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Abstract 

 This work investigates  the viability of utilizing a Commercial off the Shelf 

(COTS) based distributed system to meet the real-time data messaging requirements of 

the Combat Command Control and Intelligent (C3I) systems for the New Strategic 

Submarine Nuclear (NSSN) submarine.  The primary method for performing the required 

analysis is measuring the system latencies on representative equipment.   Measurements 

are taken to determine the latency effects of the workstation and underlying 

Asynchronous Transfer Mode (ATM) network on message latencies. 

 The concept of the Latency Server is also introduced.  The Latency Server 

provides latency estimates for message latencies between pairs of communication 

workstations. The latency estimates are available to any requesting application client. 

 Lastly, recommendations are made to the standards which specify the components 

of the message communications system. 
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1.0 Introduction 

 The problem domain that this research is addressing is to determine the viability 

of utilizing a Commercial off the Shelf (COTS) computer network based system to meet 

the real-time data messaging requirements of military Combat Command Control and 

Intelligent (C3I) systems.  C3I systems provide the computational resources which are 

required to gather and process data in the support of  a complex weapon system, such as, 

a submarine.  The C3I system that is the focus of this thesis is the C3I system being 

developed for the New Strategic Submarine Nuclear (NSSN) submarine.   

 In general, C3I systems can contain numerous software applications on various 

workstations.  C3I systems are typically  composed of subsystems, each of which offers 

specific system functionality. Each subsystem consists of one or more computer 

resources.   The subsystems are interconnected by computer networks.  Applications 

typically are required to exchange data with numerous applications from other subsystems 

to accompish a system level task.  Some system level tasks have real-time requirements.  

Real-time refers to timing requirements (i.e. deadline)  for task completion.  Real-time 

requirements are typically characterized as either soft or hard.  Hard real-time 

requirements can never be violated or else a catastrophic event will occur.  On the other 

hand, if soft real-time requirements are violated, no castrophic event occurs, however the 

results may be degraded.  Modern C3I systems will be based on COTS computers and 

computer networks.  Since message communications may be required in order for a task 

to complete, the latency characteristics of message communications are of significant 

interest with respect to the system’s real-time requirements.   It is important to 

characterize the latency of the COTS message communication system and to gain insight 

on how the COTS system communication system can be utilized to support real-time C3I 

system message traffic.   

 The key measurement metrics used in this thesis to characterize latency are 

average latency, maximum latency and latency distribution.  Average latency 

measurements provide a means of comparing the performance characteristics of different 

configurations.  Maximum latencies provide the means to determine what time critical 

requirements a particular configuration can meet.  If the requirement is considered soft-
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real-time, then the maximum latency may occasionally exceed the real-time time 

constraint.  If the requirements are considered hard real-time,  the maximum latency can 

never exceed the real-time time constraint.  This thesis is primarily concerned with soft-

real-time systems. 

 To facilitate C3I system design and implementation, a Common Object Request 

Broker Architecture (CORBA) product will be utilized.  CORBA is a standard which 

provides a framework to define interfaces between communicating software applications 

and includes the mechanisms to support communications between networked computers.  

Unfortunately, the software utilized to implement the CORBA functionality adds to the 

message data latencies.  It is also of interest to characterize the CORBA implementation 

contribution to intercomputer message data latencies. 

 As a means to identify message data latencies, it may be beneficial for software 

applications to dynamically request the latency component of the message 

communication implementation between applications on different computers.  This 

would allow for the applications to maximize the amount of time available for 

computational processing while ensuring that system deadlines are not missed.  Although 

this concept is not necessarily  applicable to NSSN C3I System, it may have applications 

to other network based computer systems. 

  

1.1 Background of COTS Based Message Communications for C3I Systems 

 Navy Combat Command Control and Intelligence Systems are the computer 

systems aboard Navy platforms that, receive information from the outboard sensors, 

provide the necessary computations for the platform personal to make decisions, and 

provide the required preset commands to the weapon subsystems.  The NSSN C3I System 

consists of a high level network architecture connecting 13 subsystems.  The subsystems 

are as follows: 

 

• Combat Control 
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• Sonar 

• Total Ship Monitoring 

• Tactical Support Device 

• Exterior Communication 

• Electronic Surveillance 

• On Board Training 

• Ship Control 

• Submarine Defense Warfare System 

• Photonics 

• Simulation/Stimulation 

• Radar 

• Navigation 

 

Each subsystem performs a specific function.  For instance, the Sonar subsystem 

translates raw sensor data from transducers to target data for the Combat Control 

subsystem. 

  C3I systems have traditionally been composed of uniquely designed computer 

systems, communicating by point-to-point connections.   These systems typically consist 

of dozens of software applications located on different computer platforms.  Several of 

the applications have real-time considerations in that message latency characteristics are 

of importance.  Since the older systems utilized point-to-point connections and used 

specially designed computers, the message latency characteristics were known  and hence 

not a major source of concern. 

 In an effort to reduce procurement costs, procurement lead time, and to keep 

current with technological advances, the Navy has taken the approach that all new 

procurements of C3I systems will be based on COTS components.  These components 

would be specified by open system standards, so that the Navy would not become 

dependent on a particular vendor’s implementation.  This approach has resulted in the 

design of the NSSN C3I System consisting of numerous commercial workstations 
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connected together by computer networks.  The NSSN C3I System is based on the 

standards as identified in Table 1.1-1. 

   SYSTEM COMPONENT  STANDARD 

   OPERATING SYSTEM:  POSIX compliant 

   NETWORK:    ATM, SONET, TCP, IP 

   DISPLAY:    X-WINDOWS, MOTIF 

   INTERFACE DEFINITION:   CORBA 

   SYSTEM MANAGEMENT:  SNMP 

Table 1.1-1 

 

1.2 Objectives  

 The research will consist of the following objectives: 

1) Measure and analyze the average latency, maximum latency and latency 

distribution of the components of the COTS message communication implementation to 

characterize the soft real-time requirements which can be satisfied and the identification 

of the system constraints required to make message communication hard-real-time, 

2) Develop a CORBA-based client/server  implementation to dynamically estimate 

current system latencies for soft-real-time communication implementations, and 

3) Compile a list of recommendations to enhance the real-time aspects of the 

standards (ATM, protocol stack, and CORBA) which specify the COTS components 

implementing the message communication system. 

1.3 Scope and  Assumptions 

 This work is primarily concerned with message communication system 

implementations that are similar to what is to be used for the NSSN C3I System.  Since 

this system is based on COTS components, and since  COTS components do not 

necessarily come with detailed design information, this work utilizes actual 

measurements to characterize the message communications system.  If actual detail 

designs are not available, detailed simulations or analytical analysis may not be possible.  
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Actual measurements also provide advantages in that time consuming complex analysis 

need not be done, important implementation “quirks” can be uncovered and the results 

obtained are actual results versus theoretical results which may be prone to errors. 

 The majority of messages required to support the NSSN C3I System will be 256 

bytes or smaller.  Therefore, this work only obtains measurements for relatively small size  

messages.  The message sizes utilized in the measurements are as follows: 64 bytes, 128 

bytes, 256 bytes, 512 bytes, 1024 bytes, 2048 bytes, 4096 bytes  and 8192 bytes.   

 The systems utilized for the measurements were HP TAC-3 and TAC-4 

computers.  The TAC-3 systems had HP-UX 9.01 operating system with the Orbix 2.0.1 

implementation of CORBA.  The TAC-4 systems had HP-UX 10.0 operating system with 

the Orbix 2.0 implementation of CORBA.  The ATM/SONET network used was based 

on FORE ASX-1000 switches.  It is also assumed that the ATM virtual connections are 

based on the Unspecified Bit Rate (UBR) traffic contract. 

1.4 Document Overview 

 Section 2.0 of this document provides an introduction to the components of the 

COTS message passing system.  An example of how messages are passed between 

remote applications is then described.  In addition, real-time concepts are identified along 

with a discussion of related published research. 

 Section 3.0 provides a description and analysis of the latency measurements which 

were taken.  Measurements were taken and compared from application-to-application 

from both  CORBA and TCP/IP perspectives.  In addition, measurements characterizing 

latencies for the ATM network were obtain.  This section also provides measurements to 

demonstrate how latencies could be improved by assigning high priority to process. 

 Section 4.0 introduces the concept of the Latency Server and provides high level 

design information.   In addition, the setup in which the Latency Server was tested is 

discussed. 

 Section 5.0 addresses the applicability of this thesis research to other work (i.e. 

NSSN C3I System development and URI research).  Section 6.0 provides 

recommendations to the ATM, CORBA and TCP/IP standards on how these components 

could be improved to support real-time time constrains.  Section 7.0 states the 
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conclusions for this work.  Lastly, Section 8.0 provides recommendations on how this 

thesis can be extended. 
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2.0  Background Discussion 

2.1 Message Communications Paradigm 

  Inter-workstation communications is accomplished by message passing.  

The two fundamental components of the COTS message passing system are the ATM 

network and the workstations from which messages are to be passed.  The significant 

components of the workstation are the operating system, the protocol stack, and the 

application program’s environment.  The ATM network major components are the ATM 

switches and the workstation’s ATM interface Network Interface Card (NIC). 

 Section 2.1.1 presents a brief introduction to the operating system, the TCP/IP 

protocol stack, the CORBA environment, and ATM.  Section 2.1.2 illustrates the 

interaction of these components during a message passing scenario. 

2.1.1 Component Details 

2.1.1.1 Operating System  

 A POSIX compliant operating system can be viewed as several layers.  The lowest 

layer is the machine’s hardware.  The machine hardware is accessed by the operating 

system (kernel).  The kernel provides basic services to programs by providing the 

mechanism to interact with the hardware.  Programs interact with the kernel via system 

calls.    

 Programs are executable files.  An instance of an executing program is a process.  

Programs which implement required NSSN functionality will be termed application 

programs.  Application programs consist of one or more processes. 

 Figure 2.1.1.1-1  is a block diagram of the kernel derived from [15].  Application 

programs are invoked in what is termed as the User Mode.  Application programs call a 

system call library which causes an interrupt resulting the system to transition from User 

mode to Kernel Mode.   

 The kernel itself is composed of:  
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1. system call interface: provides interface to kernel; 

2. file subsystem: provides file management functionality; 

3. hardware control: provides low level communications to peripherals; 

4. device drivers: provides means to control peripheral devices; 

5. buffer cache: provides caching to/from peripheral devices; 

6. networking module: provides network communication functionality; 

7. process control subsystem: manages process scheduling; 

 

UNIX Operating System Block Diagram 

file subsytem
inter-process
communication

scheduler

memory
management

process
control
subsystem

buffer cache

system call interface

network
module
(TCP/IP)

hardware

hardware control Kernel  Level

Hardware  Level

device drivers

blockcharacter

libraries

application program application program application program...........

User Level

Kernel  Level

 

Figure 2.1.1.1-1 

 

 The file subsystem functions include file management, controls file access, 

retrieves data and allocates space.  The hardware control handles interrupts and provides 

a means for peripheral devices to communicate with the underlying machine.   The device 



 13  

drivers provide the means to control peripheral devices such as disks and network 

interfaces.  There are two methods in which the device drivers interact with the file 

subsystem, character device and block device.  The character device accepts a raw stream 

of data to/from the driver.  The block device offers caching utilizing the buffer cache.  

The buffer cache allows peripheral data to be cached.  This allows performance benefits 

in that the CPU does not have to wait for a slower peripheral device (i.e. secondary 

memory) to provide/accept the data to/from the file system.  The network stack provides 

the functionality to support network communications. 

 The process control subsystem is composed of the inter-process communication 

module, the scheduler module and the memory management module.  The inter-process 

communication module provides a means to pass data between processes.  The memory 

management module manages main memory.  If main memory is not large enough, the 

memory manager either performs a paging or a swapping function.  The scheduler, 

schedules processes to run.  For HP-UX, processes run for 10 ms before they are swapped 

out.  The highest priority process always run first.  The priority of User Mode processes is 

dependent on the time duration since it was last scheduled. 

 

 

2.1.1.2  CORBA 

 The Common Object Request Broker (CORBA) is a specification [17] for a 

distributed architecture specified by the Object Management Group.  CORBA specifies 

an architecture in which applications on remote hosts can communicate with each other 

without any knowledge of the underlying network.  The applications can be on 

heterogeneous machines utilizing different programming languages.   

 A Client/Server model is used for information exchange between applications.  

Interfaces between Clients and Servers are specified by an Interface Definition Language 

(IDL).  IDL provides  a declarative language in which object interfaces or software 

“wrappers” are created to facilitate data exchange between applications.  It is the 

responsibility of the server programmer to implement the object methods. Data can be 

interchanged simply by the client invoking the object methods. 
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 A system designed utilizing CORBA may be viewed as a software bus in which 

applications are attached (see Figure 2.1.1.2-1).  The CORBA framework provides a level 

of abstraction in which the underlying network details are transparent to the applications.  

Data is sent between remote applications by simply invocating the IDL methods.    The 

actual physical architecture for Figure 2.1.1.2-1 may physically be implemented as what 

is shown in Figure 2.1.1.2-2. 

 

CORBA Software Bus 

S O F T W A R E  B U S

A P P L IC A T IO N  1 A P P L IC A T IO N  2

A P P L IC A T IO N   3 A P P L IC A T IO N   4

 

Figure 2.1.1.2-1 
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 Figure 2.1.1.2-2 

 

 To support the required CORBA functionality, each workstation has an Object 

Request Broker (ORB).  The ORB functionality is implement utilizing a client stub and a 

server skeleton.  The client stub and server skeleton are created when the IDL defined 

interface is compiled by a CORBA based IDL compiler.  The  resulting stub implements 

the code to interface with any server object which is described by the IDL interface.  

Likewise, the skeleton implements the code necessary to facilitate the binding and 

servicing of clients.  To create the client, the CORBA client stub object file is linked with 

the application client object file and runtime libraries.  To establish the server,  the 

CORBA skeleton object file is linked with the application  server object file and runtime 

libraries.  In addition, the CORBA implementation may have daemon processes 

executing on the workstation.  A daemon is a background process which runs when a 

specific event occurs. 

 Orbix from IONA Technology was the implementation of CORBA used for this 

thesis.  Orbix utilizes a daemon, identified as orbixd, for a client to bind to a server 

object.  The bind results in the orbixd dameon locating the server object and establishing 

a proxy server object within the clients workstation’s address space.  Once the bind has 

completed,  the orbixd dameon sleeps until the occurrence of  another object binding. 

 

 



 16  

2.1.1.3 TCP/IP 

 The relationship between the protocol stack, CORBA and ATM are shown in 

Figure 2.1.1.3-1.  CORBA interfaces with the protocol stack utilizing a sockets interface.    

The protocol stack for the majority of COTS systems utilized for C3I  systems are based 

on the Internet protocols, Transmission Control Protocol/ Internet Protocol (TCP/IP) and 

User Datagram Protocol/ Internet Protocol (UDP/IP).  TCP/IP is the protocol which is 

utilized for this thesis.   

 

Protocol Stack Used 

APPLICATION

CORBA

TCP

IP

ATM

 

Figure 2.1.1.3-1 

 

 TCP provides reliable message services.  Initially, TCP sets up a connection 

between the local and remote hosts.  This connection ensures that a route is provided in 

the underlying layers.  TCP ensures that data is received by the remote application by 

requiring the receiver to acknowledge packet reception.  Additionally,  TCP ensures that 

messages arrive in order, are not duplicated, and it provides flow control mechanisms to 

ensure that the remote workstation is not being sent data faster than it can process it. 

 The IP layer encapsulates the TCP segments.  IP datagram routing is 

connectionless and is classified as a “best effort service”.  The IP layer provides a logical 

address for the systems on the network.  This allows the underlying layer details to be 

transparent from the application layers (i.e. network type, Message Transfer Unit (MTU) 

size).  If necessary, when transmitting messages, the IP layer fragments data from  TCP 
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into the appropriate MTU size of the underlying network.  When receiving messages, if 

necessary, the IP layer reassembles message frames for the TCP layer. 

