ATM QoS for the message priority. For instance, if the virtual connection is used for a

constant stream of high priority data than a CBR connection be specified. If the data is

periodic high priority data, perhaps a VBR connection would be specified. Else if, the

data if relatively low priority, than perhaps a Available Bit Rate (ABR) or UBR

 85

connection would be specified. Also, under this scheme, ATM network resources are not

reserved until they are actually required.

6.2 TCP/IP Recommended Changes

 TCP/IP is effectively a type of “middleware” between the workstations run-time

environment and the network. This “middleware” should not adversely impact the

ability for the system to meet its real-time requirements. Ideally, TCP/IP should have the

following requirements:

1) No information on how the data should be processed (i.e. priority) should

lost;

2) TCP/IP should provide the ability for the application to access the underlying

network’s setup parameters.

 Section 2.2.1 briefly introduced the role of scheduling and the utilization of

priorities as a mechanisms in designing real-time systems. Section 3 demonstrated the

utilization of priorities to schedule processes to meet real-time requirements was briefly

discussed. A problem with TCP/IP with respect to real-time systems, is that TCP/IP does

not support the concept of priorities. Messages which are of low priority may be serviced

before high priority messages when TCP/IP is used. To effectively support real-time,

TCP/IP should establish a mechanism to recognize message priorities. The message

priorities need to be insured throughout the protocol stack.

 TCP/IP should also be able to pass QoS information to the underlying ATM

network. With this information, the traffic contract could be specified (i.e. VBR, CBR)

for the underlying network, along with other specifications (PCR, SCR, MSB) to support

these contracts. In addition, TCP/IP should provide mechanism to allow for the dynamic

establishment of ATM virtual connections.

 Another approach may be to eliminate TCP. The reliability mechanisms which

TCP provides may not be necessary with the emergence of ATM Available Bit Rate

(ABR) traffic contract. ABR has a form of flow control built into it. ABR will replace

current UBR. The CBR and VBR traffic contracts guarantee that the network resources

 86

are available to support specified network traffic. These mechanisms reduce the need for

TCP reliability mechanisms. In addition, the elimination of TCP mechanisms may reduce

problems, such as, the deadlock condition which can occur over ATM [2].

 Instead of TCP, applications could interface to an ATM API which supports the

dynamic allocation of virtual connections, and the setting of QoS parameters for these

connections. The underlying IP layer should be modified to support this ATM API. IP

itself could also be eliminated, but this may be undesirable since IP addressing has

become so prevalent.

6.3 CORBA Recommended Changes

 Currently, applications in the current CORBA-level run-time environment do not

have the appropriate mechanisms to support real-time requirements. Since CORBA

provides the framework to facilitate communications between applications, the CORBA-

level is a natural layer to incorporate real-time mechanisms for distributed applications.

 From an application perspective, it would be desirable to build mechanisms into

CORBA in which timing information is made available to the CORBA based

applications. This timing information is available to the application to help ensure that

processing deadlines are not violated. These mechanisms are described in detail in [1].

However, to determine the timing requirements for the applications, the latency of the

underlying network needs to be known. The underlying network latencies could be

provided by an implementation of the Latency Server concept introduced in this thesis. It

may be desirable that a Latency Server be provided as a CORBA service that would be

available to any application.

 From a message communication perspective, it would be desirable for the

CORBA implementation to be directly over a transport protocol which supports ATM

QoS and dynamic allocation of ATM virtual circuits. With this underlying network

functionality, a message communication system that could directly utilize ATM virtual

connections to maintain message priority throughout the distributed system. The ORB

would be required to specify and manage the virtual connections. In addition, the ORB

would have to perform the associated queuing functionality.

 87

 From information which could be supplied by the applications to the ORB, the

ORB could dynamically create virtual connections, with the appropriate QoS settings to

support the required application communications. This would require addition

computational complexity on the part of the ORB. For instance, an Iona implementation,

to establish a connection, the orbixd daemon would do the following additional steps:

• Retrieve applications real-time requirements,

• Determine if a virtual circuit of the required priority is available to the

destination, and

• if the virtual circuit is not available, create it, specify the correct QoS

parameters, and establish the required queuing in workstation address space.

