
RTSQL: EXTENDING THE SQL STANDARD

TO SUPPORT REAL-TIME DATABASES

BY

JANET JAMIE PRICHARD

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

APPLIED MATHEMATICAL SCIENCES

UNIVERSITY OF RHODE ISLAND

1995

DOCTOR OF PHILOSOPHY DISSERTATION

OF

JANET JAMIE PRICHARD

APPROVED:
Dissertation Committee

Major Professor

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

1995

Abstract

This dissertation extends the standard query language SQL to support real-time

databases to create RTSQL (Real-Time SQL). RTSQL includes extensions that

specify: temporal consistency constraints on data, timing constraints on execution,

bounds on use of system resources for predictability, and
exible transaction struc-

ture that relaxes traditional ACID transaction properties to better support real-time

requirements.

To aid in identifying the necessary constructs that were added to the language, a

model for real-time database systems was developed. The actual language constructs

were developed based upon this model, and a subset of the constructs implemented as

a prototype system. To evaluate the results, the implementation was tested for cor-

rect behavior, and the language constructs evaluated against requirements developed

by a standards organization.

Acknowledgments

It has been a long and winding road to the completion of this dissertation. At times,

the road seemed to have no end, just a series of hills that had to be conquered one

after the next. But through perseverance, and with the help of many good people

around me, I �nally made the �nish line.

To start, I must thank my �rst advisor and friend Joan Peckham. She helped

me make my dream of an academic career become a reality. She has served as a role

model, and provided me with all of the encouragement and support a student could

ask for.

Next, I thank my other advisor and friend, Victor Fay Wolfe. If it were not for his

support, I seriously doubt I would have been able to �nish this work. He helped me

make the right connections, and provided me with the technical guidance I needed

to �nish my degree.

Thanks to Michael Anthony Squadrito (who has a crush on Bev), who helped me

get my implementation o� the ground. Lisa Cingiser DiPippo has been a good friend

and great fellow researcher. And of course, there are all the folks in the RTSORAC

research group who helped solidify ideas and provided useful input.

There are also a number of folks here at URI I would like to thank for their help

and understanding over the years: Marge White, Lorraine Berube, Gerry Ladas,

Frank Carrano, Norm Finizio, Choudary Hanumara, and Olga Verbeek.

Finally, I must thank my husband Michael, for all of his love and understanding

during the last few months of this work. He is a good and loving husband and father,

and I want him to know that his support has meant the world to me. And let me at

last thank my children, Andrew Walter and Sarah Cathryn, for trying to understand

that Mom had to work a lot to \�nish her dissertation".

iii

Contents

Abstract ii

Acknowledgments iii

Table of Contents iv

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Motivation : 2
1.2 Research Goals : 7
1.3 Our Approach : 7
1.4 Outline of Dissertation : 8

2 Related Work 9
2.1 Real-time Database Requirements : 9

2.1.1 Real-time Processing Requirements : : : : : : : : : : : : : : : 11
2.1.2 Fault Tolerance Requirements : : : : : : : : : : : : : : : : : : 15

2.2 Language Support for Real-Time Databases : : : : : : : : : : : : : : 18
2.2.1 SQL2 - The Current Database Standard : : : : : : : : : : : : 18
2.2.2 Current Extensions to SQL : : : : : : : : : : : : : : : : : : : 23
2.2.3 Real-Time Languages : 24

3 The RTSORAC Model 26
3.1 Objects : 27

3.1.1 Attributes : 27
3.1.2 Methods : 28
3.1.3 Constraints : 29
3.1.4 Compatibility Function : 31

iv

3.2 Relationships : 31
3.2.1 Participants : 32
3.2.2 Interobject Constraints : 32

3.3 Transactions : 33
3.3.1 Operations : 34
3.3.2 Operation Constraints : 35
3.3.3 Precondition, Postcondition, Result : : : : : : : : : : : : : : : 35

3.4 RTSORAC Features in RTSQL : 35

4 Language Extensions 38
4.1 Constraints : 38

4.1.1 Temporal Consistency of Data : : : : : : : : : : : : : : : : : : 39
4.1.2 Timing Constraints on Execution : : : : : : : : : : : : : : : : 42
4.1.3 Condition Handlers : 45

4.2 Directives : 46
4.3 Transaction Structural Speci�cation : : : : : : : : : : : : : : : : : : : 50

4.3.1 RTSQL Flexible Transaction Concepts : : : : : : : : : : : : : 50
4.3.2 RTSQL Flexible Transaction Speci�cation : : : : : : : : : : : 52
4.3.3 Examples of RTSQL Flexible Transaction Structures : : : : : 55

4.4 Discussion : 57

5 Implementation 60
5.1 Interface to Zip RTDBMS : 61

5.1.1 Zip RTDBMS : 61
5.1.2 Interface Library : 64

5.2 RTSQL Preprocessor : 67
5.2.1 Program Structure : 71
5.2.2 Data De�nition Operations : : : : : : : : : : : : : : : : : : : 72
5.2.3 Basic Data Manipulation Operations : : : : : : : : : : : : : : 78
5.2.4 Condition Handling : 78
5.2.5 Timing Constraints on Actions : : : : : : : : : : : : : : : : : 83

5.3 Discussion : 90

6 Evaluation 93
6.1 Implementation Tests : 93

6.1.1 Test Descriptions : 93
6.1.2 Summary of Test Results : 95

6.2 DISWG Requirements Evaluation : 99
6.3 Standards Work : 103

v

7 Conclusion 105
7.1 Contributions : 105
7.2 Limitations and Future Work : 107

7.2.1 RTSORAC Model. : 107
7.2.2 RTSQL. : 108
7.2.3 Implementation. : 108

References 110

A RTSQL grammar 114

B Using the RTSQL Preprocessor 124
B.1 Using Zip RTDBMS : 124

B.1.1 Starting the Zip Database Server zerver : : : : : : : : : : : : 124
B.1.2 Creating a Zip RTDBMS Schema File : : : : : : : : : : : : : 125

B.2 Using the RTSQL Preprocessor : 126

C DISWG Requirements 128

Bibliography 133

vi

List of Tables

6.1 Implementation Results : 95
6.2 DISWG Requirements RTSQL Summary : : : : : : : : : : : : : : : : 99

vii

List of Figures

3.1 Object Characteristics in RTSORAC : : : : : : : : : : : : : : : : : : 27
3.2 Example of Train Object : 28
3.3 Relationship Characteristics in RTSORAC : : : : : : : : : : : : : : : 32
3.4 Example of Energy Management Relationship : : : : : : : : : : : 33
3.5 Transaction Characteristics in RTSORAC : : : : : : : : : : : : : : : 34

4.1 Abstract View of Flexible Transaction Structure : : : : : : : : : : : : 50
4.2 Flexible Subtransaction Structure : 51