 The TCP/IP protocol is implemented in the kernel of most POSIX compliant 

operating systems of interest in this thesis.  The operating system queues both incoming 

messages and outgoing messages.  Thus, a message needs to wait its turn before it is 

transmitted on the network.  There is no concept of message priority in TCP/IP.  

 

2.1.1.4 ATM  

 Asynchronous Transfer Mode (ATM) is an international standard for high-speed 

networking technology.  ATM provides a communication path between End Stations.  

End Stations can be computers, video devices or audio devices. ATM functionality  is 

equivalent to the Physical, Data Link  and a portion of the Network layer of the OSI 

model.  A description of the OSI model can be found in [23]. 

 An ATM data communication network is composed of workstations with ATM 

Network Interface Cards (NIC) and ATM switches.  ATM switches contain multiple ports 

(i.e. 16).  The workstations are connected directly to the ports by a physical interface 

(fiber or copper) to a switch port.  In addition to workstations, switch ports can be 

connected to other switch ports.  A path between any two end-stations is termed a virtual 

circuit.  Virtual circuits are composed of virtual paths.  Each virtual path is further 

composed of numerous virtual channels.  Information which traverses the ATM network 

is decomposed into 53 byte ATM cells.  The cells consist of a 5 byte header and a 48 byte 

payload.  Two fields of the header identify the Virtual Path and the Virtual Channel 

which the cell  is to traverse.  These fields are the Virtual Path Identifier (VPI) and the 

Virtual Circuit Identifier (VCI).  Each switch port has a data structure associated with it 

which  maps the incoming cells VPI/VCI pairing to the appropriate output switch port.  

The output switch port also has a data structure associated with it which maps the current 

VPI/VCI pairing with a potentially new VPI/VCI pairing. 

 In order to support the various types of information that can traverse the ATM 

network, ATM provides Quality of Service (QoS) parameters. For example, video 

information requires the network to provide a low latency, constant bandwidth, while 



 18  

computer data is bursty and generally does not require low latency constant bit rate data.    

The QoS  parameters are used by the user to specify their requirements to the network.  If 

the network can support the user requirements, a traffic contract with the network is 

established. 

 For typical ATM communications the ATM reference model consists of  3 layers, 

the ATM Adaptation layer (AAL), the ATM layer, and the Physical layer.  The AAL layer 

has the primary functions of interfacing with upper layers (i.e. the application or TCP/IP) 

and cell disassembly/reassembly.  There are 5 possible AALs to select from, depending 

on the type of information to be supported by the network.  The AAL mapping is as 

follows: 

 

AAL 0  “Best Effort” (QoS Parameters unspecified) 

AAL 1  Circuit Emulation, CBR 

AAL 2  VBR (Video/Audio) 

AAL 3  Connection-Oriented Data 

AAL 4  Connectionless Data 

AAL 5  Tailored for data communications 

  

 The ATM layer provides functions such as traffic control and congestion control.  

Traffic control ensures that all cell flow is provided through the ATM network such that 

the traffic contract is achieved.  Congestion control provides mechanisms to avoid, detect 

and recover from congestion.  Congestion is the condition when the network load exceeds 

the network design limits such that the traffic contract cannot be guaranteed.  An 

algorithm utilized at this layer for traffic control is the Leaky Bucket Algorithm.  This 

algorithm is analogous to a bucket (ATM cell queue) which has a hole in the bottom in 

which the bucket contents leak (cell departure rate).  Fluid is also poured into the top of 

the bucket (cell arrival rate).  

 The physical layer can be implemented on numerous standardized physical 

mediums.  A common medium is OC-3 Synchronous Optical Network (SONET).  

SONET’s basic unit is a 9x90 array of bytes called a frame.  ATM cells are packaged on 
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to these frames on the physical medium.  These frames are continuous, and if there is no 

data to be sent, empty ATM cells are placed in the SONET frames.  The physical layer is 

synchronous.  

  OC refers to the speed of the SONET frames.  The basic 51.840 Mb/s channel is 

OC-1.  OC-n is used to indicate that n SONET channels are being utilized.  Therefore 

OC-3 indicates that the underlying physical medium has a rate of 155.2 Mb/s. 

 

2.1.2  Message Communication Example 

 Figure 2.1.2-1 provides an illustration of the subsystem components.  Initially, 

when ready to send data, the sending application awaits to be scheduled by the scheduler.  

Once this occurs, the application’s CORBA clients binds to the server object.  This 

binding results in the execution of the orbixd deamon, which in turn establishes a 

connection between the CORBA client and remote server.  The ORB then establishes a 

proxy object in the client’s address space.  Once the bind is complete, the orbixd deamon 

enters a sleep mode.  Once the kernel reschedules the client process, the client invokes a 

server method to pass data.  For the purpose of this example, it is assumed that the 

method invocation passes a 1KByte array as an ‘in’ parameter and returns a 1 KByte 

array. The functionality to support the method invocations is implemented in the client 

stub and server skeleton. 

 

 

 

 

 

 

Message Flow 
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Figure 2.1.2-1 

 

 The ORB performs the required marshaling and utilizes a socket call to pass the 

data to the TCP/IP protocol stack via the socket buffer.  The data in the socket buffer is 

then handled by  the TCP protocol.  The data is packaged into TCP segments.  The TCP 

protocol establishes a connection to its peer TCP layer at the receiving workstation.  The 

TCP segment is then further packaged into an IP datagram.  The IP datagram is then 

transferred from kernel memory to NIC memory.  At this point the IP datagram is at the 

ATM ALL layer.  At this layer, the IP datagram is packaged into 53 byte cells as dictated 

by the ALL being utilized.  The cells are then handled by the ATM layer.  This layer 

provides the required traffic control and congestion control functions.   The destination IP 

address is associated with the ATM destination address  by establishing the appropriate 

VPI/VCI pairing.   The cells are then packaged into the SONET frames by the ATM 

physical layer.  The cells are then sent to the ATM switch, where depending on their cell 

header information, are switched through the ATM switching network to the receiving 
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workstation.  The reverse process is then accomplished at the receiving workstation.  The 

53 byte cells are combined into IP datagrams which are copied from NIC memory to 

kernel memory.   The IP datagrams are then decomposed into the TCP segments.  TCP 

performs error checking functions and if required will request any missing or corrupted 

segments be resent.  The TCP data is then redirect to the proper ports for applications to 

utilize.  When the CORBA server application is scheduled on the receiving workstation’s 

CPU, the application can copy the socket data (i.e. the method’s ‘in’ parameter) to its user 

space.   The method executes and the CORBA run-time system fills the socket buffer 

with the return data from the method invocation.  This return data is sent to the original 

host utilizing the same mechanisms that were just described. 

2.2 Real-Time Considerations 

2.2.1 Real-Time Overview 

 Real-time systems are those systems which are constrained by time requirements. 

A common time constraint is the concept of a deadline.  A deadline is the time in which a 

task is to be completed.  As previoulsy stated, if the system is termed hard real-time, 

tasks always have to complete before deadlines.  If the task does not complete before the 

deadline, a catastrophic event occurs.  For soft real-time systems, if the deadline is 

missed, no catastrophic event occurs, although the resulting computation may have a 

degraded value. 

 For a system to be hard real-time, its run-time behavior needs to be predictable.  If 

the system’s behavior is not predictable, it is not possible to guarantee that the system 

will be able to meet its deadlines.  Therefore, a nonpredictable system can not be 

considered hard real-time.  However, the system may be classified as soft real-time. 

 A key concept in real-time theory is schedulability.  Scheduling for real-time 

systems is discussed in  [4] and [6].   To meet deadlines, fast operation is not enough.  

For a task to complete, it needs to be scheduled on system resources.  If the resources are 

not available in a timely fashion then timing constraints may be violated.  Initial research 

on real-time systems concentrated on the scheduling of tasks on the workstations CPUs.  

Similar concepts can be applied to scheduling messages on system protocol stacks. 
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Scheduling research has resulted into two general types of scheduling: static scheduling 

and dynamic scheduling.   

 In static scheduling, there is enough information about the system behavior to 

perform scheduling a priori.  To utilize static scheduling, the system operational states 

need to be characterized a priori, which may be labor intensive.  In addition, static 

scheduling is inflexible, since run-time behavior can not be allowed to result in any states 

other then the predefined operational states.  Dynamic scheduling occurs during program 

execution.  Typically, dynamic scheduling is implemented by utilizing a priority-based 

scheme for the scheduable tasks.  In general, because of the disadvantages of static 

scheduling, dynamic scheduling is preferable. 

 Scheduling can be further characterized as either pre-emptive or nonpre-emptive.  

Pre-emptive scheduling, immediately replace the current task that is utilizing the 

resource, with the higher priority task.  Nonpre-emptive scheduling, the high priority task 

waits until either the lower priority task completes or it times out. 

 

 

2.2.2  Real-Time Considerations of COTS Based Messaging 

 

 In evaluating a COTS based messaging system’s ability to be real-time, the 

system’s message latency characteristics need to be profiled and the system requirements 

need to be defined.  The latency characteristics required to perform this evaluation are the 

maximum message latencies, and the message latency distributions.  If the system latency 

requirement is less then the maximum message latency, then the COTS based message 

system can not be classified as hard real-time, because deadlines can not be guaranteed.  

Graphically this is depicted in Figure 2.2.2.1.  This figure represents a latency timeline, 

where the left most point on the line represents 0 latency, and the right most point 

represents maximum latency.  The dashed line represents the system requirement.  In the 

figure the system’s maximum latency is greater then the system requirement, therefore the 

system depicted in the figure can not be considered hard real-time.  However, the system 

may be considered soft-real-time if  the deadline is exceeded within tolerable limits.  
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These limits would need to be specified.  In addition, the latency distribution of the 

COTS system would need to be characterize inorder to evaluate if the system meets the 

specified soft-real-time requirements. 
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max
latency

SYSTEM
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Figure 2.2.2-1 

 

 In Figure 2.2.2-2 the system requirement is always greater then the maximum 

message latency.  Therefore, the COTS system depicted in this figure can be used for a 

hard real-time system. 
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Figure 2.2.2-2 

 

 

 Message latency has numerous sources in workstation-to-workstation 

communication networks (see Figure 2.2.2-3).  The two primary components of  latency 

are introduced by the workstations and the underlying ATM network. At the workstation, 

the sources of latency are the operating system, overhead of  the CORBA implementation, 

and the processing done on the NIC.   Operating system latencies are the result of  process 

scheduling, TCP/IP protocol stack algorithms and queuing, data copies from/to the 

application to/from the physical network and memory management operations.  The NICs 
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typically contain a specialized processor, and for the purpose of this study, the latency 

component of the NICs are assumed to be negligible. At the network level these latency 

sources are switch latency, switch buffering schemes and the latency of the physical 

medium (i.e. fiber).   Since the distance between workstations is small, the latency of the 

physical medium will also be assumed to be negligible. 
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Figure 2.2.2-3 

 

 For a message to be sent, the sending process needs to be scheduled.  The type of 

process scheduling algorithm can significantly affect message latencies.  In round robin 

scheduling, the process sending the message will only be scheduled during the processes 

time slice, which is not desirable for real-time.  Message deadlines could be missed solely 

on the basis of not being scheduled in a timely fashion.  Assuming messages have equal 

importance, a priority based scheduling scheme, where highest priority is given to the 

event with the tightest time constraint,  is required for real-time operation.   However, 

priority based scheduling is affected by  the number of  competing processes of equal or 

higher priority.  If the competition is high, there could be a certain degree of 

unpredictability when the sending application would be scheduled on the processor. 

  For data copies, latencies would be the time incurred from coping data between 

the NIC and the kernel, and the time incurred from coping data between the kernal and 

application user space. Latency effects due to data copies are influenced by hardware and 

operating system implementations.  It is probable that latencies due to data copies may be 
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relatively predictable since they are low level operations requiring relatively simple 

algorithms. 

 The TCP/IP protocol stack may effect latencies due to its reliablity mechanisms 

and/or by TCP/IP queuing.  TCP/IP reliability mechanisms may effect latencies by  the 

regulation of flow of data and/or by requesting data to be resent.  TCP/IP queuing may 

have the most significant effects on latencies since this is a serial resource. Since TCP/IP 

is effectively first in first out (FIFO), a high priority message has to wait until all previous 

messages are drained from the queue.  This can create a situation where low priority 

messages are processed before high priority messages.  In addition, if the queue is large, 

the wait could be relatively long (i.e. latency due to queuing).    In addition,  certain 

combinations of system parameters (i.e. socket buffer sizes,  message sizes, MTU sizes, 

ATM port buffer sizes) and their interaction with TCP/IP algorithms may also effect 

latencies.  Due to the above, TCP/IP effects on latencies is potentially highly 

unpredictable. 

 Performing reads/writes is also a significant cause of latencies due to slow disk 

access times.  Memory management’s effect on message latencies may occur when a new 

process is started, resulting in page swapping in which latency is incurred since the 

slower secondary memory is accessed.  Memory management can also incur latency  

when a process writes to a file which can again  result in delays caused by accessing the 

slower secondary storage.  In addition, garbage collection may be an unexpected source of 

latency.  It is also possible that memory leaks could contribute to latencies, since these 

leaks effectively reduce the size of main memory thus requiring additional memory 

management operations.  Latencies due to memory management may  be fairly 

unpredictable. 

 Although, all the above factors affect latencies and introduce degrees of 

unpredictability, it is still possible to craft the COTS message communication system to 

support  real-time requirements.  This can be done, by constraining all the significant 

factors which can effect latencies.  For example, network loads, the number of processes, 

process priority, socket buffer sizes, message traffic profiles, file writes, new process 
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startups are all potentially constrainable.  If the system is well understood and all the 

required factors are constrained, then the system can be crafted to support hard real-time 

requirements.  If all the factors are not constrainable, then the crafted system may only be 

able support soft real-time requirements. 

 

2.3 Related Research Efforts 

 There are several areas that are documented in the literature which relate to the 

study performed by this thesis.  These areas either provide additional insight on the work 

accomplished by the thesis or provide interesting concepts, such as, QoS, on how this 

thesis can be extended.  There are four research areas of particular interest:  message 

passing in real-time distributed networks, the effects of the  TCP/IP protocol stack on 

real-time performance, the utilization of system Quality of Service (QoS) parameters to 

guarantee resources and the real-time aspects of  CORBA.  In addition, it is of interest to 

note the real-time research for the traditional COTS  networking technologies  (FDDI, 

ethernet, etc.).  

 

Distributed Real-Time Networks.  Research directly related to real-time messaging in 

distributed systems is of particular interest.  The ARTS distributed system described in 

[9] supports the concept of message priority.   ARTS utilizes the Real-Time Protocol  

(RTP) protocol.  RTP supports message prioritization and utilizes a Time Fence 

Mechanism to flag any message time violations.  In addition, ARTS is careful to ensure 

that priority inversions do not occur during message communication. 

 

TCP/IP Research.  There is a body of literature that discusses issues with TCP/IP over 

ATM. A study describe in [5] shows that TCP/IP performance can be significantly 

improved if ATM switch buffers are increased in size for the UBR traffic contract.  A 

study identifying a configuration for a deadlock condition with TCP/IP over ATM is 

identified in [2]. 
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System QoS Research.  Unlike traditional network technologies (Ethernet, Token Ring, 

FDDI), ATM supports QoS parameters for its virtual connections.  With ATM QoS 

parameters, various types of information can be simultaneously supported (video, audio, 

data) by the network.  Systems utilizing a system-level QoS concept, have a form of 

admission control in which it is first determine if there are enough system resources 

available to support a connection for the specified QoS parameters.  If there are resources 

available to make the connection for the given QoS, then the connection is granted.   This 

is seen in GRAMS [8], which is an ATM based distributive system which utilizes a 

distributed multimedia server.  The QoS Broker described in [14] also utilizes similar 

concept for the OS and ATM resources.  The Chorus System identified in [3] also utilizes 

QoS to establish a connection between communicating workstations.  In this system, QoS 

is system based, and is used to control CPU scheduling, workstation memory 

management, in addition to ATM resource allocation.  The required QoS is specified via 

an API.  Other work, such as, [7] has specified a  set of QoS parameters.  These 

parameters are implemented at the transport layer. 