 88

7.0 Conclusions

 This work identified the major contributing sources of message latencies in the

COTS data messaging system that will be utilized in NSSN C3I System. It was shown

that the most significant sources of the latency were due to the workstation components.

For the configurations investigated, the most significant cause of latency was due to

processes waiting to be scheduled on the CPU. It was demonstrated that process could be

given higher priorities to significantly lessen this component of message latency. It was

also demonstrated that TCP/IP queuing could have a significant effect on latencies if

message traffic was heavy. The Iona implementation of CORBA was shown to result in a

1 -2 ms increase in average latencies, but was shown to have minimal effect on maximum

latencies or latency distributions. The effect of ATM network latencies was shown to be

very small (in the microsecond range) relative to the other latency components. However,

ATM latency can become a significant factor if ATM port utilization’s are at 91% or

above their maximum rates.

 A prototype Latency Server was also developed in which either latency averages

or user-specified latency bounds are provided to any requesting application. Latencies

were either estimated or measured when CPU utilization or ATM port loading changed.

Latency estimates were derived from the measurement data. Round-trip measurements

were taken to provide the measured values.

 Finally, based on this work, recommendation were made for ATM, TCP/IP and

CORBA. The primary recommendation for ATM is to provide an API to applications

such that applications can dynamically establish virtual connection. The primary

recommendation for TCP is to support message priority and to provide an interface to

ATMs underlying QoS parameters. The first recommendation for CORBA was to

implement the Latency Server concept as a CORBA service which would be available to

applications to assist in determining time constraints. A second recommendation to

CORBA is to assume that applications can establish virtual ATM connection and that the

underlying transport layer does support message priorities, and to implement in the ORB

a mechanism to support message priorities using ATMs virtual connections.

 89

 In summary, this thesis identified the sources of latency in a COTS message

communication system, identified a means to dynamically determine message latencies,

and provided recommendations on how these components could be improved. In short,

the thesis objectives were accomplished.

 90

8.0 Recommendations for Future Work

 There are three primary areas in which the work started in this thesis could be

extended:

1. Continue measurements for additional details.

2. Expand the Latency Server.

3. Investigate how QoS can be extended to include workstation resources.

Expand Measurements. Measurements could be continued to further determine the

latency effects for more complex system configurations. The work done in this thesis,

assumed rather simple scenarios. Additional measurements may include the following:

• TCP/IP queuing effects of latencies for various loading configurations;

• Maximum latencies as effected by various parameters (CPU utilization’s,

message sizes, ect);

• Further determination on how various hardware implementations can effect

latencies;

• Effects on how multiple processes at various priority levels effect message

 latencies; and

• Detailed analysis on how CPU utilization effects latency.

From the measurements taken in this report, it was shown that TCP/IP queuing can be a

major effect of message latency. This thesis looked at one possible configuration. The

maximum queuing of this configuration was not addressed. In addition, it may be

important to understand what the worse case loading configuration could be.

 Message maximum latencies were seen to be greater for CORBA than TCP/IP for

the TAC-3 configuration. Not enough measurements were taken to determine if the same

is true for the TAC-4 configurations. Additional measurements could be determine if

indeed TAC-4 CORBA maximum latencies are greater then TCP/IP maximum latencies.

 This thesis demonstrated that hardware implementation can effect latency

performance by providing unexpected results. Additional measurements could be

 91

obtained to identify why the TAC-4 does not perform as well as the TAC-3 for some

configurations.

 Setting process priority was demonstrated to have an effect on message latencies.

It may be of use to determine how multiple processes should be prioritized relative to

each other to ensure message latencies are within requirements.

 CPU utilization was determined to have potentially significant effects on message

latencies. The CPU utilization’s in this work were at a relatively high level of granularity

(i.e. 33%). It may be of interest to further understand how CPU utilization effects

message latency.

Expand Latency Server. The Latency Server could be extended to include the loading

effects of different network technologies and/or different network topologies. For

instance, Ethernet based distributed systems may need to look on how collisions effect

message latencies. In addition, for a non-trivial system, the Latency Server should also be

extended to take into account process scheduling and process priorities of the system

workstations.