5.1 System Architecture : 60
5.2 Zip RTDBMS Data De�nition : 61
5.3 Data Manipulation in Zip RTDBMS : : : : : : : : : : : : : : : : : : 63
5.4 Class De�nition for Zip RTDBMS Interface : : : : : : : : : : : : : : 65
5.5 Class De�nitions Relations and Attributes : : : : : : : : : : : : : : : 66
5.6 RTSQL Preprocessor : 68
5.7 Example of RTSQL Data De�nition and Data Manipulation Files : : 70
5.8 RTSQL Data De�nition File : 72
5.9 RTSQL Output File for Zip RTDBMS Schema : : : : : : : : : : : : : 73
5.10 RTSQL Output File for Interface : 74
5.11 check constraint Function Created by RTSQL Preprocessor : : : : 75
5.12 check time constraint function created by RTSQL preprocessor : : 76
5.13 Three-Valued Logic Tables for SQL : : : : : : : : : : : : : : : : : : : 77
5.14 Code Produced by Preprocesor for INSERT and SELECT : : : : : : : : 79
5.15 Class De�nitions for Statements and Blocks : : : : : : : : : : : : : : 80
5.16 Class Hierarchy for Blocks : 81
5.17 Environment Stack : 82
5.18 Flow of Control for EXIT and CONTINUE Handlers : : : : : : : : : 83
5.19 Three Cases Checked by check consistency Function : : : : : : : : 85
5.20 Placement of Timing Constraint Code : : : : : : : : : : : : : : : : : 89

6.1 Timeline of Events for Test 4 : 97
6.2 Examples of Insertion Points for busy wait(n) Routine : : : : : : : : 98

viii

Chapter 1

Introduction

Real-time databases are typically used to manage environmental data in computer

control applications, such as programmed stock trading, medical patient monitoring,

automated manufacturing, and military command and control. The environmental

data is read from sensors and stored in the real-time database. For example, in a

�nancial application for stock trading, a stock's price may be stored in the database,

but only considered valid for 30 seconds from when the value was generated. If the

value is not refreshed within that time period, it is said to be temporally inconsistent.

Also, there may be information required from the database that will be required to

determine whether a particular stock trade will generate a pro�t. This information

must be retrieved within given deadlines so that decisions can be made on whether

to actually initiate a stock trade. Thus, real-time databases are designed to sup-

port applications in which the freshness of data and the timeliness of processing are

important.

This dissertation extends the standard query language SQL to support real-time

databases to create RTSQL (Real-Time SQL). Query languages support the de�-

nition, manipulation, and control of data in a database system. For a real-time

database, the query language must be extended to support the expression of timing

constraints on both data and actions. To aid in identifying the necessary constructs

that should be added to the language, a model for real-time database systems was

developed. The actual language constructs were developed based upon this model,

1

and a subset of the constructs implemented as a prototype system. To evaluate

the results, the implementation was tested for correct behavior, and the language

constructs evaluated against requirements developed by a standards organization.

1.1 Motivation

A real-time database system has three distinguishing features: the requirement of

temporally consistent data, the requirement of timing constraints on executions, and

the requirement that certain executions exhibit predictable timing behavior [Ram93,

PDPW94, YWLS94]. These features are useful to time critical applications that

need to collect, modify, and retrieve shared data. Support for these features will add

new requirements to the database query language.

Data in a real-time database system must not only be logically consistent, but

temporally consistent as well. This is due to the fact that data used by time critical

applications must closely re
ect the current state of the application environment.

Data is collected at discreet intervals, and hence represents an approximation of

reality. As time passes, this approximation becomes less accurate, until we reach a

point at which the value is no longer re
ective of the state of the environment. It is

at this point in time that we say the data value is no longer temporally consistent.

Temporal consistency can be measured in two ways: absolute temporal consistency

and relative temporal consistency [Ram93]. A piece of data is considered absolutely

temporally consistent if and only if its age is within a speci�ed time interval. For

example, in a tracking system, the data corresponding to a contact, such as its

speed, should be updated often (e.g. every �ve seconds). In this case, the value of

the speed meets its absolute temporal consistency constraint as long as it is no more

than �ve seconds old. A set of data items is relatively temporally consistent if and

only if all of their ages are within a speci�ed interval. Relative temporal consistency

constraints are of interest when multiple data items are used in computations and

all data items must represent the \same" snapshot of the environment. For example,

if the tracking system computes the new location of a contact using the speed and

bearing data items, it is important that the ages of these data items be relatively

2

close (e.g. within two seconds).

The real-time database system should provide a means of detecting temporally

inconsistent data. When the data is found to be temporally inconsistent, appropriate

recovery actions can be taken. These actions may be speci�ed as part of the database

de�nition, or left to the user or application using the database system.

Actions in the database system are expressed using data manipulation state-

ments. These statements are usually grouped together into units called transactions.

Traditional transactions have been viewed as the means by which consistency and

correctness of the database is ensured. They adhere to the ACID properties (Atomic,

Consistent, Isolated, and Durable). Each of these properties is brie
y described be-

low:

Atomic - An atomic transaction implies the transaction runs in its

entirety or not at all (all or nothing execution).

Consistent - Given an initial consistent monolithic database state a trans-

action must transform the database to a new consistent state.

Consistency is de�ned by the expression of constraints on the

entire database.

Isolated - Transactions are required to have the property of indepen-

dent execution in conventional databases. Independence im-

plies that transactions act in isolation from all other transac-

tions and that there be no dependencies in execution among

transactions.

Durable - The durability property of transactions implies that the re-

sults of a transaction are persistent and permanent.

There are generally three types of transactions in a real-time database: sensor

transactions, update transactions and read-only transactions [Ram93]. Sensor trans-

actions are write-only transactions that obtain the state of the environment and

write the sensed data to the database. Sensor transactions are typically periodic.

3

Update transactions can both read from and write to the database either periodi-

cally or aperiodically. Update transactions may be used to write values derived from

computations or user input. Read-only transactions, such as some user queries, read

data from the database and may also be either periodic or aperiodic.

Timing constraints on statements and transactions come from one of two sources

(in this work, statements and transactions will be referred to as actions in the

database). First, temporal consistency requirements of the data impose timing con-

straints on actions. For instance, the period of a sensor transaction is dictated by the

temporal consistency constraints of the data item that it writes. Relative temporal

consistency requirements may also force timing constraints on actions. If two data

values are used together to derive a third value, the relative temporal consistency

requirement on the pair may place a stricter constraint on their updates than the

period imposed by the absolute temporal consistency of either one of the values.

The second source of timing constraints on actions is system requirements on

reaction time. For instance, a user may query the database for information and

request the result within a certain amount of time. Given the added dimension

of time on actions, one of the interesting areas of study in real-time databases is

that of transaction scheduling [BMHD89]. Not only must the schedules meet timing

constraints, thus meeting the temporal consistency requirements, they must also

maintain the logical (traditional) consistency of the data in the database.