 

Research on Real-Time CORBA.  A framework identifying the syntax, semantics and 

support required to support real-time distributed computing utilizing a CORBA based 

system is identified in [1].  In this framework, timing constraints are made available to 

applications by the utilization of CORBA context declarations.  This work is further 

expanded in [18] by providing additional implementational details.  Research on 

CORBA-level performance “bottlenecks” are identified in [19].  These results are similar 

to the results derived by this thesis, and will be further addressed in Section 3. 

 

Real-Time Research on Traditional Networking Technologies.  It is worthy to note 

some of the previous work concerning the real-time aspects of traditional network 

technologies.   Unlike ATM, traditional network technologies are limited in that they 

shared the same physical medium.  This physical medium is a shared resource in which is 
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either arbitrated by a token or by sensing a “busy signal”.  The real-time limitations of 

Token Ring and Ethernet are simulated in [10].   Research has been accomplish in how to 

make an Ethernet based system capable of being real-time.  A Window Protocol using 

real-time constraints for Ethernet is identified in  [11].  Another approach [12] is to use a 

token passing scheme implemented at the application level.  For time token medium 

access protocol, such as FDDI, a scheme is identified in [13] which message deadlines 

may be guaranteed. 
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3.0 Measurements 

3.1  Measurement Background 

 The primary objectives of the measurements are to obtain the latency 

characteristics of the workstation and the underlying ATM network.  These measurements 

are to be used to establish a profile of the latency characteristics of the data message 

communication components.  These characteristics will be utilized in the implementation 

of the latency estimation server, which is described in Section 4. 

 In order to characterize the latencies of the various system components, the 

measurements were taken at various layers in the COTS network message communication 

paradigm: the CORBA-level layer, the underlying TCP/IP layer and the ATM network.   

 The CORBA-level measurements are ultimately the most meaningful 

measurements with respect to this work because they reflect what the applications 

actually experience.  I took the CORBA-level measurements by utilizing a round-trip 

lanency measurement scheme between a CORBA-level based client and server.  The 

TCP/IP socket measurements also utilized a round-trip latency measurement scheme.   By 

taking the difference between the CORBA-level measurements and the socket 

measurements, I identified the CORBA-level latency characteristics.  To further identify 

the latency components, I took ATM network measurements.  By taking the difference 

between the socket-level measurements and the ATM network measurements, I 

charactierized the latencies for both the workstation component and the latencies of the 

network.  The network measurements were taken by utilizing the ADTECH network 

analyzer [20].  This analyzer is able to generate/receive full bandwidth ATM cell traffic 

streams.  Since the analyzer both generates and receives the data stream, (i.e. the 

generator and receiver are synchronized) the analyzer it is able to provide statistics such 

as inter-cell arrival time and cell delay transfer time. 
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3.2  CORBA Application-to-Application Latency Measurements 

3.2.1 Measurement Configurations 

 The configuration setup for which the measurements were taken are shown in 

Figure 3.2.1-1.  This configuration consists of two workstations, each containing a 

CORBA-based envriornment over a TCP/IP protocol stack, each of which is over ATM 

drivers.  The workstations are interconnected by an ATM network.  The ATM network 

consists of two switches, connected by one OC-3 port.  The workstations in this test 

configuration are connected to different ATM switches.   

 The workstations in this configuration (depending on the test cases) were either 

TAC-3 or TAC-4 workstations.  The TAC-3 workstation consists of a HP 755 processor 

running with a HP-UX 9.01 operating system.  The TAC-3 used Iona Technologies Orbix 

2.0.1 for the CORBA implementation.  The TAC-4 workstation consists of a HP 770 

processor running with a HP-UX 10.0 operating system. The TAC-4 used Iona 

Technologies Orbix 2.0 for the CORBA implementation.   The ATM NICs and drivers 

for both the TAC-3 and TAC-4 workstation configuration are also HP products. FORE 

Systems ASX-1000 ATM switches were used for the underlying network. 

 Figure 3.2.1-1 depicts the measurement points of interest (#1,#2 and #3 in the 

figure).   The Iona CORBA-level client/server measurements taken are represented by 

measurement point #1.  The units of measurement for measurement point #1 are 

milliseconds.  Measurement point #2 in the figure depicts the operating system CPU 

utilization.   The units of measurement for measurement point #2 are the percentage of 

utilized time slices.  Measurement point #3 represents the loading of the intermediate port 

between the ATM switched.   The units of measurement for measurement point #3 in a 

non-load state are in microseconds.  The ATM switch for both CORBA-level and 

TCP/IP-level application-to-application measurements is in a non-load state. 
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Figure 3.2.1-1 

 

 

 Specific latency measurements were taken under for the following hardware 

configurations: 

• TAC-4 to TAC-4 

• TAC-3 to TAC-3 

 For the above hardware configurations, measurements were taken for 

workstations CPU utilization’s for the following ranges: 

• 33% CPU utilization  

• 66% CPU utilization 

• 100% CPU utilization 
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 CPU utilization was recorded by HP-UX’s sar and top utilities.  These utilities 

provide average CPU utilization’s over selected time  intervals.  The utilization numbers 

are the percentage of idle schedulable time slices. 

 Latency measurements for the  various workstation sender CPU utilization and 

receiver CPU utilizations were recorded for each sender/receiver combination.  Latency 

measurements were taken for 64 byte, 128 byte, 256 byte, 512 byte, 1 kbyte, 2 kbyte, 4 

kbyte and 8 kbyte message sizes.   These sizes represent the likely range of NSSN C3I 

System messages. 

 The measurement tables for each message size contain nine possible CPU loading 

combinations.  Since there are several combinations that have the same loading 

configuration except for the server/client being reversed, only six unique sets of 

measurements are really needed for any given message size.   Table 3.2.1-2  illustrates the 

loading configurations that I used to obtain the measurements.  The load programs were 

socket-based programs that transmitted a constant stream of  1 Kbyte messages utilizing 

TCP/IP between the workstations.  The rate in which the 1 Kbyte messages were sent was 

controllable, as were the socket-buffer sizes.  For the case in which each workstation was 

utilized between 0-33% CPU, the load test drivers were not required since this was the no 

load state.  The  load test drivers used to obtain the various CPU load states for each 

message size is shown in Table 3.2.1-1. It should be noted that the round-trip 

measurement driver and the loading drivers were at the same user priorities.  Maximum 

socket-buffer sizes were utilized by the load drivers in attempt to maximize the effect of 

TCP/IP queuing on message latencies.  I speculate that using maximum socket-buffer 

sizes would result in larger TCP/IP queue sizes.   Therefore, there is likelihood of 

increased message delay, since messages would be required to wait longer for the larger 

TCP/IP queues to “drain”. 

 

 

 

Port Loading Table 



 33  

WORKSTATION A WORKSTATION B LOAD DRIVER CONFIGURATION 
(load drivers utilized) 

0-33% 0-33% N/A 

0-33% 34-66% load drivers  3 

0-33% 67-100% load drivers  3 

34-66% 34-66% load drivers 1 & 2 

34-66% 67-100% load drivers 1 & 2 & 3 

67-100% 67-100% load drivers 1 & 2 

Table 3.2.1-1 

 

 Latency effects due to memory management were kept to a minimum since the 

same applications were constantly executed (i.e. page swapping was at a minimum) and 

since no file writes were accomplished by the test applications during the measurements.   

 Measurement results for average and maximum latencies are provided in 

Appendix A.  Measurements were taken to a 1 microsecond resolution.  For each 

measurement configuration, each individual latency measurement was grouped into one 

of 100,  1 millisecond “bins”.  This grouping provided a latency distribution for the 

measurement configuration since it showed the measurement range charactersistics of the 

latency measurement samples.  For selected key  configurations, this latency distrubution 

data is presented as a bar graph in later sections of this thesis.   The  bar graphs show the 

number of  measurements in each “bin” from 0 to 100 millisecond.   The latency 

distribution data is also utilized by the Latency Server which will be described in Section 

4. 

 For each CPU  measurement combination, 10K samples were taken for each 

message size. For the TAC-4 configurations when both workstations had a CPU 

utilization between 0-33% loaded (lightly loaded), an additional 100K samples were 

taken for each message size. More samples were taken for the lightly loaded conditions 

since these measurements were used as a baseline case to compare average message 

latency, maximum message latency, and latency distributions of the CORBA-level and of 

the TCP/IP-level.  In addition, for the TAC-4 configuration, to further facilitate the 
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comparisons, 100K samples were taken for the 256 byte message size when both 

workstations had a CPU utilization between 67% - 100% loaded (heavily loaded).  In 

general, there was no significant differences in results between taking 10K vs 100K 

samples.  This can be seen for the average latency times (1.365 ms for the 10k sample 

case vs 1.385 ms for the 100k sample case for the light-load configuration for the 256 

Byte message) and very similar  latency  measurement distributions (i.e. for both the 10K 

and 100K cases, 99.5%  of the measurements were accomplished within 3 ms for the 

heavily loaded condition). 

 The test driver utilized to take the latency measurements was a CORBA-level 

client passing to a server method an array passed as an “in” parameter.  The Server 

method returned to the client the array.   This required no additional application overhead, 

all latencies incurred were due to the data passing mechanisms. 
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3.2.2 Measurement Analysis 

 

ANALYSIS OF LATENCY AVERAGE (TAC-3 & TAC-4) 

 For the average latency numbers (see Appendix A), the following high level 

observations were made: 

 1)  Message latencies increase with CPU utilization; 

 2)  Message latencies increase with message sizes. 

 As the load drivers throughput was increased, the workstation CPU utilization 

increased.  This resulted in an increased Orbix client/server round-trip latency.   Increased 

latencies due to CPU utilization can either be explained by the fact that it is harder to 

schedule processes on the CPU due to the increased competition of additional processes 

needing to be scheduled or by additional queuing on the TCP/IP protocol stack, or a 

combination of the two. Latency was increased to a greatest extent when both the client 

and server workstations were fully loaded. 

 In Section 3.5 it is demonstrated that for the configuration tested, that TCP/IP 

queuing has a significant effect on latency distribution in a loaded state.  However, it was 

was beyond the scope of this thesis to distinguish between the latencies due to TCP/IP 

queuing and the latencies due to CPU scheduling. 

 Latencies increased with message size since larger messages require additional 

processing.  On the workstation this required increased buffering and longer memory 

copies.  From the network perspective, the increased message size resulted in an increase 

time in which ATM cell streams were traversing the ATM switches. 

  

ANALYSIS OF LATENCY DISTRIBUTION 

  

TAC-4 to TAC-4 
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 For message up to 4 Kbytes, the maximum latency  was 75 milliseconds.  In this 

case, the maximum latency appears to be unaffected by message size.  Maximum 

latencies were, in general, least when both CPU utilizations were in the low load 

condition (33% or less).  For all other CPU states, maximum latencies generally appeared 

to be higher than the low-load condition, and unaffected by other CPU utilization 

combinations or message sizes.  The reason that  maximum latencies were lower  in the 

low load condition was that the round-trip latency driver process was continuously 

scheduled on the CPU resource because there were no competing user-level application 

processes. 

 Maximum latencies for 8KByte messages were consistently as high as 200 ms.  

These maximum latencies always occurred when the latency measurement driver is first 

invoked.   In addition, this maximum latency always occurred within the first two 

samples of the measurement set. Other than these first two samples, the latency 

distribution is similar to that of the latency distribution of the smaller size messages.  

Since this anomaly did not occur in the TAC-3 configuration, I assume that there is a 

quirk with Orbix 2.0 or HP-UX-10.0. 

 A representative distribution when both CPUs are between 0-33% (i.e. low load 

condition) utilized for the 256 Byte message is shown in Figure 3.2.2-1. A representative 

distribution when both CPUs are between 67-100% (i.e. heavy load condition) utilized for 

the 256 Byte message is shown in Figure 3.2.2-2.  For the low load condition, over 99% 

of the measurements are taken between 1-2 ms.  For the heavy load condition, there is a 

spread to the measurements.  As previously discussed, the suspected cause of this latency 

distribution spread for the heavily loaded condition is either due to scheduling of 

competing processes and/or TCP/IP queuing.  This will be further discussed in Section 

3.5. 
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TAC-3 to TAC-3 

 With the exception of 8 Kbyte messages, maximum latencies for the TAC-3 

configurations were generally greater and more frequent (80 ms  and greater maximum 

latency measurements were frequent)  than the maximum latencies for the TAC-4 

configurations.   For the number of samples taken, message size did not appear to effect 

maximum latency.   However, the value of maximum latency tended to increase with 

CPU utilization.  This increase in maximum latencies could possibly be the result of the 

increased competition of other processes competing with the latency measurement driver 

process for the CPU resource.  The higher the CPU utilization results in  more 

competition amongst user processes, thus there is a higher probability that the 

measurement driver process would be delayed in obtaining the CPU resource which 

results in an increase likelihood of higher maximum message latencies.  
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  It is interesting to note that, other than the low-load CPU combination, the TAC-

4 did not exhibit the same behavior. Possibly, if more measurement samples were taken 

for each loading TAC-4 configuration (i.e. 1 million), a correlation between maximum 

latency and CPU utilization could be established.  The reason for this would be the same 

as for the TAC-3 configuration: the average increased  run-time added by Orbix may 

result in more required clock ticks, which increases the liklihood of the application 

process being pre-empted.  However, it appears that the effect (if there is one) of CPU 

loading on maximum CORBA-level latencies for the TAC-4 configuration is 

signaficantly less than that of the TAC-3 configuration. This may be the result of the 

TAC-3 being a slower machine than the TAC-4.  There is less work accomplished during 

a TAC-3 time slice versus a TAC-4 time slice.  The result of this experiment is that the 

test driver processes need to be scheduled for more time slices for the TAC-3 than the 

TAC-4.  Therefore, maximum message latencies are generally greater for the TAC-3 

versus than the TAC-4.  

 Latency distributions for the TAC-3 configurations were similar to the latency 

distributions of the TAC-4 configurations.  However, it should be noted that the 200 ms 

maximum latency for 8KByte messages was not seen with the TAC-3 configuration. 

 

3.3  Application-to-Application Measurements Utilizing TCP/IP 

3.3.1 TCP/IP Measurement Setup 

 Figure 3.3.1-1 identifies the test configuration utilized to obtain the TCP/IP-level 

measurements.  The only difference between Figure 3.3.1-1 and the Figure identifying the 

CORBA-level measurement configuration (Figure 3.2.1-1),  is that the CORBA-level 

layer is removed.  The TCP/IP-level measurements were taken by test applications at 

point #1 on Figure 3.3.1-1.  The measurement methodology and configurations for the 

TCP/IP-level measurements were the same as the CORBA-level measurements so that 

direct comparison between CORBA-level and TCP/IP-level could be made.  

Measurement results for average, and maximum latencies are provided in Appendix A. 
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TCP/IP MEASUREMENT CONFIGURATION 
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Figure 3.3.1-1 

 

3.3.2  TCP/IP Measurement Analysis 

ANALYSIS OF LATENCY AVERAGE (TAC-3 & TAC-4) 

 As with the CORBA-level latency measurements, the TCP/IP measurements 

resulted in the same high-level observations plus an additional observation: 

 For the average latency numbers (see Appendix A), the following high level 

observations were made: 

 1)  Message latencies increase with CPU utilization; 

 2)  Message latencies increase with message sizes and; 

 3) Suprisingly, TAC-3 TCP/IP-level message latencies were less than the TAC-4 

 TCP/IP-level message latencies. 
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 The explanation for the first two observations are the same as for the CORBA-

level measurements.   Increased latencies due to CPU utilization can either be explained 

by the fact that it is harder to schedule processes on the CPU due to the increased 

competition of additional processes needing to be scheduled or by additional queuing on 

the TCP/IP protocol stack, or a combination of the two. Latency was increased to a 

greatest extent when both the client and server workstations were fully loaded. 