Full System Support of QoS. This work has shown that workstation resources have a

significant effect on message latencies. It would be desirable to provide a message

communication system which not only utilize QoS to specify network resources but to

also specify workstation resources as well.

 This thesis identified numerous topics concerning COTS message

communications systems. As shown by this reaserch, this is an important topic which has

many facets. It is my hope that this thesis developed an adequate framework to aid

further research for both the NSSN C3I System community and the real-time CORBA

research group at URI.

 92

References

1. V Fay Wolfe, J.K Black, B. Thraisingham and P. Krupp, “Real-time Method

Invocations in Distributed Environments”, Third International High Performance

Computing Conference, December 1995.

2. Moldeklev, K. and Gunningberg, P., “How a Large ATM MTU Causes Deadlocks in

TCP Data Transfers,” IEEE Trans. on Networking, vol. 3, no. 4, August 1995, pp 409-

422.

3. G. Coulson, A. Campbell, P. Robin, G. Blair, M. Papathomas and D. Shepherd, “The

Design of a QoS-Controlled ATM-Based Communications System in Chorus”, IEEE

JSAC, Vol 13, no. 4, May 1995, pp 686 - 698.

4. Liu, C. L. and Layland J. W., “Scheduling Algorithms for Multiprogramming in a Hard

Real Time Environment”, JACM 20 (1):46 - 61, 1973.

5. C. B. Tipper and J. N. Daigle, “ATM Cell Delay and Loss for Best-Effort TCP in the

Presence of Isonchronous Traffic”, IEEE Journal on Selected Areas in Communications,

Vol. 13, October 1995, pp 1457 - 1463.

6. W. Zhao, K. Ramamritham and J. A. Stankovic, “Preemptive Scheduling Under Time

and Resource Constraints”, IEEE Trans. on Computers, Vol., C-36, no. 8 August 1987.

7. S. Bocking, “TIP’s Performance Quality of Service”, IEEE Communications

Magazine, August 1995, pp. 74 - 81.

8. J. Y. Hui, J. Zhang, and J. Li, “Quality-of-Service Control in GRAMS for ATM Local

Area Network”, IEEE JSAC, Vol. 13, no. 4, May 1995.

9. H. Tokuda, C. Mercer, Y. Ishikawa and T. E. Marchok, “Priority Inversions in Real-

Time Communication”, IEEE 1989, pp348 - 358.

10. K. G. Shin and C. Hou, “Analysis of Three Contention Protocols In distributed Real-

Time Systems, RTSS 1990, pp. 136 - 144.

11. W. Zhao, J. Stankovic and K. Ramamritham, “A Window Protocol for Transmission

of Time-Constrained Messages”, IEEE Trans. on Computers, Vol. 39, No. 9, September

1990, pp 1186 - 1203.

12. C. Venkatramani, T. Chiueh, “Supporting Real-Time Traffic on Ethernet”, RTSS,

1994, pp 282 -286.

 93

13. N. Malcolm and W. Zhao, “TheTimed-Token Protocol for Real-Time

Communications”, IEEE Computer, January 1990, pp 35 - 41.

14. K. Nahrstedt and J. M. Smith “The QOS Broker”, IEEE MultiMedia, Spring 1995,

pp 53 - 67.

15. M. J. Bach, “The Design of the UNIX Operating System”, Prentice-Hall, Englewood

Cliffs, N.J. 1986.

16. N. A. Weiss and M. J. Hassett, “Introductory Statistics”, Addison-Wesley Publishing

Company, Reading, MA, 1987, pp 297 - 340.

17. The Common Request Broker Architecture and Specification, Revision 2.0, July

1995.

18. L. C. DiPippo, R. Ginis, M. Squadrito, S. Wohlever, V. Fay Wolfe, I. Zykh, and R.

Johnston, “Expressing and Enforcing Timing Constraints in a CORBA Environment”,

University of Rhode Island, Computer Science Department DRAFT Report.

19. A. Gokhale and D. C. Schmidt, “Measuring the Performance of Communication

Middleware on High-Speed Networks”, ACM 1996, Stanford University, August 28-30,

1996.