Typically, there are two types timing constraints on actions: absolute timing

constraints and periodic timing constraints. Absolute timing constraints are used to

express earliest start times, latest start times, and latest �nish times. These absolute

timing constraints can be speci�ed using expressions that involve absolute time (clock

time) or relative time (an interval of time). Periodic timing constraints are used to

express periodic executions, that can be based upon absolute time intervals of the

data being updated.

RTSQL focuses on supporting soft real-time systems versus hard real-time sys-

tems. In hard real-time systems, violation of a timing constraint will have catas-

trophic consequences, so the system must guarantee that the timing constraints will

be met. In a soft real-time system, violation of timing constraints will not have

4

catastrophic consequences, but it is still not desirable. In these systems, some com-

pensating action is usually performed when the timing constraint is violated. Soft

real-time systems often recognize relative importance of transactions in the system,

and utilize both deadlines and an importance level in determining transaction sched-

ules.

The semantics of conventional transactions may also need to be rede�ned for

real-time database systems. The in
exibility of the conventional ACID transaction

properties often causes conservative execution of transactions that reduces real-time

performance. For instance, a transaction that contains two sets of operations on

two distinct portions of the database must wait to commit until all operations have

been performed (as required by the atomicity property). This conventional trans-

action design prevents parts of the transaction from committing early and releasing

data, even if there is no dependency on the rest of the transaction. The cost of this

simple design is a loss in data availability and/or unnecessary transaction aborts.

To better support real-time applications, researchers have investigated rede�nition

of various ACID requirements to allow for more
exibility and more data availabil-

ity [YWLS94, FWP94]. These de�nitions utilize semantic information to determine

to what degree the ACID properties must be enforced. The conventional database

transaction processing model has no a priori knowledge about transaction execution

or needs and can not therefore make a priori ordering decisions. Real-time trans-

action designers often have considerably more semantic information available. To

incorporate this information, a richer set of transaction semantics that is de�ned

by the database users (not by the database mangement system designers) must be

speci�ed. With increased semantic information available, the system can then make

better decisions on execution sequences.

The following summarizes the requirements, beyond that of conventional database

systems, of real-time database systems, :

� the absolute temporal consistency requirements of a data value

� relative temporal consistency requirements among a set of data values

� database partitions for enforcing consistency

5

� absolute timing constraints on statements and transactions

� periodic timing constraints on statements and transactions

� relative importance of transactions

� predictable timing behavior for certain situations

� relaxed ACID transaction properties.

Recently, there has been an e�ort to formalize the requirements of real-time

database systems. Two real-time database standards study activities, the ANSI

database systems study group (DBSSG) predictable real-time interface systems task

group (PRISTG) and the U.S. Navy's next generation computer resources (NGCR)

database management interface standards working group (DISWG) are studying real-

time extensions [FS94, For94]. PRISTG focused on examining the current state of

technology for real-time information management and determining the need for stan-

dardization in this area. They concluded that conventional databases lack support

for real-time, and that the technology is mature enough to pursue standardization

e�orts.

The work of the DISWG committee was more detailed in that they actually

generated a list of requirements for real-time databases (Appendix C). Their goal

was to establish interface standards for use in mission-critical computing systems.

Though the list of requirements is quite extensive, the expectation is that individual

DBMS products would implement various subsets. A complete discussion of the

requirements examined in this work appears in chapter 2.

The current SQL standard (SQL2) [MS92, Mel92] has no provisions for real-time

database support. The standard does have mechanisms for constraint expression,

support for expression of time, and rudimentary transaction structure { all of which

provide a basis for developing real-time database extensions. Constraints in SQL

provide a mechanism for specifying what constitutes correct data. For example,

constraints can be used to specify an allowable range of values for an data item, or

that the data value should not be left empty. In RTSQL, constraints are extended

in two ways. First, constraints on data are extended to specify the interval of time

that a data item is considered valid. Second, data manipulation statements and

6

transactions can have timing constraints speci�ed upon their execution. We also

introduce directives, which are added language features that express architectural

dependencies and resource limitations that are necessary for achieving predictable

timing behavior.

1.2 Research Goals

The goal of this work is to develop a set of language constructs which could be used as

a basis for creating a standard query language for real-time database systems. This

development includes speci�cation of the language constructs, evaluating the speci-

�cation for completeness against published requirements, and implementing some of

the constructs to evaluate their feasibility.

1.3 Our Approach

The DISWG requirements served as a basis for determining our extensions to SQL

for supporting real-time database systems. This lead to the development of a model

for real-time databases called RTSORAC (Real-Time Semantic Objects, Relation-

ships, and Constraints). This model was developed to provide a conceptual basis

for exploring the issues related to real-time databases and an abstract foundation on

which the constructs of RTSQL are based. In developing RTSQL, e�orts were made

to adhere to the philosophy of SQL as a declarative language. In a declarative lan-

guage, you specify what you want done, not how it is to be done. For example, SQL

provides a statement for retrieving information from the database called a SELECT

statement. Using this statement, you would retrieve the names of the students with

a grade point average greater than 3.0 as follows:

SELECT name FROM students WHERE gpa > 3.0

Note that the statement does not specify how the information is to be found,

that is left to the underlying system to determine.

7

Once the language constructs were developed, a subset of constructs was im-

plemented to produce a prototype system. This implementation was then tested

and evaluated. The constructs of RTSQL were also evaluated against requirements

developed by the NGCR DISWG committee.

1.4 Outline of Dissertation

In Chapter 2 we review related work, including a discussion of the DISWG require-

ments, the SQL standard, and real-time languages which in
uenced this work. Chap-

ter 3 de�nes our RTSORAC model for real-time databases. Chapter 4 describes the

language constructs of RTSQL. Chapter 5 describes the implementation of the pro-

totype system. Chapter 6 discusses the testing of the implementation, and examines

RTSQL against the DISWG requirements. Chapter 7 discusses our current e�orts

with the ANSI working groups, presents the contributions and limitations of our

work, and discusses future work.

8

Chapter 2

Related Work

This chapter describes some of the related work that has been done in the areas of

real-time database requirements and query languages. The �rst section will provide

an overview of the real-time database requirements developed by DISWG. The next

section will discuss the SQL standard and extensions to the standard currently un-

der consideration. This section will also discuss some of the features of real-time

programming languages, since many of the extensions in RTSQL were in
uenced by

these languages.

2.1 Real-time Database Requirements

The DISWG requirements for real-time database systems have been published in "Re-

quirements for Military Database Management Systems"[Gor93]. The requirements

fall into nine classes which are documented in [Gor93] as follows: (Note: MCCR -

Mission-critical computer resources)

(1) General requirements. This class speci�es general goals (e.g., scalability,
modularity, extensibility, con�gurability) of interface standards.

(2) Basic database management services. This class speci�es the basic ser-
vices typically provided by today's general-purpose DBMSs and which must be
included in NGCR DBMS interface standards.