 Latencies increased with message size since larger messages require additional 

processing.  On the workstation this increased message size required increased buffering 

and longer memory copies.  From the network perspective, the increased message size 

resulted in an increase time in which ATM cell streams were traversing the ATM 

switches. 

 When compared to the Orbix client/server measurements, the average latencies of 

the TAC-4 TCP/IP measurements, for the low-load conditions, are less than 1 ms smaller 

then the TAC-4 Orbix measurements.  For loaded conditions, the Orbix measurements 

were generally no more then 1.5 ms greater than the TCP/IP measurements. 

 The TAC-4 is a faster machine than the TAC-3.  The TAC-4 is a120 Mhz 

machine rated at 176 Million of Instructions per Second (MIPS) while the TAC-3 is a 100 

Mhz rated at 124 MIPS.   However, the TAC-3 TCP/IP latencies were consistently less 

then the TAC-4 TCP/IP message latencies.   In addition, from previous testing efforts[21] 

it has been demonstrated that the actual throughput between two TAC-3 machines was 

greater than the throughput between two TAC-4 machines.   The TAC-3 and TAC-4 have 

the same backplane, NIC and comparable memory components.  This indicates that the 

implementation of the operating  system (specifically the TCP/IP protocol stack) plays a 

significant role in performance results.  I conject that it is the implementation of the 

kernel which is resulting in the unexpected performance results. Analyzing the 

differences between the two types of machines can be complex.   It is not an objective of 

this thesis to analyze performance differences between the TAC-3 and TAC-4. 

 

ANALYSIS OF LATENCY DISTRIBUTIONS 

TAC-4 to TAC-4 
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  Maximum message latencies for TCP/IP were comparable to that of CORBA-

level maximum latencies.  The only exception was that there were no 200 ms maximum 

latencies for 8 Kbyte messages, as was observed with Orbix.   A representative 

distribution when both CPUs are utilized  between 0-33% for the 256 Byte message is 

shown in Figure 3.3.2-1. A representative distribution when both CPUs are utilized 

between 67-100% for the 256 Byte message is shown in Figure 3.3.2-2. These 

distributions are very similar to the Orbix client/server latency distributions 

(Figures3.3.2-1 and 3.3.2-2). 
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TAC-3 to TAC-3 

 Although for many cases, TAC-3 to TAC-3 maximum latencies were greater than 

TAC-4 to TAC-4 latencies, the latency distribution was similar to that of a TAC-4 to 

TAC-4 configuration. 

3.4 Analysis of CORBA Vs TCP/IP  

 The measurement results indicate that while CORBA-level increases average 

latency, it does not significantly alter latency distribution.  For lightly loaded scenarios, 

(i.e. each Workstation has a CPU utilization of less than 33%), for the TAC-4 

configuration, CORBA-level  increases the average latencies by less 1 ms.  This is seen in 

Figure 3.4-1.  For the configurations which are in a loaded state, with the exception of 8 

kbyte  messages, CORBA-level increases the average over TCP/IP-level average latencies 

were generally less than 1.5 ms.  This slight increase in average latency in the loaded 
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configurations, is due to the increased probability that the CORBA-level latency 

measurement process has a higher probability of losing the CPU resource due to its 

slightly higher average measurement processing time versus the TCP/IP-level latency 

measurement process.  In the low-load configuration, the measurement process never lost 

the CPU for an extended period of time since there are no significant competing user 

application processes.     

 For average latencies, the TAC-3 configuration results are very similar to the 

TAC-4 results.  The only significant difference is that the difference between the average 

CORBA-level latencies and the average TCP/IP-level latency is greater then the 

difference for the TAC-4.  This is because that TAC-3 TCP/IP-level latencies are less 

then the TAC-4 TCP/IP-level latencies, but the CORBA-level latencies of the TAC-3 and 

TAC-4 are similar.  The reason for this could be that the TAC-3 TCP/IP-level  kernel 

component is more efficiently implemented than the TAC-4 TCP/IP-level kernel 

component. 

 For 8 Kbyte messages, the TAC-3 Orbix increases the average latencies up to 4 to 

5 ms over the TCP/IP average latencies.  Latency increases due to Orbix in the TAC-4 for 

8 Kbyte messages are up to 2.1 ms greater than the TCP/IP-level latency measurements.  

The reason for the increased overhead for the 8 Kbyte message may be related to 

fragmentation.  The Maximum Transfer Unit  (MTU) size of ATM network  used was 

9120 bytes.  The MTU is the maximum packet size that can be transported on the 

underlying network.  It is possible that the 8 Kbyte data being sent by the CORBA-level 

method invocation with the additional CORBA-level  header overheads, may exceed the 

ATM MTU size.  This would result in the method data and associated CORBA-level  

data to be fragmented in two different network  “packets”.  The time delay due to this 

fragmentation may be the observed increased in average latencies for 8 Kbyte messages.  

 For lightly loaded conditions in the TAC 4 configuration, it can be shown (see 

Figure 3.4-2) that the CORBA-level and TCP/IP-level maximum latencies for 100K 

samples are very similar, with the exception of the 512 TCP/IP Byte test case.  For this 

test case, a maximum message latency of 150 ms was observed.  All other measured 

latencies for this test case were under 40 ms.  The high latency measurement was most 
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likely caused by the test driver application being pre-empted by a higher priority process 

during the measurement.  To demonstrate the low probability that this event would 

reoccur, I took another 500K samples resulting in maximum latency of only 40 ms. 

 Note that for the loaded configurations, it would not be unexpected to see a slight 

increase in CORBA-level maximum latencies versus TCP/IP-level maximum latencies as 

CPU utilizations increased.  This is because of  the CORBA-level overhead.  There is a 

higher probability that a CORBA-level process may need to wait for more CPU time-

slices.  Since the CPU time slices are harder to come by when there is loading (i.e. 

competing processes have to share a single CPU), it is likely that a CORBA-level process 

may have a higher maximum latency.  For the TAC-3, when at least one of the 

workstations was heavily loaded, CORBA-level maximum latencies were consistently 

greater than TCP/IP-level maximum latencies.  The other loading configurations would 

need to be rerun with a much larger number of latency measurement samples to see if this 

effect on maximum loading is true at lower loading configurations.  With the TAC-4 

configurations, this relationship between CORBA-level and TCP/IP-level maximum 

latencies was not all apparent.  However, this does not mean it does not exist.  A large 

number of  latency measurement samples would be required to verify or rule out this 

effect for TAC-4 configurations. 

 More significant than similar maximum latencies, is the observation that CORBA-

level and TCP/IP-level  latency distributions are very similar.  The graphs shown in the 

previous sections for both the lightly loaded and the heavily loaded conditions (Figures 

3.2.2-1, 3.2.3-1, 3.2.2-2 and 3.2.3-2), have shown that the CORBA-level and TCP/IP-

level measurements have similar latency distribution characteristics.  For the lightly 

loaded conditions the graphs have the vast majority of the measurements in the first 

couple of bins with very few measurements in any of the other bins.   The most 

significant difference is that CORBA-level measurements are out 1 bin further then the 

TCP/IP-level measurements, demonstrating the higher averages.  For example, for the 

lightly loaded TCP/IP-level condition,  close to 96% of the measurements were taken 

with in 1 ms.  Over 99.5% of the measurements were accomplished within 3 ms.  For the 

corresponding CORBA-level test, 0 measurements were completed before 1 ms, while 
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over 99% were accomplished within 2 ms.   For the heavily loaded conditions, both 

TCP/IP-level and CORBA-level graphs show similar characteristics indicating the 

TCP/IP queuing.  There is no consistently distinguishable differences between the 

CORBA-level and TCP/IP-level measurements for the heavily loaded conditions.  As can 

be seen from the latency distribution graphs (Figures 3.2.2-2 and 3.3.2-2),  the graphs are 

very similar when the percentage of measurements taken versus time in latencies are 

compared.  For example, the TCP/IP-level and CORBA-level full-load latency graphs 

show the characteristics as identified in Table 3.4-1.  This table compares the CORBA-

level and TCP/IP-level measurement distributions.  The table shows a relation between a 

selective percentage of 10K measurements taken, and the time in milliseconds which was 

required to take the measurements.  As can be seen by this table, the latency distributions 

for the CORBA-level and TCP/IP-level are very similiar. The distributions are similar for 

all message sizes for both the TAC-3s and TAC-4s. 

 

 

Percentage of Samples vs Time 

Percentage of Samples 

(number of samples) 

CORBA-level  

Time in milliseconds 

TCP/IP-level  

Time in milliseconds 

90% 7  7 

95% 8 8 

99% 9 10 

99.4% 10 11 

Table 3.4-1 
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3.5 Scheduling Process with rtprio 

 I utilized the HP-UX rtprio command to raise the priorities of the test driver 

processes.  With rtprio, user process priorities can be set from 0 (highest priority) to 127 

(lowest priority).  I re-ran the test cases for the 256 byte message, under a light loading 

condition,  for both CORBA-level and TCP/IP-level measurements.   The test driver 

priorities were set to 0.  The results of these tests are shown in Figure 3.5-1.   The 

resulting maximum latencies ranged between 10.5 -12.5 ms.  My speculation is that these 

results are due to the receiving process occasionally giving up the CPU and having to 

wait for a clock “tick” of 10ms to be rescheduled on the CPU.  The extra latency is 

therefore due to the 10 ms clock “tick” plus the average latency of the message transfer.   

This test demonstrated that rtprio could be used to reduce maximum message latency 

bounds due to higher priority processes. 
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 In another test, I utilized the network load drivers to fully load both CPUs.  The 

network latency test drivers were set to the highest user priority (rtprio 0).   Surprisingly, 

the latency distributions for this configuration were very similar to that of the fully loaded 

distributions for both the CORBA-level and the TCP/IP-level in which the network 

latency driver was at user priority.  This result indicates that the cause for the spreading is 

not primarily related to process scheduling, but due to queuing by the TCP/IP protocol 

stack.  Since the round-trip latency measurement driver process is at highest user priority, 

the process should not of been delayed by more than the sum of  the 10 ms “tick” and the 

average light-load message latency.  It is still possible that this process will be blocked by 

a higher priority system-initiated process, however, this blocking is extremely rare.  This 

leaves the TCP/IP queuing as the most probable cause of the spreading.  There are 

actually two queuing effects that are being observed: the queuing effect from workstation 

A to workstation B, and the return, the queuing effect from workstation B to workstation 
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A.  The case in which the queuing is most prevalent is the case when the load drivers are 

generating messages at the maximum rate (i.e. the fully loaded condition).   For this 

configuration, each 1kbyte message data stream has an approximate throughput rate of 

about 40Mbits/S, which is causing the TCP/IP queues to fill.  Since the socket buffer size 

is at a maximum (255 Kbytes), it is conceivably possible, that for a worse case scenario, 

that a message from the latency driver will be delayed until 255 Kbits of data are sent (i.e. 

the queue need to be drained).  This could potentially occur in both directions, thus 

doubling the latency due to TCP/IP queuing. 

 

 

3.6 ATM Switch Measurements 

  

 The first set of switch measurements in Section 3.6.1 measures ATM switch 

latencies as a function of the number of ports traversed and as a function of port loading.  

Section 3.6.2 provides measurements to characterize the port loading effects on TCP/IP 

traffic stream latencies. 

3.6.1 Characterizing ATM Switch Latencies 

 ATM switch latency tests were performed using the ADTECH analyzer.  These 

tests utilized the ADTECH analyzer to generate and transmitted a periodic stream of test 

cells through multiple ATM switch ports, which were daisy chained together, back to the 

ADTECH’s receiving receptacle.  The ADTECH analyzer was then used to record cell 

transfer delays, lost cells, and cell error rates.  Results were obtained for varying degrees 

of throughput (25%-100%) and the number of ports (2,4, and 9) which the cell stream 

traversed (see Figures 3.6.1-1 - 3.6.1-3). 

 

 

Two Port ATM Switch Test Configuration 
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ADTECH SWITCH

 

Figure 3.6.1-1 

Four Port ATM Switch Test Configuration 

ADTECH SWITCH

 

Figure 3.6.1-2 
 

Nine Port ATM Switch Test Configuration 
A D T E C H S W I T C H

 

Figure 3.6.1-3 
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 Latency, and the variation of latency, were measured by utilizing the ADTECH’s 

capability to measure cell delay variation.  To determine cell delay variation time the 

ADTECH analyzer timestamps each of the transmitted cells.  For each transmitted cell, 

the cell delay variation is calculated by subtracting the time from which the cell was 

received at the port from the time that the cell was transmitted from the port.  Cell delay 

variation times can be determined to within 0.5 nanosecond accuracy. 

 The results of the measurements are shown in Table 3.6.1-1 for both the range of 

the cell delay variation and the mean value of the cell delay.  As shown by the table, cell 

delay variation increases as both the number of ports increase, and as the cell throughput 

increases.  The results indicate that for throughput rates less than 90% of the ATM OC-3 

rates, cell delay variation is most affected by the number of ports that the cell stream 

traverses.  However, there is some spreading of cell delay variation as the cell rate is 

increased.  Above 90% capacity, the effect of cell throughput on cell delay variation is 

increasingly affected by an increase in cell throughput.  This is probably a result of switch 

buffering.  At 100% capacity, latency increases dramatically.  In addition, at 100% 

capacity, cell loss eventually occurred with all the configurations.   During 100% 

capacity, the cell delay variation is continuously increasing.  This is probably the result of 

the buffers in the switches overflowing as the incoming cell rate into the switch is greater 

than the switch’s capability to forward the data.   Eventually, the switch’s buffers 

overflow and cells are lost.  The cell loss is observed at the ADTECH analyzer.  With the 

9 port configuration, cell loss was typically observed within 30 seconds, the 4 port 

configuration cell loss appeared within 14 minutes and in the 2 port configuration cell 

loss occurred within 30 minutes.   

 

 

 

 

 



 53  

Cell Delay Variation 

% BANDWIDTH 2 PORT  4 PORT  9 PORT  
 25% 29-42.5 

 (35.31) 
62 - 77 
(68.4) 

134.5-169  
(147.62) 

 50% 29-42.5  
(35.42) 

62.5 - 81.5 
(69.43) 

136.5-166  
(150.42) 

 75% 29-43.5  
(35.78) 

63 - 92 
(70.97) 

139.5-178.5  
(153.81) 

85% 29.5 - 110 
(36.05) 

63.5 - 158.5 
(71.86) 

140 - 246.5 
(157.40) 

 90% 30 - 156   
(36.21) 

65 - 207.5 
(72.32) 

145 - 290  
(158.52) 

 95% 30 - 209  
(36.56) 

64 - 252 
(73.02) 

140 - 346 
 (159.08) 

 97% 30.5-219.5 
 (36.88) 

65-261 
(73.25) 

143.5 -350  
(160. 72) 

 98% 31.5-235.5  
(37.57) 

68 - 271 
(74.36) 

145-366 
 (163.93) 

100% 
 

increasing over time increasing over time increasing over 
time 

Note:  All times in microseconds.  Top numbers represent the range of delay observed.  Number in parenthesis represents the average 
delay. 