20. ADTECH Inc., http//adtech-inc.com.

21. G. Bussiere and R. Pallack, “New Attack Submarine Performance of ATM-Based

Networks: A Study for NSSN C3I Infrastructure”, Naval Undersea Warfare Center

Division, Newport, RI, December 1996.

22. A. Tanenbaum, “Computer Networks”, Prentice Hall, Upper Saddle River, NJ, 1996

p. 561.

23. M. Santifaller, “TCP/IP and ONC/NFS”, Addison-Wesley, New York, NY, 1994, pp

5 - 10.

 94

 Appendix A

CORBA MEASUREMENTS
TAC-4 to TAC-4

CORBA 64 byte Message Latency
SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33%
average
max

1.164
42.029

1.686
21.407

2.153
23.591

34-66% 2.521
47.564

3.177
55.563

67-100% 4.006
42.75

CORBA 128 byte Message Latency
SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33%

1.201
21.255

1.768
32.141

2.248
25.182

34-66% 2.568
46.309

3.310
63.389

67-100% 3.968
38.611

CORBA 256 byte Message Latency
SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33%

1.365
18.616

2.066
25.989

2.386
24.663

34-66% 2.846
62.097

3.533
56.62

67-100% 4.155
42.447

CORBA 512 byte Message Latency
SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33%

1.488
18.471

2.347
22.998

2.481
31.78

34-66% 2.922
46.309

3.725
55.271

67-100%

4.355
45.724

 95

CORBA 1K byte Message Latency
SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33%

1.717
21.88

2.749
26.105

3.22
24.273

34-66%

3.295
44.22

4.433
63.029

67-100%

4.723
40.77

CORBA 2K byte Message Latency
SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33%

1.805
13.12

2.849
26.697

3.343
27.233

34-66% 3.364
48.167

4.511
75.038

67-100%

5.170
52.82

CORBA 4K byte Message Latency
SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33%

2.422
23.514

3.719
32.029

4.244
25.881

34-66% 4.574
47.502

5.626
63.767

67-100%

6.249
42.861

CORBA 8K byte Message Latency
SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33%

3.771
199.555

5.468
200.64

5.93
199.957

34-66%

6.324
203.043

8.093
199.996

67-100%

9.240
202.487

 96

TAC-3 to TAC-3

CORBA 64 byte Message Latency
SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33%

1.4551
21.985

1.775
23.485

2.210
59.942

34-66% 2.559
40.593

3.310
88.096

67-100% 4.0467
88.183

CORBA 128 byte Message Latency
SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33%