(3) Distribution. This class addresses the distribution of data across homoge-
neous, tightly-coupled databases, which together form a single logical database

9

known as a distributed database. It speci�es requirements for distributed
database management system interfaces.

(4) Heterogeneity. This class addresses the distribution of data across hetero-
geneous, autonomous databases. It speci�es capabilities for remote database
access, global transactions, multidatabase systems, and federated database sys-
tems.

(5) Real-time processing. This class addresses the needs of MCCR DBMSs
for hard, �rm, and soft real-time processing. It speci�es capabilities for manag-
ing the updating of time-constrained data and the execution of time- constrained
transactions. The capabilities enable users and/or application programs to con-
trol resource usage in accordance with mission needs.

(6) Fault tolerance. This class addresses the needs of MCCR DBMSs for reli-
ability, availability, fault tolerance, and graceful degradation. It speci�es capa-
bilities for managing the collection of fault information and the formulation of
fault responses.

(7) Integrity. This class addresses the needs of MCCR DBMSs for data in-
tegrity. It speci�es several integrity-preserving mechanisms: domains, keys,
referential integrity constraints, assertions, triggers, and alerters.

(8) Security. This class addresses the needs of MCCR DBMSs for multilevel
security. It speci�es requirements for multilevel secure DBMSs, including la-
beling, mandatory and discretionary access control, identi�cation and authen-
tication, and auditing.

(9) Advanced database management services. This class speci�es some of the
functionality that is typically associated with object-oriented database manage-
ment systems and knowledge base management systems. Such advanced func-
tionality is required for the management of complex data and rules.

These requirements are quite extensive, and as such, the expectation is that no

single DBMS will be able to provide support for all of the requirements. Also, given

the breadth of topics within these requirements (such as distribution and heterogene-

ity), the expectation is that a suite of standards may be necessary to ful�ll all of the

requirements.

Of particular interest in this work are real-time processing class and the fault

tolerance class. The requirements in both of these classes is discussed in the following

sections.

10

2.1.1 Real-time Processing Requirements

Many of the extensions developed for RTSQL will address the requirements in this

class. The following paragraphs will provide the brief description of each of these

requirements as it appears in [Gor93] (including requirements numbers). A paragraph

which further clari�es the requirement may follow as needed.

3.5.2.1Modes of real-time. The NGCR DBMS interface standards shall provide

support for hard real-time, �rm real-time, and soft real-time modes of operation.

Three levels of real-time are identi�ed: hard real-time, �rm real-time, and soft

real-time. Recall from section 1.1 that in hard real-time systems, constraint viola-

tions will have catastrophic consequences, and in soft real-time systems, constraint

violations will not have catastrophic consequences, but are is still not desirable. Firm

real-time is similar to soft real-time in that constraint violations will not cause catas-

trophic consequences. But, in soft real-time systems, the results may still have some

value, even though the constraint is violated. For example, partial results might be

utilized to extrapolate a �nal result if the timing constraint is violated before all of

the data can be retrieved. In �rm real-time, the results are usually of no value if the

constraint is violated.

3.5.2.2 Real-time transactions. The NGCR DBMS interface standards shall

provide the capability for users to issue real-time transactions where ACID properties

(such as the isolation property, which can be relaxed via the speci�cation of alterna-

tive concurrency control correctness criteria) are applied selectively, and where start

events, deadlines, periods, and criticality of the real-time transactions are speci�ed.

(See Requirements 3.5.2.3 and 3.5.2.5.)

The start event speci�es an interval of time when a transaction may begin execu-

tion. The deadline speci�es the latest possible time the transaction must complete

execution. Periodic execution allows a transaction to run at regular intervals, for

example, every 30 seconds. Speci�cation of the criticality of a transaction provides

the underlying system with the relative importance of transactions to the system.

11

3.5.2.3 Concurrency control correctness criteria. The NGCR DBMS inter-

face standards shall provide the capability to specify concurrency control correctness

criteria. (See Requirements 3.5.2.5 and 3.5.2.6.)

This criteria is used to determine how concurrent access to shared data by trans-

actions should be handled. For example, one criteria might be to not allow any con-

current access to the data (mutual exclusion). Another might be to allow concurrent

reads of the data, but writes must be done exclusively (read/write locking)[BHG87].

A thorough overview of concurrency control techniques can be found in [DiP95].

3.5.2.4 Temporal consistency. The NGCR DBMS interface standards shall pro-

vide the capability for users to specify data temporal consistency constraints. (See

Requirements 3.5.2.5 and 3.5.2.7).

This requirementwas discussed in section 1.1. It allows users to specify an interval

of time in which the data is considered temporally valid.

3.5.2.5 Real-time scheduling. The NGCR DBMS interface standards shall pro-

vide DBMS real-time scheduling that attempts to maximize meeting timing constraints

and criticality (the synthesis of these two requirements is left unde�ned here) of trans-

actions, as well as attempting to maintain both logical and temporal consistency of

data. The NGCR DBMS interface standards shall require that real-time scheduling

support analysis of predictable timing behavior (e.g., by bounding priority inversion).

This requirement brings up two important ideas in real-time databases. First,

is the fact the a real-time database often has to strike a balance between the logi-

cal consistency of data and the temporal consistency of data[Ram93, Ulu92, Son90].

Traditional database systems focus on maintaining logical consistency of data, and

schedule transactions without concern for when the transaction will run, or how long

it will take to execute. In real-time databases, actions may have timing constraints

which must be met to maintain the temporal consistency of data. In some situations,

these timing constraints can only be met if the data logical consistency is sacri�ced.

Or it may be that the logical consistency can only be maintained if timing con-

straints are violated, leaving data temporally inconsistent. Since these scenarios are

12

often present in real-time database systems, a compromise is established through the

concept of imprecision.

There are two forms of imprecision that can be associated with a data value.

The �rst is logical imprecision, where the value of a data item has a delta value

associated with it. If the logical consistency of the data item is sacri�ced, then this

delta value is used to quantify the amount that the data value may di�er from what

it would have been without the sacri�ce. The second is temporal imprecision, where

the timestamp value associated with a data item also has a delta value associated

with it. In this case, the delta value is used to quantify the amount of time that has

elapsed since the value was properly updated. This could occur in situations where

temporal consistency is sacri�ced.

The second major idea is predictability[Ram93, YWLS94]. Predictabilty is most

often discussed in the context of timing constraints on actions and transactions. If

the system is provided with enough information, it may be able to predict whether

or not an action or transaction will be able to complete by its given deadline. This

information could include de�ning or computing the maximum amount of time it

takes to perform a certain action (worst case execution time). Computation of this

value is possible in situations where lower level operations have been bounded through

resource limits. For example, if a table of information has a maximum size, the time

it takes to search the table can be bounded.