Table 3.6.1-1 

3.6.2 ATM Switch Latency for TCP/IP 

 TCP/IP message latency due to ATM buffering was demonstrated with the lab 

configuration as shown in Figure 3.6.2-1.  In this configuration two TAC-3 workstations 

where connected to the same ATM network modules.  PVCs were set up such that an 

intermediate port was traversed.  On the remaining port on the network module the 

Adteck was connected and a PVC was established to the intermediate port.   The test 

consisted of running the latency application on the TAC computers and using the 

ADTECH to load the intermediate port.  
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Latency Test Configuration 
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APPLICATION

 

Figure 3.6.2-1 

 

  

 As seen by Table 3.6.2-1, latency increased significantly when the intermediate 

port was loaded at 95%.  When the loading was 98%,  the resultant latency was an order 

of magnitude greater then the unloaded configuration. The instrumentation did not 

support taking measurements of  loading down the port at greater than 98%.  Message 

length also attributed greatly to latency.  This can be seen by the fact that latency with 

respect to message size increased at a much greater rate at 98% (37.028 ms for 8 Kbyte 

messages) loading versus 95% (12.341 ms for 8 Kbyte) loading.  This could be simply 

that large messages occupy buffer space at a faster rate then smaller messages.   
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TCP Loading Latency 

95% LOADINGAVG LATENCY
(NO LOADING)

MESSAGE SIZE 98% LOADING

1K

2K

4K

8K

  968

1196

1643

2688 12341

5161

2562

37028

15054

7616

3940 1339

  Table 3.6.2-1 

 

3.7 Comparison With Other Published Results 
 As previously identified in Section 2.4, [19] documents the results of a 

Washington University study which measured the effects of the CORBA-level on 

message communication performance.   The results of the study are significant with 

respect to this thesis, in that the test configurations were similar, as were the results.  In 

addition, the study provides additional detail on the performance bottlenecks of the 

CORBA-level software. 

 The Washington University  study utilized throughput measurements to compare 

throughput rates for TCP/IP-level measurements and CORBA-level measurements.  Two 

CORBA implementations were utilized, one of which was Orbix 2.0, which was the 

CORBA implementation utilized for this thesis.  In addition, the measurements were 

accomplished over an ATM network.  The workstations used were SPARCstation 20 

Model 712s running SunOS 5.4.  This study varied the types of data passed (short, long, 

struct, ect), data size (increments of power of 2 from 1 Kbytes to 128 Kbytes), and the 

size of the socket buffer size. 

 The significant results of the Washington University study in relation to this 

thesis, is that the throughput for the CORBA-level was approximately 75% to 80% that of 

the throughput for the TCP/IP-level for passing scalar types and only around 33% of the 

throughput for sending complex data types, such as, structs.  The decreased performance 

for structs was attributed to the effects of marshaling/demarshalling and data copies by 

the CORBA-level implementations.  
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 When the TCP/IP-level and CORBA-level  latency measurement time results 

from my thesis work are compared (Section 3.4), it is obvious that the CORBA-level adds 

additional overhead.  The TCP/IP-level latency measurement times, for the lightly loaded 

TAC-4 configurations, were at best, approximately 73% of the corresponding CORBA-

level latency measurement times measurements.  For the  TAC-3 configurations, the 

TCP/IP-level latency measurements times was at best, approximately  61% of the 

corresponding CORBA-level  latency measurement times.  In my opinion, the results for 

my thesis work, were consistent with the results of the study.  Differences between my 

work and the Washington University study could be due to any combination of the 

following: hardware, operating systems, or how the data was passed.  I used a 2 

dimensional array of longs for my data measurements.  The Washington University  study 

utilized various types of data.  The closest type which was utilized by the Washington 

University  study to the type I used was a  sequence of longs. 

 It is interesting to note that the authors of the Washington University  study 

seemed to be disappointed with the results.  This was because, with their application 

domain  (Medical Imaging) high speed is of significant importance.  In the C3I system 

domain, high speed is not as important.  From my measurements, it was shown that 

CORBA-level software typically added less than 2 ms to message latency.  This is fairly 

insignificant when compared to the other larger contributors of message latency.  In short, 

it is important to note that the significance of  performance results are dependent on the 

domain to which they apply. 

 

3.8 Latency Measurement Summary 

 Measured round-trip CORBA-level latencies were typically in the range of low 

milliseconds (less than 10 ms).  The most significant sources of latencies were due to the 

workstations.  For network utilization’s of 90% or less, network contributions to latency 

was minimal, only in the tens of microseconds.  A high level comparison of message 

latency contributors are shown in Table 3.8-1. 
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     Relative Latency Effects of Components 
LATENCY 

CONTRIBUTOR 

EFFECT ON MESSAGE LATENCY 

ATM Switch Ports (<90% loaded) ten’s of microseconds 

Effect of high priority processes up to low hundreds of milliseconds 

CPU Scheduling Granularity 10 milliseconds 

TCP/IP Queuing up to ten’s of milliseconds 

CORBA “Middleware” less then 2 milliseconds 

    Table 3.8-1  

 

 The measurements demonstrated that ATM port latencies were effected by both 

the number of  ports traversed and port utilization.  It was demonstrated that only under 

heavily loaded conditions, greater than 90% utilization, that ATM port queuing would 

add significant latencies to overall system’s message latencies. 

 From a workstation perspective, the most significant and most unpredictable 

causes of latencies were system initiated processes which had higher priorities then User 

processes (i.e. test drivers).  These latency sources resulted in the largest latencies and 

were the least frequently occuring.  This cause of latency is the most unpredictable since 

it is not known when a higher priority system task is going to request the CPU resource, 

nor for how long this higher priority process will require the CPU resource. This was 

most dramatically seen during the 512 byte TCP/IP measurements in which a 150 ms 

latency was observed.  These sporadic latencies can be significantly reduced if the test 

drivers were assigned a higher priority.   

 The next most significant source of latencies which were observed, were the 

latencies resulting from TCP/IP protocol stack queuing.  For the configuration under test, 

the latencies attributed to TCP/IP queuing were fairly predictable in the sense that the 

queuing effect on message latencies was frequently observered under the loaded 

conditions and that the magnitude of the TCP/IP queuing effect (20-40 ms) seemed to be 
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related to the socket buffer size.  The latencies due to the protocol stack could be reduced 

in both frequency and magnitude by using either utilizing smaller buffer sizes or by 

limiting message traffic between workstations. 

 The non-preemptive nature of the scheduler was an additional measured 

contributor to system latency.  Since a clock ‘tick’ is 10 ms, the scheduler could result in 

latencies of 10 ms. 

 From a network perspective, the last measured contributor to system latency was 

CORBA-level.  For the system under test, this implementation of CORBA-level typically 

contributed less than 2 ms to system latencies.  Most significantly, CORBA-levels latency 

component was predictable, it did not add to system maximum latencies. 

3.9 Implications of Measurement Results for Soft/Hard Real-Time Systems 

 The measurements taken suggest that, for the specified configurations, a soft real-

time system could be supported.  For the configurations under test, the maximum 

latencies for round-trip latencies, was approximately 100 ms (TAC-4 to TAC-4 8K 

messages are an exception).  Making the assumption that a one-way latency is one-half 

the round trip latency, the maximum latency is approximately 50 ms.   However, it is 

important that these maximum latencies assume minimum memory management and only 

a minimum of competing application processes.  Page swapping was  virtually 

nonexistent (only a minimum set of applications were executing) and there were no writes 

to files during the measurements.  This maximum latency bound could be improved if the 

applications are given higher priorities.  If message communication is relatively light and 

the default socket buffer sizes (32 kbytes) are used, it is reasonable to assume that the 

round trip latency would be less then 15 ms (the 10 ms clock ‘tick’ plus the average 

round-trip latency). The exact lower bound latency requirement in which HP-UX could 

support is dependent on the CPU loading profiles and the  size of the message. 

  However, even under these conditions, the system still can not be considered hard 

real-time, unless the requirements allow for significant time to meet deadlines. This is 

because it is still possible that there are other system initiated processes which  could 

have a priority higher than the maximum user priority assignable by rtprio.  This makes 
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the system unpredictable since it is still possible that the maximum latencies could exceed 

system time requirements. 

 Another point worth noting is that the implementation of CORBA (Orbix) 

utilized, only required a separate process to be run at the time of an object bind.  After the 

connection was made, the Orbix daemon did not need to execute.  This meant that this 

daemon did not need to be scheduled and was not vying for processor resources.  It is 

possible that other CORBA implementations or the utilization of additional CORBA 

services would result in a more active daemon or additional daemons which would 

require system resources.  The execution of this deamon could result in increase latencies. 

 Assuming that the deadline requirements are at least 15 ms but not significantly 

long in duration (i.e. 1 Second), the system configuration under study could support hard 

real-time requirements only if significant constrains are placed on the system.  These 

constrains include: 

1. time critical processes be given sufficient priorities relative to each other and 

it is determine system initiated processes will not result in time constraints to 

be violated 

2. message traffic is low enough so that TCP/IP queuing is not a factor 

3. ATM port utilization is less than 90% of maximum bandwidth 

4. application’s minimize memory management effects 

 

The first constraint requires a system study to analyze all possible conditions in which 

higher priority processes then the time critical process could occur.  The system design 

would have to take into account the system initiated tasks which have a lower priority 

then what can be set by rtprio.  Message traffic to and from the workstation would need to 

be controlled to ensure that TCP/IP queuing effects are constrained to tolerable limits.  In 

addition, application programmers need to ensure that applications are written so that 

memory management effects  (i.e. page swapping, file writes and memory leaks ) are also 

within acceptable limits. Also from a workstation perspective, possible priority inversion 

scenarios between resources would have to be explored. 
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 ATM port utilization is a network architecture issue.  Unless, multiple 

workstations are passing data through one common port (i.e. the connection between 

ATM switches), it is unlikely that ATM port loading will be a significant design 

limitation for hard-real-time messaging systems. 
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4.0  Latency Server 

 The Latency Server dynamically provides estimates on message latencies between 

two communicating applications on different workstations.  This section discusses the 

methodology, design and test setup of the Latency Server. 

4.1 Latency Server Methodology 

 For real-time systems, it is necessary to know the latencies of the underlying data 

communications path so that current application deadlines can properly be established.  

As seen from the measurements in Section 3, these latencies can vary due to multiple 

factors, such as network loading and end-station loading.  It would be the function of the 

Latency Server to provide the current estimated message latencies for pairs of end-station 

connections. 

 In providing network latencies, the Latency Server needs to account for the 

following: 

1. The required “hardness of bound”, which refers to the percentage of 

measurements in which the latency must bound hold; 

2.  The latency estimates should not be overly cautious (i.e. latency estimates should 

not be higher than actually required); 

3.  The bandwidth required to make the latency measurement. 

 The first consideration refers to the need to have the estimated value greater than a 

certain percentage of the possible actual latencies.  For instance, it may be desirable that 

the value of the returned estimate latency time be greater then the actual message 

latencies 96% of the time (i.e. an upper latency bound of 96%). 

 The second consideration refers to the need in which the estimate not be overly 

cautious (i.e. “excessively hard”).  It may be acceptable to miss message deadlines in 

certain circumstances since it may be more important  that other components of the 

system are given execution time to complete their tasks.  For this case,  average message 

latencies would be desirable. 
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 The third consideration refers to the amount of available bandwidth to support the 

latency measurements.  Some systems may not be able to afford to provide the required 

bandwidth to make the measurements, while other systems may be able to afford the 

bandwidth costs if it will ensure an accurate message latency value.  

 There are 3 possible approaches in providing a latency number for the data 

communications path: 

1) Provide a static estimated value  (i.e. network latency = 3 ms) 

2) Measure the latency 

3) Use known system parameters to dynamically estimate the current latency 

The prototype Latency Server uses Approaches 2 and 3. 

 Providing a static estimate value has the advantage that no resources are needed at 

run-time to maintain the value.  The disadvantages are that the latency characteristics of 

the message communication system are dynamic, therefore message latencies are 

dependent on workstation and network states.  If the static estimated value is too low, 

then  deadlines will  be missed.  If the estimated value is too high, applications may be 

forced to complete their tasks earlier than necessary.  If the system is required to be hard 

real-time, the estimated value must always be high to account for the worse-case network 

latency. 

 Measuring the actual network latency can be accomplished by performing round-

trip latency measurements.  These measurements should be accomplished when a system 

state change occurs (i.e. network and/or CPU loading change) that could significantly 

effect message latency.  The advantage to this approach is that if enough round-trip 

measurements are made, a confidence interval could be established for the actual message 

latencies for the current communications system state.  The disadvantage of this approach 

is that substantial network bandwidth can be utilized in taking latency measurements.  

This is due to the fact that round trip measurements will need to be performed for each 

end-station-to-end-station communications pair.  This is compounded by the fact that 

these round-trip measurements should consist of multiple messages (i.e. 1000) at the 

message size of interest. 
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 Assuming that the network has a system management system and that the network 

latencies can be correlated to the system management state parameters, it may be 

desirable to calculate message latencies utilizing current system state information. There 

are numerous COTS system management products  available that track the state of 

LANS.  The state information (network throughput, workstation CPU utilization, 

workstation availability, ect.) can be stored in Management Information Bases (MIBS) 

(MIB standards exist). To retrieve state information from entities on the network the 

standardize Simple Network Management Protocol (SNMP) can be employed.  The 

advantage of this approach is that message latencies can be dynamically provided without 

increasing network bandwidth.  The disadvantages is that this approached requires system 

resources, such as a  system management application.  Not all networked systems have a 

system management application.  Another disadvantage is that, depending on the design, 

the system may need to completely characterize latencies for each system state a priori, so 

that this information can be made available to the Latency Server.  Aquiring the required 

measurements a priori may require significant effort. 

 As previously mentioned, the Latency Server prototype can utilize either approach 

2 (message latency is measured) or approach 3 (message latency is estimated).  In 

addition, for each approach, the Latency Server can provide either the average message 

latency  or a latency bound.  The average latency is a time in milliseconds which is the 

mean of the number of round-trip sample latencies.  The latency bound is a time (in 

milliseconds) in which a predetermined percentage of  the sampled measured message 

latencies times are equal to or less than it.   

 To specifically identify the required approach to provide the latency estimate, the 

prototyped Latency Server provides one of four Quality of Service (QoS) levels for each 

connection.  A connection is the message communication path between two workstation.  

The QoS levels are as follows: 

• QoS 1: Estimate the average latencies using system state information and a 

priori data: 
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• QoS 2: Estimate latency bounds using system state information and a priori 

data: 

• QoS 3: Measure average latencies for connection: 

• QoS 4: Dynamically record a sample message latency distribution for 

connection and provide an estimated latency bound. 

 For QoS 1 and QoS 2 settings, the average latency time and latency bound time 

are determined from the latency measurements from Section 3.  For QoS 3 and QoS 4 

settings, latency measurement times are dynamically taken by the distributed components 

of the Latency Server.  From these sample measurements, the average latency time and 

the latency bound time are determined for the current message communications system 

state. 

4.2  Prototype Latency Server Design 

4.2.1 Prototype Latency Server Application Program Interface 

 The connection data from the prototype Latency Server can be retrieved by 

binding to the Latency Server object.  The obtain the latency data for a connection, a 

client application would invoke the “RequestStatus” method.  The prototype for this 

method is: 

 

  IdlStatusToClient RequestStatus(in short client_ref); 

 

The in parameter “client_ref” is the unique connection identifier.  The method invocation 

returns the type “IdlStatusToClient”.  This type is defined as follows: 

 

 

 
 
 
 
 
 

 struct IdlStatusToClient   { 
    short index_ref;  
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  short quality; 
     short server_acknowledges_client; 
     float latency_estimate; 
  float upper_bound_estimate; 
  float lower_bound_estimate; 
  short update_required_flag;       }; 
 

 The update_required_flag provides the status of the connection (i.e. the Latency 

Server is providing latency estimates).  The quality variable provides the QoS which is 

used for the connection. The QoS for each connection was defined at the Latency Server 

startup time, and it can not be altered during run-time.  If the QoS is equal to 1 or 3, then 

the latency_estimate variable is the time in milliseconds of the measured average 

message latency.  The upper_bound_estimate float and lower_bound_estimate 

variables define the range in which there is a statistical 95% confidence that the average 

latency will fall within.   If  the QoS is equal to 2 or 4, then the latency_estimate 

variable is the time in milliseconds for the measured  latency bound.  The latency bound 

for the connection was identified in a configuration file, which was read at the time of the 

prototype Latency Server startup.  The upper_bound_estimate and 

lower_bound_estimate variables represent the 95% confidence interval for the 

percentage of message latency times in which the latency bound is greater then the 

message latencies. The update_required_flag indication is only significant if the QoS is 

equal to 2 or 4.  If the update_required_flag variable has a value of 1, than the Latency 

Server is waiting for the results of measurements, and that the latency estimate value is 

soon likely to change.  If the value is not 1, then the latency estimate value is valid. 