1.499
21.985

1.849
23.939

2.234
58.15

34-66% 2.812
41.424

3.635
70.209

67-100% 4.351
95.602

CORBA 256 byte Message Latency

SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33%

1.617
15.749

2.081
24.453

2.494
42.137

34-66% 3.0648
40.005

3.762
74.069

67-100%

4.734
91.806

CORBA 512 byte Message Latency

SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33%

1.717
21.537

2.158
24.069

2.524
60.21

34-66% 3.108
54.494

3.963
63.165

67-100% 4.930
99.809

 97

CORBA 1K byte Message Latency

SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33%

1.918
20.343

2.458
26.987

2.916
49.212

34-66% 3.579
54.494

4.413
67.916

67-100% 5.521
80.44

CORBA 2K byte Message Latency

SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33%

2.100
22.824

2.664
24.673

3.299
77.59

34-66% 3.821
41.399

4.846
71.511

67-100% 5.644
99.898

CORBA 4K byte Message Latency

SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33% 2.769

24.61
3.447
26.52

3.911
71.852

34-66%

5.072
58.748

6.414
95.681

67-100% 6.636
99.898

CORBA 8K byte Message Latency

SENDER/RECEIVER 0-33% 34-66% 67-100%
 0-33%

5.4
32.428

5.725
27.422

6.653
62.845

34-66% 8.028
49.922

9.40
83.254

67-100% 9.861
127.43

 98

TCP/IP MEASUREMENTS

TAC-4 to TAC-4

TCP/IP 64 byte Message Latency

SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33%
average
max

.656
26.467

1.098
14.755

1.493
23.591

34-66% 1.597
283.303

2.229
34.968

67-100% 2.949
36.176

TCP/IP 128 byte Message Latency

SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33% .682

13.617
1.167
24.638

1.518
15.607

34-66% 1.732
25.003

2.304
27.171

67-100% 3.193
40.825

TCP/IP 256 byte Message Latency

SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33% .840

10.969
1.399
23.469

1.776
21.459

34-66% 1.944
30.399

2.691
41.398

67-100% 3.365
44.220

TCP/IP 512 byte Message Latency

SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33% .951

10.258
1.552
29.915

1.930
24.049

34-66% 2.051
30.877

2.742
46.293

67-100% 3.567
33.175

 99

TCP/IP 1K byte Message Latency

SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33% 1.153

16.665
1.827
26.36

2.090
25.012

34-66% 2.341
22.029

2.910
43.388

67-100% 3.903
44.787

TCP/IP 2K byte Message Latency

SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33% 1.215

49.99
1.968
18.804

2.422
20.582

34-66% 2.530
22.105

3.185
39.468

67-100% 4.122
33.428

TCP/IP 4K byte Message Latency

SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33% 1.709

16.711
2.596
23.254

3.112
25.821

34-66% 3.252
22.203

3.869
40.781

67-100% 4.749
41.893

TCP/IP 8K byte Message Latency

SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33% 2.762

13.724
4.128
30.782

4.938
20.403

34-66% 4.952
40.625

6.081
42.102

67-100% 7.039
44.943

 100

TAC-3 to TAC-3

TCP/IP 64 byte Message Latency

SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33% .654

6.654
.868
21.642

1.121
59.649

34-66% .987
31.974

1.246
50.917

67-100% 1.990
55.884

TCP/IP 128 byte Message Latency

SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33% .671

17.004
.891
22.723

1.150
58.143

34-66% 1.041
26.674

1.328
107.045

67-100% 1.728
56.679

TCP/IP 256 byte Message Latency

SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33% .801

17.125
1.016
20.836

1.317
58.388

34-66% 1.251
32.207

1.435
45.803

67-100% 2.046
87.467

TCP/IP 512 byte Message Latency

SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33% .849

17.138
1.051
21.514

1.352
68.189

34-66% 1.343
36.369

1.664
35.523

67-100% 2.066
77.693

 101

TCP/IP 1K byte Message Latency

SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33% .979

17.246
1.180
14.529

1.448
58.672

34-66% 1.422
36.435

1.888
48.328

67-100% 2.082
51.059

TCP/IP 2K byte Message Latency

SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33% 1.205

17.120
1.426
15.465

1.638
69.664

34-66% 1.722
32.748

2.297
45.449

67-100% 2.505
74.170

TCP/IP 4K byte Message Latency

SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33% 1.693

17.895
1.933
20.964

2.27
64.315

34-66% 2.468
45.843

2.907
41.481

67-100% 3.418
77.746

TCP/IP 8K byte Message Latency

SENDER/RECEIVER 0-33% 34-66% 67-100%
0-33% 2.699

17.842
3.163
22.727

3.611
60.060

34-66% 3.983
43.147

4.558
38.242

67-100% 5.313
73.580

 102

Bibliography

“Fore Runner ASX-1000 ATM User’s Switch Manual MANU0053-Rev. D”, Fore

Systems, 1996.

“J2802B HP EISA ATM Adapter for HP-UX 10.X Configuration and Troubleshooting

Guide”, HP part number J2802-90017, Hewlett-Packard (Undated).

“J2802B HP EISA ATM Adapter for HP-UX 10.X Installation Guide”, HP part number

J2802-90014, Hewlett-Packard (Undated).

“Orbix 2.0 Programming Guide”, IONA Technologies, 1996.

“Orbix 2.0 Reference Manual”, IONA Technologies, 1996.

Tanenbaum A. S., “Computer Networks”, Prentice Hall, Upper Saddle River, NJ. 1996

Tanenbaum A. S., “Distributed Operating Systems”, Prentice Hall, Upper Saddle River,

NJ 1995.