3.5.2.6 Bounded logical imprecision. The NGCR DBMS interface standards

shall allow logical imprecision of data; it shall provide the capability to constrain

these imprecisions.

As mentioned in requirement 3.5.2.5, a logical imprecision of data may occur in

an attempt to meet timing constraints on actions. This requirement states that this

value should be quanti�ed and that there should be some mechanism for bounding

this value.

3.5.2.7 Bounded temporal imprecision. The NGCR DBMS interface standards

shall allow temporal imprecision of data; it shall provide the capability to constrain

13

these imprecisions.

As mentioned in requirement 3.5.2.5, a temporal imprecision of data may occur

in an attempt to maintain logical consistency of the data. This requirement states

that this value should be quanti�ed and that there should be some mechanism for

bounding this value.

3.5.2.8 Main memory data. The NGCR DBMS interface standards shall pro-

vide the capability to specify that certain parts of the database should be maintained

exclusively in main memory. The NGCR DBMS interface standards shall require

that the DBMS still be responsible for maintaining persistence of this main memory

data.

This requirement is intended to provide more predictable access times to data.

In a traditional database system, information is usually stored on secondary storage

devices such as disks. Getting information to and from such devices is often unpre-

dictable [Ram93]. If the information can be stored in main memory, this eliminates

the problem of unpredictable access time associated with secondary storage access.

3.5.2.9 Time fault tolerance. The NGCR DBMS interface standards shall sup-

port time fault tolerance. That is, violations of transaction timing constraints and

data temporal consistency constraints are faults and shall be treated as such by the

fault-tolerance capabilities of the standard, as speci�ed in Section 3.6.

This requirement is addressed in more depth in the next section. It simply states

that if timing constraints on data or actions are violated, the system should be able

to detect these violations.

3.5.2.10 Resource utilization limits. The NGCR DBMS interface standards

shall allow the speci�cation of worst-case resource utilization limits (at least, CPU

time, memory, devices, and data objects) for transactions. Violations of these lim-

its are faults and shall be treated as such by the fault-tolerance capabilities of the

standard, as speci�ed in Section 3.6.

14

3.5.2.11 Compilable DML. The NGCR DBMS interface standards shall provide

a compilable DML that yields a minimal run-time burden.

In real-time systems, many of the transactions are known apriori. This require-

ment recognizes that fact, and provides for these transactions to be compiled into a

form more readily executed by the database system.

2.1.2 Fault Tolerance Requirements

Real-time databases are often used in systems where the database must be reliable.

It must be able to continue execution, possibly with degraded functionality or perfor-

mance, despite failure of some of its constituent components[Gor93]. These failures

are considered to be faults in the database system. Some of these requirements in

this section are beyond the scope of RTSQL, but have been left here for complete-

ness. As in the previous section, the requirements of interest will be followed by a

paragraph which further clari�es the requirement as needed.

3.6.2.1 Collection of fault information. The NGCR DBMS interface stan-

dards shall specify the fault information (e.g., the component that failed, the number

of times the fault occurred, when the faults occurred) to be collected. The standard

shall also specify a minimal set of faults for which the speci�ed information shall be

collected. This set shall include, but is not limited to, the following faults:

� Database constraint violations (e.g., range constraints, referential integrity con-

straints, temporal consistency constraints).

� Transaction timing faults.

� Transaction resource utilization violations.

This requirement is somewhat self explanatory. It simply states that the system

should not only recognize that a fault has occurred, but should maintain information

related to the fault. This is already a common practice of most commercially available

database systems. The primary di�erence here is that this should be extended to

15

cover constraint violations for time constrained data and actions, as well as possible

resource limit violations.

3.6.2.2 Retrieval of fault information. The NGCR DBMS interface standards

shall provide for the retrieval of DBMS fault information.

Not only should the database system maintain the information related to the

fault, but provide some mechanism for retrieving it. Again, this is a feature already

found in most commercially available database systems.

3.6.2.3 Initiation of diagnostic tests. The NGCR DBMS interface standards

shall provide for the initiation of DBMS diagnostic tests.

This requirement is beyond the scope of RTSQL.

3.6.2.4 Retrieval of results of diagnostic tests. The NGCR DBMS interface

standards shall provide for the retrieval of the results of DBMS diagnostic tests.

This requirement is beyond the scope of RTSQL.

3.6.2.5 Operational status. The NGCR DBMS interface standards shall provide

access to the operational status of DBMS components.

This requirement is beyond the scope of RTSQL.

3.6.2.6 Fault detection thresholds. The NGCR DBMS interface standards shall

provide for the speci�cation of fault detection thresholds, which shall include, but not

be limited to, the number of faults that if detected within a certain amount of time is

treated as a failure (e.g., the number of retry attempts of aborted transactions before

a failure of that transaction is reported).

Most database systems simply recognize that a fault has occurred, they provide

no mechanism for di�erentiating the �rst occurrence from a number of occurrences.

In real-time systems, the frequency of some operations in the database (e.g. every

millisecond) make this an unreasonable assumption.

16

3.6.2.7 Speci�cation of fault responses. The NGCR DBMS interface standards

shall provide for the speci�cation of actions to be taken at the occurrence of a fault.

They shall support at least the following actions:

� Restart of a speci�ed set of transactions at a database's speci�ed past state or

with only a speci�ed part of the database replaced by its past state.

� Rollback of speci�ed transactions that have started, but not yet committed, so

that their e�ects are not realized in the database.

� Use of speci�ed backup components as primary components (e.g. other versions

of the database).

� Providing noti�cation of a fault to a speci�ed set of DBMS components to allow

them to initiate recovery.

� Providing noti�cation of a fault to a speci�ed location outside of the DBMS.

� Recon�guration of DBMS components (see next requirement).

Furthermore, the NGCR DBMS interface standards shall allow for each of these

actions to be applied selectively. Also, these actions may fall under time-constrained

execution described in the "Real-Time Processing" section.

The �rst two actions, \restart of a speci�ed set of transactions" and \rollback

of speci�ed transactions" are directly related to the commit and abort semantics of

transactions - the idea of all or nothing execution of the actions of a transaction.

Traditional database systems usually provide a recovery mechanism which maintains

this view of a transaction.

The third point, \use of speci�ed backup components", addressed component

failure, an issue beyond the scope of RTSQL.

The fourth point, \providing noti�cation" is one of the most important aspects

of fault tolerance. This point addresses the need for the system to support some

mechanism for the user to specify a recovery action which should be taken if a fault

occurs.

The �fth and sixth points are beyond the scope of RTSQL.

17

3.6.2.8 Recon�guration. The NGCR DBMS interface standards shall support dy-

namic recon�guration of the DBMS components based on recon�guration of the un-

derlying operating system and hardware. Recon�guration includes, but is not limited

to, enabling/disabling components, adding/deleting components as members of speci-

�ed groups and reassigning resources to components. Recon�guration must be allowed

as a response to a fault, as in the previous requirements, or at the discretion of certain

DBMS components.