 For example, assume a client is bound to the Latency Server and invokes: 

RequestStatus(1).  Assume that the configured latency bound for connection 1 was 96%.  

Also, assume that the following values are returned: 

 

 

 
 
  index_ref : 1 
  quality:  4 
     server_acknowledges_client: 1 
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     latency_estimate: 5 
  upper_bound_estimate: 98 
  lower_bound_estimate: 97 
  update_required_flag: 0 
 

This returned value indicates that the connection is good since the 

server_acknowledges_client is 1. The QoS is 4, indicating that a dynamically measured 

latency bound was provided.  Since the update_required_flag is 0, the value is valid since 

there is no pending measurement to be made.  The latency bound estimate is 5 

milliseconds.  From this result the following conclusion can be made: There is a 95% 

confidence that between 97% to 98% of actual message latencies are less than 5 

milliseconds. 

 An example to demonstrate average message latencies may result in the following 

returned values: 

  index_ref : 2 
  quality:  3 
     server_acknowledges_client: 1 
     latency_estimate: 1.46 
  upper_bound_estimate:  1.56 
  lower_bound_estimate: 1.36 
  update_required_flag: 0 
 

This result leads to the conclusion that there is a 95% confidence that the actual average 

latency is between 1.36 ms to 1.56 ms. 

 

4.2.2 Prototype Latency Server System Description 

 The implementation of the Latency Server prototype accomplished for this thesis 

consists of the following CORBA-level components: 

 

• The Latency Server which either provides estimates or requests new 

measurements from its distributed components (i.e. Client and Peer 

applications); 

• N Client applications, which reside on one of the workstations (Client 

workstation) for each connection.  When requested by the Latency Server, the 
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Client application initiates round-trip latency measurements with its Peer 

Server application, that resides on the second workstation (Peer workstation) 

comprising the connection; 

• N Peer Server applications, which reside on the Peer workstation to support 

round-trip measurements;  

• A SNMP Emulator application, which emulates the required MIB variables; 

• A Status application, which is used to monitor servers performance; 

 

 Figure 4.2.1-1 shows a logical representation of the CORBA-level components 

from a software bus viewpoint (i.e. is a level of abstraction above the network 

implementation details).  The figures depicts the Latency Server and all of its distributed 

applications.  Each box in the figure represents a workstation.   A  connection is defined 

by the message communications path between a Client application and a remote Peer 

Server application. 

 

 

Latency Server High Level Diagram  
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Figure 4.2.1-1 

 

 

 The Latency Server is implemented as a CORBA-level server that provides a 

latency estimate to requesting applications.   The Latency Server uses emulated SNMP 

data (CPU and network utilization) to monitor the state of the system.  When the Latency 
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Server detects a state change for a connection, it will either calculate a new estimated 

latency, or request a latency measurement between the Client application and Peer Server 

application. The method of determining the latency estimate is depended on the 

connections preconfigured QoS value. 

 The SNMP Emulator application, also a CORBA-level client, provides emulated 

CPU utilization data for the client and peer workstations.  In addition, it provides the 

network loading (i.e. the port utilization for the intermediate ATM port).    The Status 

application, another CORBA-level client, provides an operator a view of the system’s 

current state and the state of each connection. 

 

4.2.3 Latency Server Scope and Assumptions 

 The prototype Latency Server makes numerous assumptions about the network.  

These assumptions include: 

    

1. The network configuration consists of two ATM switches, interconnected by 1 OC-3 

port.  The client and peer workstations are not connected to the same switch. 

2. The ATM virtual connections utilize the UBR traffic contract between the End 

Stations and the ATM switches. 

3. Since actual ATM network latency measurements were not accomplished 

simultaneously for both ATM port loading greater than 90% and  workstation CPU 

loading (i.e. for network measurements both workstations were always lightly 

loaded),  ATM port loading is assumed to be negligible (i.e. < 90%) when the 

estimated latency bound is given. 

4. Since actual latency measurements were not accomplish simultaneously for both 

ATM port loading greater than 90% and the workstation CPU loading, the Latency 

Server assumes that latency due to port loading and CPU loading is additive in nature 

when estimated average latencies are provided.  In calculating average latencies, it is 

assumed that the effect of ATM port loading under 90% adds negligible latency.  

When ATM port loading is greater than  90%, the port latency contribution is 
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calculated by (1/1- (network load)), where network load = (ATM port utilization - 

91)/10.  The equation (1/1-network load) is a general result in describing queue 

loading effects [22]. 

5. All measurements are round-trip latencies. 

6.  Workstations are either TAC-3s or TAC-4s running applications over CORBA and    

 TCP/IP. 

7.  Depending on the selected QoS, connections will only be TAC-4 to TAC-4 or TAC-3 

to TAC-3.  

8. The SNMP Emulator is the source of emulated SNMP data at a rate of 10 Hz. 

9. The Latency Server will only provide estimates for a specific message size:  

  64B, 128B, 256B, 512B, 1kB, 2KB, 4KB & 8KB 

 

  The Latency Server is dependent on the measurements that were accomplished in 

Section 3.  Therefore, the same hardware configuration, message sizes and measurement 

techniques need to be reflected in the Latency Servers network configuration and design.   

 The ATM network was is a lightly loaded state when the workstation CPU 

measurements were taken in Section 3.  Likewise, the workstations were in a lightly 

loaded state when the ATM network measurements were taken.  There were no 

measurements taken when both the ATM network and the workstations were both in a 

heavily loaded condition.  Therefore, there is no a priori measurement data which the 

Latency Server can utilize when providing latency estimates for QoS 1 and QoS 2.   To 

provide average latency estimates for QoS 1, the Latency Server assumes that the loading 

effects of the workstation and ATM network components are additive.  In addition, it is 

assumed that the network loading is defined by the equation identified in constraint 

number 4.  This equation is a rough approximation of the queuing seen by TCP when the 

ATM ports are loaded to greater than 90% of their maximum capacity.  No distinction for 

port loading is made in regard to message size.  

 Since no system management application was available to support this work, a 

simple script provide system state information was developed.  This script runs at 10 Hz 

rate, which is representative of a fairly fast system management polling rate. 
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4.2.4 Latency Server High Level Design 

 The physical configuration of the Latency Server system is depicted in Figure 

4.2.3-1.  The Latency Server, SNMP Emulator application and Status application can be 

all collocated in  one workstation or be distributed amongst numerous workstations.  

Each connection that has a QoS of 3 or 4 requires a Client application in the client 

workstation and the Peer Server application in the peer workstation.  The Latency Server 

provides the round-trip latency measurements.  The number of Client applications and 

Peer Server application pairings is dependent on the number of connections of interest,  

and  on the configuration of the system. 

 Initially, the Latency Server is provided pre-configured information for each 

connection.  This information consists of the workstation type,the size of message and the 

QoS value.  The workstation types and message sizes were defined in Section 4.2.2.  As 

previously discussed, there are four QoS values to choose from.  These values result in 

one of the following actions: 

1. Utilize profile data to determine new average message  latency. 

2. Utilize profile data to determine the latency bound value in which x% of the 

actual round-trip message latencies times must be less than it. 

3. Take actual latency measurement and provide  new latency average. 

4. Take actual latency measurement and provide the latency bound value in 

which x% of the actual round trip message latencies times must be less than it. 

 

 The Latency Server provides a new estimated latency value when the CPU 

utilization states change between the client and peer workstations or when the ATM port 

state changes. The CPU states represent a range of processor utilization (0-33%, 34-66%, 

67-100%).  Since both processors are accounted for, there are nine possible combinations 

of CPU utilizations.  These are the same combinations in which the measurements in 

Section 3 were recorded.  The ATM port state changes as follows: 

1. Port utilization increases from less then 90% to greater then 90%; 

2. Port utilization decreases from greater then 90% to less then 90%;  and 

3. Port utilization is above 90%, and changes, but is still above 90%. 
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 The first two QoS cases do not require actual latency measurements.  The 

advantage of this approach is that no network resources and minimum workstation 

resources are used to determine the estimated latencies. 

 For QoS Case 1, the average message latencies are based on the sum of a CPU 

latency component and a network latency component.  The CPU latency component is 

determined by performing a look up of previously profiled latency data for the CPU state 

and message size of interest.  The port contribution is estimated as defined by Constraint 

4 in  Section 4.2.2.   This latency estimate may be desirable for systems which can not 

have an overly-restrictive message latency estimate, and can miss message latency 

deadlines.    

 For QoS  Case 2, the estimated latency bound is the time in which x% of the 

measured average round-trip latencies are less than it.  As previously stated, the bound for 

this QoS is dependent on CPU state only.  The bound is determined from previously-

recorded latency distribution data (Section 3) when the Latency Server initially starts up. 

This bound is beneficial when it is known what percentage of the time the latency bound 

is required to be greater than message latencies. 

 The next two QoS cases have the advantage that they provide the actual latencies 

for the current system state.  The disadvantage is that substantial network and workstation 

resources are required to obtain the “estimates”.  For QoS  Case 3,  the estimate latency is 

the average of the actual measured latencies. The rationale for this QoS  is similar to the 

rationale for QoS Case 1.   For QoS  Case 4, the estimated latency bound is the time in 

which x% of the measured average round-trip latencies are less then. The rationale for 

this QoS  is similar to the rationale for QoS Case 2. 

 The confidence interval for the average message latencies (QoS Cases 1 and 3) are 

determined by Equation 1.  All statistical equations in this thesis are from [16].  These 

values represent the range in milliseconds in which there is a  95% statistical confidence 

that the actual mean message latency falls within.  Using Equation 2  and assuming the 

standard deviation is 5 ms, the sampling error  is about .1 ms for 10000 samples (QoS = 

1) and  less then .3 ms for 1000 samples (QoS = 3).  
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  x ±z(a/2)  
. s/¥n     (1) 

 where: 

  x = average sample message latency mean 

  z(a/2)    = 1.96 (the z-value underneath the standard normal curve for 95% of the area) 

  s = ¥((( x2) - ( x)2)/n(n-1)) 

  and n = number of samples ; (n=10000 for QoS =1 and n = 1000 for QoS = 3) 

  and x = sampled value 

 

 n = [(z(a/2). )E]2   (2) 

  where: E = the error and  = standard deviations 

 

The Latency Server provides both the lower and upper message latency values for the 

95% percent confidence level for QoS 1 and 3. 

 To determine the maximum latency bound, Equation 3 is utilized, which is used to 

calculate confidence intervals for a proportion.   

  p ±z(a/2)  
. ¥(p(1 - p)/n)   (3) 

  where p = x/n; where x is the sample statistic and n is the number of samples 

 

The proportion for this equation, is the proportion of samples that contain a specific 

attribute in relation to the total number of samples taken.  The samples of interest are the 

ones with the characteristics that the average round-trip latency is less then the calculated 

latency bound, t.  Therefore, the proportion of interest is the percentage of average latency 

values which are less than the latency bound. 

 The latency bound is first calculated by determining the number of samples which 

need to be less then the latency bound.  For example, if a 90% latency bound is required, 

and 10000 samples are taken, then at least 9000 samples must be less then the latency 

bound.  As in Section 3 of this thesis, the latency distributions for message latencies for 

both the a priori measurements and for the dynamic measurements are recorded in 100, 1 

ms bins.  Each bin contains the number of latency measurements for the specific 1 ms 

window.  To determine the latency bound, starting from the first bin, the number of 

measurements of each bin in the latency distribution are cumulatively added until the total 
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number of measurements are equal to or greater then the required number of 

measurements.  The upper time value in milliseconds of the last bin added is the latency 

value that the Latency Server returned.  Also returned, as calculated by Equation 3, are 

the 95% confidence interval for the value returned.  For example, suppose the latency 

distribution is described by the bar graph in Figure 3.2.2-2 and that the user specified 

latency bound is 93%.  The graph represents 100K samples.  The  latency time of 7 ms, is 

the smallest latency time on the graph, in which 93K (93% of 100K) of the samples are 

less than.  On this graph, 7 ms represents the point in which 93.679K measurements were 

accomplished.  Using the confidence interval equations we arrive at the following result:  

There is a 95% confidence that between 93.52 - 93.82% of  actual message latencies are 

less than the 7 ms.  

 Table 4.2.3-1 provides the IDL for the Latency Server.  There are 4 structures 

defined.  The structures are: 

• TableRow, 

• IdlBaselineMeasurements, 

• IdlStatusToClient, and 

• IdlMibUpdates. 

 

 The Latency Server is designed around a table (an array of structures) which 

contains the required information for each active connection.  The data structure utilized 

is the same structure layout which is defined in the IDL TableRow struct type.  All 

Latency Server data is stored in the table. 

 The data in the Latency Server is logically structured into 6 different data types.  

More specifically the table contains the following type of data: 

• configuration data, 

• connection status data (server to requesting application), 

• client generated data, 

• MIB update data, 

• MIB historical data and, 

• connection state information. 
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 The configuration information is known a priori and is read from a configuration 

file at time of system start up.  This contains basic paramatic information, workstation 

types, message size and required quality of service, which are utilized in the calculation 

of the estimates. 

   The connection status data is provided by the Latency Server to any requesting 

client.  The type of information contains all pertinent information of the status of the 

connection.  The primary information of this type is the latency estimate and the request 

flag to the client to provide an actual measurement.  The requesting client can receive this 

information for a specific connection by invoking the RequestStatus method. 

 The Client application generates data which consists of the measured latency data 

(average and maximum latency bound) for the Latency Server to update its status table. 

This data is required if the connection is set with a QoS 3 or 4.  This data is provided to 

the Latency Server by invocation of the UpdateResponse method. 

 The MIB update data is the latest SNMP measurement data.  For each connection, 

this data consists of emulated CPU utilization data for both the Client and Peer 

workstations.  In addition an emulated ATM port utilization data is also provided.  The 

SNMP Emulation application client updates the Latency Server with this data by invoking 

the PutMibUpdates method.  The historical MIB data was the previous SNMP 

measurement data. 

 The connection state information provides the current state of the CPU utilization 

and ATM port utilization states.   

 The Latency Server has 2 phases of operation: A phase in which the Latency 

Server is available to provide data to any requesting clients or receive data from the 

Client applications; and a second phase in which the server updates the data table.  These 

two phase are encapsulated by an infinite loop.  During program startup, the Latency 

Server’s data table is created.  After initialization, the loop is entered.  The first phase of 

operation is to instantitiate the CORBA-level server object so that it can service any 

requesting clients.  If no clients invoke any of the server’s methods for a period of 1 

second, the CORBA-level object instantiation times-out and the Latency Server performs 
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its’ required calculations and appropriately updates the Status Information Structure for 

each connection (Phase 2).    After each connection has been updated Phase 2 completes 

and Phase 1 is entered by instantiating the CORBA-level server object. 

 The SNMP Emulator application client provides updates to CPU and port 

utilizations for all the connections every 10 seconds.  The SNMP Emulator application 

client reads from a file a script of emulated SNMP data for each connection.   

 The Client application requests status data every 5 seconds for a particular 

connection.  If the update required flag is set, and the QoS level is either  3 or 4, the 

Client application performs 1000 round-trip measurements for the message size of 

interest with its’ Peer Server application.  The IDL for the Client application and Peer 

Server round-trip latency measurements are shown in table 4.2.3-2.   The IDL defines a 

two dimensional array type for each of the 8 possible message sizes and the methods to 

pass the data.   The average latencies and latency bounds of this data are calculated by the 

Client application and these values are then sent to the Latency Server.  If the connection 

QoS is either 1 or 2 for the connection, latency measurements will never be taken. 

 The Status application client allows an user (Latency Server operator) to get the 

state of the Latency Server data table.  This is accomplished by invoking the 

RequestTableStatus method. 

 
 Latency Server IDL 

interface Latserv { 
// DEFINITIONS OF DATA ELEMENTS (STRUCTURES) 
 
// this data structure contains all the data in the latency server data structure 
 struct TableRow { 
     short index_ref;   // connection reference 
     //configuration data 
     short client_workstation_type;  //TAC-3 or TAC-4 
    short peer_workstation_type;    //TAC-3 or TAC-4 
     short quality;   // QoS of connection 
     short message_size;   // latency for message size 
    short client_node;                //workstation identifier 
  short peer_node;         // workstation identifier 
   // server to whoever - status of connection 
  short server_acknowledges_client;  //indicates if Latency Server is servicing connection 
     float latency_estimate;   //interpurtaton depends on quality; either measured 
latency or bound 
  float upper_bound_estimate;  //upper range value of 95% confidence interval 
  float lower_bound_estimate;  //lower range value of 95% confidence interval 
     short update_required_flag;  //for QoS 3 or 4, identifies in new measurement is required 
        // client to server 
     float latency_avg;   //for QoS 3 provides measured average latency in milliseconds 
     float latency_bound;   //for QoS 4 provides latency bound time 
     short latency_data_provided;  //flag indicating valid data provided 
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  // SNMP Update data   short latest_client_mib_cpu;  //Client workstation CPU utilization 
  short latest_peer_mib_cpu;  //Peer workstation CPU utilization 
  short latest_mib_port;   //Percentage of ATM port loading  
  // previous SNMP data 
  short previous_client_mib_cpu;  //last Client workstation CPU utilization 
  short previous_peer_mib_cpu;  //last Peer workstation CPU utilization 
  short previous_mib_port;  //last percentate of ATM port loading 
  // connection state information 
  short cpu_state;   //current CPU state for connection 
  short port_state; };  //current ATM port state for connection 
 
// the following structures partition the Latency Server table data in logical groupings; the data is the same as previously defined 
// provides baseline measurement information from client to Latency Server 
 struct IdlBaselineMeasurements  { 
    short index_ref;   
     float latency_avg; 
     float latency_bound; 
  float latency_estimate; 
  float upper_bound_estimate; 
  float lower_bound_estimate; 
     short latency_data_provided; }; 
 
// current server status; available to any client which binds to the Latency Server 
 struct IdlStatusToClient   { 
    short index_ref;  
  short quality; 
     short server_acknowledges_client; 
     float latency_estimate; 
  float latency_estimate; 
  float upper_bound_estimate; 
  float lower_bound_estimate; 
  short update_required_flag;       }; 
 
// mib data updates;  these values are provided by the SNMP Emulator application to the Latency Server 
 struct IdlMibUpdates { 
     short index_ref; 
  short latest_client_mib_cpu; 
  short latest_peer_mib_cpu; 
  short latest_mib_port;  }; 
 
 // METHODS 
IdlStatusToClient RequestStatus(in short client_ref);      // provides connection status to whoever 
void  UpdateResponse(in IdlBaselineMeasurements baseline_status,in short client_ref);  // client provide latency to server 
void PutMibUpdates(in IdlMibUpdates mib_updates,in short client_ref);   // MIB updates supplied to server 
TableRow RequestTableStatus(in short client_ref); };    // provides look inside server; 

Table 4.2.3-1 
 
 

Round-trip Measurement IDL 

 
typedef long fixedArray_64[2][8];    // used for 64 byted fixed array tests 
typedef long fixedArray_128[4][8];   // used for 128 byted fixed array tests 
typedef long fixedArray_256[8][8];   // used for 256 byted fixed array tests 
typedef long fixedArray_512[16][8];   // used for 512 byted fixed array tests 
typedef long fixedArray_1k[32][8];   // used for 1K byted fixed array tests  
typedef long fixedArray_2k[64][8];   // used for 2K byted fixed array tests 
typedef long fixedArray_4k[128][8];   // used for 4K byted fixed array tests 
typedef long fixedArray_8k[256][8];   // used for 8K byted fixed array tests 
interface fm1{ 
        fixedArray_64 fixed_array_test_64 (in fixedArray_64 fix_array_var_64);  
        fixedArray_128 fixed_array_test_128 (in fixedArray_128 fix_array_var_128); 
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        fixedArray_256 fixed_array_test_256 (in fixedArray_256 fix_array_var_256);  
        fixedArray_512 fixed_array_test_512 (in fixedArray_512 fix_array_var_512); 
        fixedArray_1k  fixed_array_test_1k (in fixedArray_1k fix_array_var_1k); 
        fixedArray_2k  fixed_array_test_2k (in fixedArray_2k fix_array_var_2k); 
        fixedArray_4k  fixed_array_test_4k (in fixedArray_4k fix_array_var_4k); 
        fixedArray_8k  fixed_array_test_8k (in fixedArray_8k fix_array_var_8k);   }; 

Table 4.2.3-2 

 

4.3 Latency Server Verification Results 

 The purpose of the this section is to identify how the Latency Server was verified.  

The objective of the verifications tests was to verify that the Latency Server performed as 

described in this thesis report.  These tests were not exhaustive.  In general, once a 

capability was verified, it was not reverified by utilizing another combination of inputs.  

The testbed in which the Latency Server was verified is identified in Figure 4.3.1.  The 

set of tests to verify the Latency Server are as follows: 

 

1. Verification of SNMP Emulator and current State Logic; 

2. Verification of QoS 1 Estimates, 

3. Verification of QoS 2 Estimates, 

4. Verification of QoS 3 Estimates, 

5. Verification of QoS 4 Estimates, and   

6. Multiple Connections. 

  

The first set of tests utilized the SNMP Emulator client to  provide the various state 

information for each connection to the Latency Server.  It was verified that the Latency 

Server assigned the correct state for each of the connections.  All possible CPU loading 

combinations were verified with ATM port loading less than 90%, all possible CPU 

loading combinations were verified with ATM port loading at greater than 90%, and all 

possible ATM loading configurations were verified with a low load CPU loading 

combination.   The second test verified that the Latency Server provided the correct QoS 

1 estimates for each message size and each of the loading states.   The next 3 tests all 

utilized a message size of 256 Bytes.  The third test verified that for numerous user 
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specified latency bounds, that the Latency Server provided the correct time estimate for 

the connection.  The fourth test verified that for QoS 3  that the Latency Server provided 

latency estimates that were consistent with the QoS 1 estimates.  This was accomplished 

for all the CPU states.  For this test ATM port loading was less than 90%.  For the fifth 

test,  it was verified that for QoS 4, the Latency Server provided a realistic latency bound.  

It was verified that the returned latency bound estimate either stayed the same or 

increased as the user specified  latency bound value increased.  The last test, 

demonstrated that the latency server could support multiple connections (two QoS 1 

connections, one QoS 2 connection, two QoS 3 connections, and one QoS 4 connection) 

simultaneously. 
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Figure 4.3-1 

 

4.4 Latency Server Conclusions 

 The prototype Latency Server performed as expected.  It is not expected that the 

concept of the Latency Server will be utilized by NSSN C3I System.   It is anticipated that 

the NSSN C3I System design will assume a worse case scenario for workstation latencies 

and that the ATM network  port loading will not exceed 90%. 

 However, the Latency Server concept may have applicability in real-time 

distributed systems in which the workstation and/or the underlying network may be a 

significant contributor to message latency variation.  As an example, consider a system 

that has significant message latency variation due to processor scheduling.  Mechanisms 

could be built into the Latency Server which would either provide latency estimates or 

requests for latency measurements based on process scheduling.  Distributed systems 

based on network technologies other than ATM may also benefit from the Latency Server 

concept.  For example, networks based on Ethernet, which are sensitive to network 

loading due to collisions, may benefit from the Latency Server concept.  For these types 
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of networks, the Latency Server should utilize collision information in determining 

connection latencies.  Also, distributed systems could theoretically be a combination of 

numerous network technologies (FDDI, ethernet, token ring, ect.) interconnect by routers.  

In this case, the Latency Server could use numerous system-level parameters to make the 

latency estimate decisions.  The Latency Server concept could also be extended to 

systems that are based on Wide Area Networks (WANs).  WANs introduce an additional 

latency component since the latency of the physical medium becomes significant. 

 The implementation of the prototype Latency Server could be improved if threads 

are utilized.  The utilization of threads could help address the potential of any timing 

problems between server invocations and maintaining the Latency Server data table.  

With a thread implementation, a thread could be created to continuously update the 

latency table data structure.  Another thread could be created to execute the server method 

invocations.  The latency table data structure would require data locking mechanisms to 

ensure data consistency. 
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5.0  Applicability of Thesis Results to Other Work 

 This section discusses two areas of current work in which the results of this thesis 

may be of benefit.  These areas are: 

• NSSN C3I System and 

• University of Rhode Island (URI) Real-time CORBA Research. 

 

Potential Benefits to the NSSN Community.  Currently, the NSSN community is 

utilizing the standards which were identified in Table 1.1-1, to construct a NSSN C3I 

System.  One of the concerns in building this C3I System is the ability of the system to be 

real-time.  Of particular interest are the latencies contributions of the message 

communications system.  The measurements of Section 3 can provide the NSSN 

community the following useful information concerning the COTS message latency 

contributions: 

• The aggegrate latency total of the COTS messaging components, 

• The COTS components which contribute to latencies and the relative 

magnitude of the latency contributions,  

• Guidance on how the components can be constrained to achieve real-time 

requirements, and 

• The identification of the importance of how implementations of COTS 

products may affect latency characteristics. 

 

The identification of the aggegrate latency of the COTS messaging components is 

important since this indicates potential problems with requirements and/or the proposed 

implementation. Knowing  information concerning relative latency contributions of the 

COTS message communication system and guidance on how to constrain these 

contributions,  provides a means to alter the system design such that the requirements can 

be met.  For example, the most common maximum latencies identified in the NSSN 

Specifications are 1 ms, 10 ms, 50 ms and 100 ms.  Making the assumption that these 

times reflect only network communication times, 50 ms is a realistic maximum soft real-
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time latency requirement for the network’s message communication system.   For 

requirements that require message latencies of 10 ms - 20 ms or less, a real-time 

operating system would be required (see section 3.9).  This is due to  HP-UX’s non-pre-

emptible timeslice of 10 ms.  Because of the time-slice, the application maybe delayed up 

to 10 ms before it is even scheduled.   Even if a real-time operating system is utilized, 

message size,  CPU utilization and TCP/IP queuing may need to be accounted for. 

 This thesis also identified the issue that different configurations of COTS 

components, and even different versions of the same COTS product, may produce 

unexpected results.  For example, it was shown that Orbix 2.0 had unusual results when 

8K messages were passed, and that the TCP/IP measurements were actually  worse 

(slower) with HP-UX 10.0 running on a TAC-4 then with HP-UX-9 running on a TAC-3.  

From findings such as these, it is recommended that the NSSN community properly 

characterize the performance of each new COTS component when it is incorporated in 

the C3I System. 

  

Potential Benefits to the University of Rhode Island (URI) Research. 

 The real-time CORBA research team at URI is investigating approached to add 

real-time extensions to CORBA.  The research is primarily concerned to adding end-to-

end real-time constraints to method invocations.  This research was initially identified in 

[1].  To support real-time method invocations, one of the identified requirements was that 

network latencies need to be known. 

 This research was further extended in [18].   Implementations were developed to 

demonstrate the required interface facilities and the required support services to support 

the end-to-end time constraints.  The interface facilities contained time constraint 

parameters: task importance, task deadlines, and Quality of Service.   The required 

CORBA support services were a Global Priority Service and a modification of the 

Concurrency Control Service to support real-time constraints.  

 The potential contributions of this thesis to the URI work are as follows: 

• Provide informaction concerning the dynamic latency characteristics of the 

underlying message communication components; 
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• Provide a methodology on how to measure the latencies of the underlying 

network; 

• Identify the process scheduling has a significant effect on maximum message 

latencies; 

• Provide the concept of the Latency Server. 

 

This thesis demonstrated that message latency can vary significantly depending on system 

conditions.  A static message latency value may be undesirable.  This thesis identified the 

system components and conditions which can effect system latency, provided metrics to 

assess message latency (average latency, maximum latency, and latency distribution) and 

provided a methodology to measure latencies.  This research may assist the URI research 

team in how to determine message latencies to support their reaserch needs. 

 In addition, process scheduling was identified to be the most significant factor 

influencing maximum message latency.   This should be guidance to ensure that 

processes involved in message communication be given sufficient priority to allow for 

messages to meet their time constraints. 

 Perhaps the most significant contribution of this work to the URI research is the 

concept of the Latency Server.  The Latency Server can dynamically provide the message 

latencies for each connection.  The concept of the Latency Server could become a 

CORBA service which could be utilize to support the real-time method invocations.  This 

would be beneficial in that fairly accurate message latencies would be provided, ensuring 

that the latency estimates are not too low (to prevent missed deadlines) nor are to high (to 

ensure that applications are allotted a maximum amount of time). 
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6.0  Recommended Changes to Standards 

 This section provides recommendations to the standards which were utilized for 

this thesis research.  The standards of interest are ATM, TCP/IP and CORBA. 

6.1  ATM Recommended Changes 

 The ATM virtual circuits that were utilized in this thesis work were based on an 

Unspecified Bit Rate (UBR) contract.  This means that if ATM cell traffic exceeds the 

available virtual connection bandwidth, then ATM cells can be lost.  Cell loss was 

demonstrated in Section 3.6.2-1.  In addition, UBR cell is also demonstrated in [21].  Cell 

loss is undesirable for real-time systems in that data is lost.  If the lost data is time-critical 

and if this data is not resent, then effectively the data latency is infinite, which will cause 

real-time requirements not to be met.  If the data is resent, then additional latency is 

incurred due to the data being resent.  This additional latency may potentially cause time 

constraints to be violated.  

 ATM provides the ability to ensure that cell loss does not occur by setting up 

either Constant Bit Rate (CBR) or Variable Bit Rate (VBR) traffic contract for a virtual 

connection.  This traffic contract is between the End Stations and the ATM network.  The 

viability of using an ATM CBR traffic contract to prevent ATM cell loss was 

demonstrated in [21]. 

 The current ATM Standards only allow the CBR and VBR traffic contracts to be 

set up a priori by utilizing Permanent Virtual Circuits (PVC).  To allow maximum 

flexibility for the run-time environment it would be desirable for applications to specify 

traffic contracts for connections dynamically by utilizing Switched Virtual Circuits 

(SVCs).  The traffic contract could be specified by an application through the appropriate 

(Application Programmer’s Interface) API.  This enhancement would provide an ability 

for the run-time environment to ensure that the virtual connection is at the appropriate 

ATM QoS for the message priority.  For instance, if the virtual connection is used for a 

constant stream of high priority data than a CBR connection be specified.  If the data is 

periodic high priority data, perhaps a VBR connection would be specified.  Else if, the 

data if relatively low priority, than perhaps a Available Bit Rate (ABR) or UBR 
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connection would be specified.  Also, under this scheme, ATM network resources are not 

reserved until they are actually required. 

 

6.2  TCP/IP Recommended Changes 

 TCP/IP is effectively a type of  “middleware”  between the workstations run-time 

environment and the network.  This  “middleware” should not adversely impact the 

ability for the system to meet its real-time requirements.  Ideally, TCP/IP should have the 

following requirements: 

1) No information on how the data should be processed (i.e. priority)  should 

lost; 

2) TCP/IP should provide the ability for the application to access the underlying 

network’s setup parameters. 