This requirement is beyond the scope of RTSQL.

3.6.2.9 Replicated components. The NGCR DBMS interface standards shall not

preclude the use of replicated components.

This requirement is beyond the scope of RTSQL.

2.2 Language Support for Real-Time Databases

Though a number of database languages exist, this work will be based upon the

ANSI/ISO standard database language SQL. SQL was speci�cally chosen because it

represents an e�ort by the database community to provide a common language for

accessing a variety of database systems. The speci�cation of SQL[Mel92] also clearly

de�nes the semantics of the statements which constitute the language.

This section will provide an overview of SQL. It will also discuss other major

extensions to the language which currently exist. This is then followed by a discussion

of common features of real-time languages, in particular RTC[WDL93], which has

in
uenced the development of RTSQL.

2.2.1 SQL2 - The Current Database Standard

Standardization e�orts for database management systems are relatively new [Gal91].

The American National Standards Institute (ANSI) and the International Stan-

dards Organization (ISO) standardization groups �rst approved the database lan-

guage standard SQL in 1986. A revised version, called SQL2, was approved in 1992.

18

Currently, ANSI has working groups determining the next revisions to SQL, often

referred to as SQL3. Some of the features under development in SQL3 include sup-

port for abstract data types and objects, triggers, and condition handling (including

exception handling). Other e�orts include support for persistent stored modules

(SQL/PSM) [Mel95] and remote data access (SQL/RDA) [RDA]. There have also

been a number of e�orts to create extensions to the standard for various special

purposes including: security [ST90], temporal data [Sno94], and multi-media data

[Gal92].

The ANSI charter is to serve as an independent, voluntary institution for the

development, management, and coordination of national standards. Within ANSI

is the Computers and Information Processing Committee (X3). X3 is responsible

for the development and maintenance of the standard database language SQL. Or-

ganizations can join the committee and send any number of representatives to the

meetings, which are held six times a year. Each organization is allowed to have one

representative that is known as the voting member. This individual represents the

interests of the organization. Many of the major vendors of commercially available

database systems participate in this committee including Sybase, IBM, Oracle, Mi-

crosoft, and Borland just to mention a few. Other members of the committee include

the National Institute for Standards (NIST), and many branches of the military, in-

cluding the Army and the Navy. Note that there are few academic participants in

this process. This is primarily due to the cost involved with membership, and the

attendance requirements which incur high travel costs. Also note that each organi-

zation can have only one voting member, this is to keep any one organization from

dictating what the standard will contain. But, interestingly enough, any small com-

pany or organization which joins the committee has the same voting power as a large

corporation such as Microsoft.

The current SQL standard (SQL2) [MS92, Mel92] has some provisions that can

provide the basis for real-time database support. The standard provides mechanisms

for constraint expression, support for expression of time, and rudimentary transaction

structure. Although these features provide a basis for developing real-time database

extensions, further extensions are necessary. These include extending the notion of

19

constraints to time, providing mechanisms to specify low level information to the

database system, and de�ning a more
exible transaction model.

SQL2 supports the de�nition, manipulation, and control of data in a relational

database system. It based on the model of a single, monolithic database comprised of

a collection of relational tables. Statements in SQL2 are categorized as data manipu-

lation statements, data de�nition statements, and database management statements

[MS93]. Data de�nition statements are used to de�ne and/or modify the structure

of the database. For example, data de�nition statements are used to de�ne the

structure of the tables in the database. Data manipulation statements are used to

retrieve, store, remove, and update data stored in the tables in the database. Man-

agement statements are used to specify parameters that can a�ect the execution

of other statements. For example, management statements can be used to control

access to portions of the database based upon user identi�cations.

The following paragraphs highlight some of the features of SQL2. A more detailed

description of condition handling in SQL2/PSM is also provided since condition

handling is a feature that is important in RTSQL.

Data Types. SQL2 provides a limited number of data types to the end user. It

also provides a CREATE DOMAIN statement that allows the user to associate a more

meaningful name with one of the provided data types. Real-time applications such

as weather forecasting, medical monitoring, and defense systems need a variety of

non-standard data types speci�c to their applications domain. But current e�orts

within SQL3 and SQL/MM are already addressing representation of more complex

data types. SQL3 provides BLOB (Binary Large OBjects) and CLOB (Character

Large OBject) for large unstructured data. SQL3 also supports the de�nition of

objects that have attributes and methods. SQL/MM e�orts are currently focusing

on full text data and spatial data. Thus, RTSQL will not address complex data type

de�nitions directly.

Constraints. Constraints in SQL2 are mechanisms for specifying the logical con-

sistency requirements of data. They can be speci�ed on columns, tables, and as stand

20

alone entities (called assertions) within the database. For example, a constraint can

be used to specify a range of values for a data item, or to make sure that a foreign

key in one table corresponds to a primary key in another.

Condition Handling. One area currently being addressed by the SQL2/PSM

project[Mel95] is support for condition handling. Condition handling allows a more

active response to the completion of an SQL statement. When a statement is exe-

cuted, it will either raise an exception condition or a completion condition. A number

of system-de�ned exception and completion conditions are provided through a status

parameter called SQLSTATE. This parameter is a character string which contains codes

representing the completion status of the SQL statement. SQL/PSM allows a con-

dition handler to be associated with these conditions, or with user-de�ned exception

conditions.

The scope of a condition handler in SQL2/PSM is speci�ed by using a compound

statement. This compound statement may contain one or more statements, condition

handler declarations, and local variable declarations. Thus, a declaration of a condi-

tion handler will always appear in the context of a compound statement. If a single

statement is to have its own condition handlers, then a compound statement contain-

ing that single statement must be created. A condition handler is instantiated when

the compound statement containing it is executed. The handler is destroyed when

the compound statement completes execution. Thus, when a condition is raised, if

there is a corresponding handler in the set of instantiated condition handlers, it is

executed. If an exception condition occurs during the execution of a statement, and

there is no corresponding condition handler, it becomes an \unhandled exception"

and execution of the current statement is halted. If a completion condition occurs

when a statement is executed, and no condition handler can be located, the condition

is ignored, and execution continues at the statement following the one raising the

completion condition.

Two models of condition handling are supported, the termination model and the

resumption model. The �rst model, the termination model, is primarily intended

21

to be used with exception conditions. In this model, when the outcome of a state-

ment is known, control is passed to the appropriate condition handler (if it exists),

and execution of the corresponding frame is abandoned. Upon completion of the

condition handler, control is returned to the same point at which the original frame

was to return. This model is supported by using the handler types EXIT and UNDO.

A handler of type EXIT behaves as stated above, whereas a handler of type UNDO

will do a rollback of all the changes in the corresponding frame before executing the

<handler action>. In both cases, the remainder of the original frame is abandoned.