 

 Section 2.2.1 briefly introduced the role of scheduling and the utilization of 

priorities as a mechanisms in designing real-time systems.  Section 3 demonstrated the 

utilization of  priorities to schedule processes to meet real-time requirements was briefly 

discussed.  A problem with TCP/IP with respect to real-time systems, is that TCP/IP does 

not support the concept of priorities.  Messages which are of low priority may be serviced 

before high priority messages when TCP/IP is used.  To effectively support real-time, 

TCP/IP should establish a mechanism to recognize message priorities.  The message 

priorities need to be insured throughout the protocol stack.   

 TCP/IP should also be able to pass QoS information to the underlying ATM 

network.  With this information, the traffic contract could be specified (i.e. VBR, CBR) 

for the underlying network, along with other specifications (PCR, SCR, MSB) to support 

these contracts.  In addition, TCP/IP should provide mechanism to allow for the dynamic 

establishment of ATM virtual connections. 

 Another approach may be to eliminate TCP.  The reliability mechanisms which 

TCP provides may not be necessary with the emergence of ATM Available Bit Rate 

(ABR) traffic contract.  ABR has a form of flow control built into it.  ABR will replace 

current UBR.  The CBR and VBR traffic contracts guarantee that the network resources 
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are available to support specified network traffic.  These mechanisms reduce the need for 

TCP reliability mechanisms.  In addition, the elimination of TCP mechanisms may reduce 

problems, such as, the deadlock condition which can occur over ATM [2].   

 Instead of TCP, applications could interface to an ATM API which supports the 

dynamic allocation of virtual connections, and the setting of QoS parameters for these 

connections.  The underlying IP layer should be modified to support this ATM API.  IP 

itself could also be eliminated, but this may be undesirable since IP addressing has 

become so prevalent. 

  

6.3  CORBA Recommended Changes 

 Currently,  applications in the current CORBA-level run-time environment do not 

have the appropriate mechanisms to support real-time requirements.  Since CORBA 

provides the framework to facilitate communications between applications, the CORBA-

level is a natural layer to incorporate real-time mechanisms for distributed applications. 

 From an application perspective, it would be desirable to build  mechanisms into 

CORBA in which timing information is made available to the CORBA based 

applications. This timing information is available to the application to help ensure that 

processing deadlines are not violated.   These mechanisms are described in detail in [1].  

However, to determine the timing requirements for the applications, the latency of the 

underlying network needs to be known.  The underlying network latencies could be 

provided by an implementation of the Latency Server concept introduced in this thesis.  It 

may be desirable that a Latency Server be provided as a CORBA service that would be 

available to any application. 

 From a message communication perspective, it would be desirable for the 

CORBA implementation to be directly over a transport protocol which supports ATM 

QoS and dynamic allocation of ATM virtual circuits.  With this underlying network 

functionality, a message communication system that could directly utilize ATM virtual 

connections to maintain message priority throughout the distributed system.  The ORB 

would be required to specify and manage the virtual connections.  In addition, the ORB 

would have to perform the associated queuing functionality. 
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 From information which could be supplied by the applications to the ORB, the 

ORB could dynamically create virtual connections, with the appropriate QoS settings to 

support the required application communications.  This would require addition 

computational complexity on the part of the ORB.  For instance, an Iona implementation, 

to establish a connection, the orbixd daemon would do the following additional steps: 

• Retrieve applications real-time requirements, 

• Determine if a virtual circuit of the required priority is available to the 

destination, and 

•  if the virtual circuit is not available, create it, specify the correct QoS 

parameters, and establish the required queuing in workstation address space. 
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7.0  Conclusions 

 This work identified the major contributing sources of message latencies in the 

COTS data messaging system that will be utilized in NSSN C3I System.  It was shown 

that the most significant sources of the latency were due to the workstation components.  

For the configurations investigated, the most significant cause of latency was due to 

processes waiting to be scheduled on the CPU.  It was demonstrated that process could be 

given higher priorities to significantly lessen this component of message latency.  It was 

also demonstrated that TCP/IP queuing could have a significant effect on latencies if 

message traffic was heavy.  The Iona implementation of CORBA was shown to result in a 

1 -2 ms increase in average latencies, but was shown to have minimal effect on maximum 

latencies or latency distributions.  The effect of ATM network latencies was shown to be 

very small (in the microsecond range) relative to the other latency components.  However, 

ATM latency can become a significant factor if ATM port utilization’s are at 91% or 

above their maximum rates. 

 A prototype Latency Server was also developed in which either  latency averages 

or  user-specified latency bounds are provided to any requesting application.  Latencies 

were either estimated or measured when CPU utilization or ATM port loading changed.   

Latency estimates were derived from the measurement data.  Round-trip measurements 

were taken to provide the measured values. 

 Finally, based on this work, recommendation were made for ATM, TCP/IP and 

CORBA.  The primary recommendation for ATM is to provide an API to applications 

such that applications can dynamically establish virtual connection.  The primary 

recommendation for TCP is to support message priority and to provide an interface to 

ATMs underlying QoS parameters.  The first recommendation for CORBA was to 

implement the Latency Server concept as a CORBA service which would be available to 

applications to assist in determining time constraints.  A second recommendation to 

CORBA  is to assume that applications can establish virtual ATM connection and that the 

underlying transport layer does support message priorities, and to implement in the ORB 

a mechanism to support message priorities using ATMs virtual connections. 
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 In summary, this thesis identified the sources of latency in a COTS message 

communication system, identified a means to dynamically determine message latencies, 

and provided recommendations on how these components could be improved.  In short, 

the thesis objectives were accomplished. 
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8.0  Recommendations for Future Work 

 There are three primary areas in which the work started in this thesis could be 

extended: 

1. Continue measurements for additional details. 

2. Expand the Latency Server. 

3. Investigate how QoS can be extended to include workstation resources. 

 

Expand Measurements.  Measurements could be continued to further determine the 

latency effects for more complex system configurations.  The work done in this thesis, 

assumed rather simple scenarios.  Additional measurements may include the following: 

 

• TCP/IP queuing effects of latencies for various loading configurations; 

• Maximum latencies as effected by various parameters (CPU utilization’s, 

message sizes, ect); 

• Further determination on how various hardware implementations can effect 

latencies; 

• Effects on how multiple processes at various priority levels effect message 

 latencies; and 

• Detailed analysis on how CPU utilization effects latency. 

 

From the measurements taken in this report, it was shown that TCP/IP queuing can be a 

major effect of message latency.   This thesis looked at one possible configuration.  The 

maximum queuing of this configuration was not addressed.  In addition, it may be 

important to understand what the worse case loading configuration could be.   

 Message maximum latencies were seen to be greater for CORBA than TCP/IP for 

the TAC-3 configuration.  Not enough measurements were taken to determine if the same 

is true for the TAC-4 configurations.  Additional measurements could be determine if 

indeed TAC-4 CORBA maximum latencies are greater then TCP/IP maximum latencies.

 This thesis demonstrated that hardware implementation can effect latency 

performance by providing unexpected results.  Additional measurements could be 
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obtained to identify why the TAC-4 does not perform as well as the TAC-3 for some 

configurations.  

 Setting process priority was demonstrated to have an effect on message latencies.  

It may be of use to determine how multiple processes should be prioritized relative to 

each other to ensure message latencies are within requirements. 

 CPU utilization was determined to have potentially significant effects on message 

latencies.  The CPU utilization’s in this work were at a relatively high level of granularity 

(i.e. 33%).  It may be of interest to further understand how CPU utilization effects 

message latency.  

 

Expand Latency Server.  The Latency Server could be extended to include the loading 

effects of different network technologies and/or different network topologies.   For 

instance, Ethernet based distributed systems may need to look on how collisions effect 

message latencies.  In addition, for a non-trivial system, the Latency Server should also be 

extended to take into account process scheduling and process priorities of the system 

workstations. 

 

Full System Support of QoS.  This work has shown that workstation resources have a 

significant effect on message latencies.  It would be desirable to provide a message 

communication system which not only utilize QoS to specify network resources but to 

also specify workstation resources as well. 

 

 This thesis identified numerous topics concerning COTS message 

communications systems.  As shown by this reaserch, this is an important topic which has 

many facets.  It is my hope that this thesis developed an adequate framework to aid 

further research for both the NSSN C3I System community and the real-time CORBA 

research group at URI. 
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 Appendix A 

 

CORBA MEASUREMENTS 
TAC-4 to TAC-4 
 

CORBA 64 byte Message Latency 
SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 
average 
max 

 
1.164 
42.029 

 
1.686 
21.407 

 
2.153 
23.591 

34-66%  2.521 
47.564 

3.177 
55.563 

67-100%   4.006 
42.75 

 

 

CORBA 128 byte Message Latency 
SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 
 

1.201 
21.255 

1.768 
32.141 

2.248 
25.182 

34-66%  2.568 
46.309 

3.310 
63.389 

67-100%   3.968 
38.611 

 

CORBA 256 byte Message Latency 
SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 
 

1.365 
18.616 

2.066 
25.989 

2.386 
24.663 

34-66%  2.846 
62.097 

3.533 
56.62 

67-100%   4.155 
42.447 

 

CORBA 512 byte Message Latency 
SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 
 

1.488 
18.471 

2.347 
22.998 

2.481 
31.78 

34-66%  2.922 
46.309 

3.725 
55.271 

67-100%   
 

4.355 
45.724 
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CORBA 1K byte Message Latency 
SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 
 

1.717 
21.88 

2.749 
26.105 

3.22 
24.273 

34-66%  
 

3.295 
44.22 

4.433 
63.029 

67-100%   
 

4.723 
40.77 

 

CORBA 2K byte Message Latency 
SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 
 

1.805 
13.12 

2.849 
26.697 

3.343 
27.233 

34-66%  3.364 
48.167 

4.511 
75.038 

67-100%  
 

 
 

5.170 
52.82 

 

CORBA 4K byte Message Latency 
SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 
 

2.422 
23.514 

3.719 
32.029 

4.244 
25.881 

34-66%  4.574 
47.502  

5.626 
63.767 

67-100%   
 

6.249 
42.861 

 

CORBA 8K byte Message Latency 
SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 
 

3.771 
199.555 

5.468 
200.64 

5.93 
199.957 

34-66%  
 

6.324 
203.043 

8.093 
199.996 

67-100%  
 

 
 

9.240 
202.487 

 
 
 



 96  

 
TAC-3 to TAC-3 
 

CORBA 64 byte Message Latency 
SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 
 

1.4551 
21.985 

1.775 
23.485 

2.210 
59.942 

34-66%  2.559 
40.593 

3.310 
88.096 

67-100%   4.0467 
88.183 

 

 

CORBA 128 byte Message Latency 
SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 
 

1.499 
21.985 

1.849 
23.939 

2.234 
58.15 

34-66%  2.812 
41.424 

3.635 
70.209 

67-100%   4.351 
95.602 

 

 
 
 

CORBA 256 byte Message Latency 

SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 
 

1.617 
15.749 

2.081 
24.453 

2.494 
42.137 

34-66%  3.0648 
40.005 

3.762 
74.069 

67-100%   
 

4.734 
91.806 

 

CORBA 512 byte Message Latency 

SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 
 

1.717 
21.537 

2.158 
24.069 

2.524 
60.21 

34-66%  3.108 
54.494 

3.963 
63.165 

67-100%   4.930 
99.809 
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CORBA 1K byte Message Latency 

SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 
 

1.918 
20.343 

2.458 
26.987 

2.916 
49.212 

34-66%  3.579 
54.494 

4.413 
67.916 

67-100%   5.521 
80.44 

 

CORBA 2K byte Message Latency 

SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 
 

2.100 
22.824 

2.664 
24.673 

3.299 
77.59 

34-66%  3.821 
41.399 

4.846 
71.511 

67-100%   5.644 
99.898 

 

CORBA 4K byte Message Latency 

SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 2.769 

24.61 
3.447 
26.52 

3.911 
71.852 

34-66%  
 

5.072 
58.748 

6.414 
95.681 

67-100%   6.636 
99.898 

 

CORBA 8K byte Message Latency 

SENDER/RECEIVER 0-33% 34-66% 67-100% 
 0-33% 
 

5.4 
32.428 

5.725 
27.422 

6.653 
62.845 

34-66%  8.028 
49.922 

9.40 
83.254 

67-100%   9.861 
127.43 
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TCP/IP MEASUREMENTS 

TAC-4 to TAC-4 
 

TCP/IP 64 byte Message Latency 

SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 
average 
max 

 
.656 
26.467 

 
1.098 
14.755 

 
1.493 
23.591 

34-66%  1.597 
283.303 

2.229 
34.968 

67-100%   2.949 
36.176 

 

TCP/IP 128 byte Message Latency 

SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% .682 

13.617 
1.167 
24.638 

1.518 
15.607 

34-66%  1.732 
25.003 

2.304 
27.171 

67-100%   3.193 
40.825 

 

TCP/IP 256 byte Message Latency 

SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% .840 

10.969 
1.399 
23.469 

1.776 
21.459 

34-66%  1.944 
30.399 

2.691 
41.398 

67-100%   3.365 
44.220 

 

TCP/IP 512 byte Message Latency 

SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% .951 

10.258 
1.552 
29.915 

1.930 
24.049 

34-66%  2.051 
30.877 

2.742 
46.293 

67-100%   3.567 
33.175 
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TCP/IP 1K byte Message Latency 

SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 1.153 

16.665 
1.827 
26.36 

2.090 
25.012 

34-66%  2.341 
22.029 

2.910  
43.388 

67-100%   3.903 
44.787 

 

TCP/IP 2K byte Message Latency 

SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 1.215 

49.99 
1.968 
18.804 

2.422 
20.582 

34-66%  2.530 
22.105 

3.185  
39.468 

67-100%   4.122 
33.428 

 

TCP/IP 4K byte Message Latency 

SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 1.709 

16.711 
2.596 
23.254 

3.112 
25.821 

34-66%  3.252 
22.203 

3.869 
40.781 

67-100%   4.749 
41.893 

 

TCP/IP 8K byte Message Latency 

SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 2.762 

13.724 
4.128 
30.782 

4.938 
20.403 

34-66%  4.952 
40.625 

6.081 
42.102 

67-100%   7.039 
44.943 
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TAC-3 to TAC-3 
 

TCP/IP 64 byte Message Latency 

SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% .654 

6.654 
.868 
21.642 

1.121 
59.649 

34-66%  .987 
31.974 

1.246 
50.917 

67-100%   1.990 
55.884 

 

TCP/IP 128 byte Message Latency 

SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% .671 

17.004 
.891 
22.723 

1.150 
58.143 

34-66%  1.041 
26.674 

1.328 
107.045 

67-100%   1.728 
56.679 

 

TCP/IP 256 byte Message Latency 

SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% .801 

17.125 
1.016 
20.836 

1.317 
58.388 

34-66%  1.251 
32.207 

1.435 
45.803 

67-100%   2.046 
87.467 

 

TCP/IP 512 byte Message Latency 

SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% .849 

17.138 
1.051 
21.514 

1.352 
68.189 

34-66%  1.343 
36.369 

1.664 
35.523 

67-100%   2.066 
77.693 
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TCP/IP 1K byte Message Latency 

SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% .979 

17.246 
1.180 
14.529 

1.448 
58.672 

34-66%  1.422 
36.435 

1.888 
48.328 

67-100%   2.082 
51.059 

 

TCP/IP 2K byte Message Latency 

SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 1.205 

17.120 
1.426 
15.465 

1.638 
69.664 

34-66%  1.722 
32.748 

2.297 
45.449 

67-100%   2.505 
74.170 

 

TCP/IP 4K byte Message Latency 

SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 1.693 

17.895 
1.933 
20.964 

2.27 
64.315 

34-66%  2.468 
45.843 

2.907  
41.481 

67-100%   3.418 
77.746 

 

TCP/IP 8K byte Message Latency 

SENDER/RECEIVER 0-33% 34-66% 67-100% 
0-33% 2.699 

17.842 
3.163 
22.727 

3.611 
60.060 

34-66%  3.983 
43.147 

4.558 
38.242 

67-100%   5.313 
73.580 
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