The second model is the resumption model. This model allows the frame to

resume execution after the condition is handled. There are two types of handlers

corresponding to this model, CONTINUE and REDO. A handler of type CONTINUE, after

executing the <handler action>, will return control to the statement following the

one that caused the handler to be invoked. A handler of type REDO will cause a

rollback of the changes in the corresponding frame, execute the <handler action>,

then return control to the �rst statement of the original frame.

Time Speci�cation. SQL2 provides su�cient syntax and semantics for speci�ca-

tion of timing expressions. There are three datetime data types: DATE, TIME, and

TIMESTAMP. These data types can be used to express absolute time, such as 9am.

There is also an interval data type called INTERVAL, that can be used to express a

period of time, such as 5 minutes. SQL also supports three datetime valued functions:

CURRENT DATE returns the current date, CURRENT TIME returns the current time, and

CURRENT TIMESTAMP returns the current date concatenated with the current time.

The arithmetic operators +, -, *, and /, and the usual comparison operators (=, <>,

<, <=, >, >=) have been de�ned over datetime data types and interval data types.

TSQL2 [Sno94] has proposed a precise de�nition on representation of time within

the database. This de�nition includes the concept that time has a discrete represen-

tation, and that the smallest unit of time is called a chronon.

Transactions. SQL2 has only very basic capabilities for specifying the notion of a

transaction. A transaction is a sequence of SQL statements that adhere to the ACID

22

properties [BHG87, OV91]. The ACID properties are: Atomicity, Consistency, Iso-

lation and Durability of transaction execution. An atomic transaction requires all or

nothing execution. Consistency requires that transactions given an initial consistent

database state transform the database to a new consistent state. Consistency is de-

termined by the evaluation of constraints de�ned on the (entire) database. Isolation

requires that a transaction execute in virtual isolation from all other transactions

and that there be no dependencies in execution between transactions. Durability

requires that the results of a transaction are persistent and permanent.

2.2.2 Current Extensions to SQL

A number of specialized areas are currently being addressed by the standards com-

mittee. A brief description of each of these ares is provided below.

Temporal Query Languages. One important use of database systems is the

ability to archive information. These database systems, known as temporal database

systems, provide mechanisms for maintaining the time interval that a set of data was

valid. For example, using an employee database, you might want to determine an

employee's salary in May of 1990 and June of 1993. Presumably the employee's salary

will be di�erent on those two dates from what it is now. The fact that the database

system maintains this salary history is a characteristic of temporal databases.

Note that this idea of data and time intervals di�ers from that considered in real-

time database systems. In a temporal database, the time period that a set of data

is valid is an integral part of the information. In a real-time database, the interval

is viewed as a constraint on the data.

Multi-media. Traditional database systems o�er a limited set of data types to the

end user. Within the last few years there has been a proliferation of more complex

data such as sound, pictures, and animation available in a digitized form which can

be stored on a computer. To address the need to store this information within a

database system a subgroup was formed by the standards committee to examine

these complex data types.

23

2.2.3 Real-Time Languages

Real-time programming languages usually provide some mechanism of expressing

timing constraints and execution constraints on operations. In a database system,

the data manipulation language is the portion of the query language which provides

the operations for retrieving and modifying the data stored in the system. In a

real-time database system, the data manipulation language also needs to provide

primitives for expressing timing constraints and execution constraints on operations

and transactions. Thus, many of the features found in real-time languages could be

incorporated into a data manipulation language for a RTDBS. A brief summary of

these features follows in the paragraphs below.

Timing Constraints. Timing constraints are used to express the start times and

deadlines (or completion times) of operations. These constraints may specify an

interval of time in which some action must start or complete execution. Timing con-

straints may also be used to specify periodic execution of an action. Some languages,

such as Ada, only provide only very primitive timing constraints such as a delay

clause. Others, such as RTC [WDL93] provide a more complete set of primitives in-

cluding after and before clauses that can be used to specify the earliest starting time

and the latest starting time respectively for an action. RTC also provides clauses for

the completion time and maximum execution time of an action. In FLEX [LN88],

limits on time and resources are speci�ed in a constraint block. These limits include

the maximum duration of the block, and the earliest start time and �nish time for

the block. In FLEX, the start and �nish times can be based upon start and �nish

times of other blocks. Real-Time Euclid [KS86] requires every program to express its

timing constraints, and forbids constructs (such as recursion) that take arbitrarily

long to execute.

Execution Constraints. Execution constraints are used to express synchronous

and asynchronous operation execution and the relative order of the operation ex-

ecutions (e.g. precedence, simultanaity). For example, RTC provides a clause for

24

specifying that a set of actions be executed simultaneously. Ada provides a rende-

vous mechanism which allows tasks to synchronize their execution with other tasks

in predetermined ways. Other languages, such as C, provide easy access to operating

system primitives that can be used to generate signals and can be used to wait until

a signal is posted. These primitives can be used to establish simple synchroniza-

tion. In Real-Time Euclid, a signal and a wait primitive are provided where the wait

primitive has been extended to specify a time bound.

Exception Handling. Most real-time languages provide a set of language con-

structs for expressing constraints. They also usually provide a mechanism for recov-

ery should a constraint be violated (exception handling). The underlying run-time

system must provide mechanisms which can be accessed from the programming lan-

guage to determine if a constraint has been violated. Many languages, such as Ada

and C++, provide an exception handling mechanism that allows a user to react to

user or system de�ned exception conditions. For example, an exception handler could

be speci�ed to handle a divide by zero error. Real-Time Euclid, Flex, and RTC all

provide exception handling for timing constraint violations. Real-Time Euclid also

provides time-bounded exception handlers.

Summary. Many of the timing constraints speci�ed on actions in RTSQL have a

basis in real-time programming languages (RTC, Flex, Real-Time Euclid). Also, the

ability to react to violations of these constraints (which can be speci�ed in RTSQL)

is another feature common to real-time programming languages. This work in the

area of real-time languages provides a strong basis for many of the timing constraint

constructs in RTSQL.

25

Chapter 3

The RTSORAC Model

To aid in the development of the language constructs of RTSQL, a conceptual model

called RTSORAC was developed for real-time databases. The RTSORAC model is

loosely based upon the ER (Entity Relationship) model[Che76]. The ER model pro-

vides mechanisms not only for modeling data, but relationships between data as well.

One of the strengths of the ER model is its ability to maintain semantic information

about the data. The RTSORAC model provides these capabilities, and extends them

for real-time. It also has an additional component for modeling transactions.

Though the RTSORAC model was originally designed to support real-time

object-oriented databases, it is general enough to be used as a conceptual model for

other database architectures, such as relational databases. The RTSORAC model

provides a foundation for many of the language constructs that appear in RTSQL,

especially in the areas of constraint speci�cation. RTSORAC also provides the foun-

dation for the transaction speci�cations in RTSQL. This chapter will �rst provide a

detailed description of the RTSORAC model.

RTSORAC has three components that model the properties of a real-time

database: objects, relationships and transactions. Objects represent data-base en-

tities. They are used to specify the structure of the data and to specify constraints

on the data. Relationships represent associations among the database objects. They

are used to specify associations between objects and to specify constraints on groups

of objects participating in the relationship. Transactions are executable entities that

26

Object = hN;A;M;C;CF i
N = UniqueID

A = fa1; a2; :::; amg where attribute ai = hNa; V; T; Ii
M = fm1;m2; :::;mng where method mi = hNm; Arg;Exc;Op;OCi
C = fc1; c2; :::; csg where constraint ci = hNc; AttrSet; P red;ERi
CF = compatibility function

Figure 3.1: Object Characteristics in RTSORAC

access the objects and relationships in the database. The chapter will conclude with

a discussion of the features of the RTSORAC model which will appear in RTSQL.

3.1 Objects

An object (Figure 3.1) consists of �ve components, hN;A;M;C;CF i, where N is a

unique name or identi�er, A is a set of attributes, M is a set of methods, C is a set

of constraints, and CF is a compatibility function. Attributes, methods, constraints,

and the compatibility function are described below. Figure 3.2 illustrates an example

of a Train object (adapted from [Boo91]) for storing information about a railroad

engine in a database.

3.1.1 Attributes

A is set of attributes for the object, where each attribute is characterized by

hNa; V; T; Ii. Na is the name of the attribute. The second �eld, V , is used to

store the value of the attribute, and may be of some complex data type. The next

�eld, T is used to store the timestamp of the attribute, and is of some data type

capable of expressing a time. Access to the timestamp of an attribute is necessary

for determining temporal consistency of the attribute. For example, in the Train

object, there is an attribute for storing the oil pressure called OilPressure to which

a sensor regularly provides readings. This update is expected every thirty seconds,

thus the OilPressure attribute is considered temporally inconsistent if the update

does not occur within that time frame. The timestamp value of the OilPressure

27

Get_OilTemp()

M

C : Pred

N Train0294

CF

...

A

OilPressure

FuelQuantity

Name

...

OilPressure > 5

OilPressure.Time >
 Now-30*seconds

EngineRPM

ShowLog(LogName)

Get_OilPressure()

ThrottleSetting

Operator Put_OilPressure(OPreading)

Figure 3.2: Example of Train Object

attribute must be utilized by the system to determine that the update did not occur

as expected.

The last �eld I is used to store the amount of logical imprecision associated with

the attribute, and is of the same type as the value �eld V . In order to meet real-time

constraints it may not be possible to maintain precise data values. Furthermore,

many real-time control applications allow a certain amount of imprecision. For in-

stance, within the Train object, the value of OilPressure attribute may not have

to be precise.

3.1.2 Methods

The third component of an object, M , is a set of methods, where each method is

of the form hNm; Arg;Exc;Op;OCi. Nm is the name of the method. Arg is a set

of arguments for the method, where each argument has the same components as an

attribute, and is used to pass information in and/or out of the method. Exc is a set

of exceptions that may be raised by the method to signal that the method has ter-

minated abnormally.Op is a set of operations which represent the implementation of

the method. These operations include statements for conditional branching, looping,

I/O, and reads and writes to an attribute's value, time, and imprecision �elds.

The last characteristic of a method, OC, is a set of operation constraints. An

operation constraint is of the form hNoc; OpSet; P red;ERi where Noc is the name

of the operation constraint, OpSet is a subset of the operations in Op, Pred is

a Boolean expression, and ER is an enforcement rule. The predicate is speci�ed

28

over OpSet to express precedence constraints, execution constraints, and timing con-

straints [WDL93]. The enforcement rule is used to express the action to take if the

predicate evaluates to false. A more complete description of an enforcement rule can

be found in the next section on constraints.

Here is an example of an operation constraint predicate in the Train object:

Pred : complete(Put OilPressure) < NOW + 5*seconds

A deadline of NOW + 5*seconds has been speci�ed for the completion of the

Put OilPressuremethod. Note the use of a special atom complete(e), which rep-

resents the completion time of the executable entity e. Other atoms that are useful

in the expression of timing constraints include start(e), wcet(e), and request(e)

which represent the execution start time, worst case execution time, and the execu-

tion request time of entity e respectively.

3.1.3 Constraints

The fourth component of an object is a set of constraints, C, which per-

mits the speci�cation of correct object state. Each constraint is of the form

hNc; AttrSet; P red;ERi. Nc is the name of the constraint. AttrSet is a subset

of attributes of the object. Pred is a Boolean expression that is speci�ed using

attributes from the AttrSet. The predicate can be used to express the logical and

temporal consistency requirements of the data stored in the object by referring to

the value, time, and imprecision �elds of the attributes in the set.

The enforcement rule (ER) is executed when the predicate evaluates to false,

and is of the form hExc;Op;OCi. As with methods, Exc is a set of exceptions

that the enforcement rule may signal, Op is a set of operations that represent the

implementation of the enforcement rule, and OC is a set of operation constraints on

the execution of the enforcement rule.

Logical and temporal consistency constraints on data require two distinct method-

ologies for evaluation. Predicates based upon logical consistency requirements are

evaluated when write operations are performed on the attributes in AttrSet. All

writes in the database are the result of a transaction which may be either user

29

initiated or system initiated. Hence, an enforcement rule associated with such a

predicate will always be executed in the context of a transaction. This execution

may be synchronous or asynchronous and may involve signaling an exception that

is propagated back to the transaction. Predicates based upon temporal consistency

requirements may be violated simply due to the passage of time and the semantics

of predicate evaluation can vary. Once a constraint violation has been detected, the

corresponding enforcement rule is executed. It is possible that there is no context

(such as a transaction) for the execution of the enforcement rule. In this case the

implementation must provide a means of handling exceptions raised outside of the

context of a transaction, perhaps through the use of a monitor that can detect and

act upon signaled exceptions.

For example, as mentioned earlier, the Train object has an oil pressure attribute

that is updated with the latest sensor reading every thirty seconds. To maintain the

temporal consistency of this attribute, the following constraint is de�ned:

N : OilPressure avi

AttrSet : fOilPressureg

Pred : OilPressure.time <= Now - 30*seconds

ER : if Missed <= 2 then

OilPressure.time = Now

Missed = Missed + 1

signal OilPressure Warning

else signal OilPressure Alert

The enforcement rule speci�es that if only one or two of the readings have been

missed, a counter is incremented indicating that a reading has been missed and a

warning is signaled using the exception OilPressure Warning. If more than two

readings have been missed, then an exception OilPressure Alert is signaled, which

might lead to a message being sent to the train operator. The counter Missed is

reset to zero whenever a new sensor reading is written to attribute OilPressure.

30

3.1.4 Compatibility Function

The last component of an object, CF , is a compatibility function that expresses

the semantics of simultaneous execution of each ordered pair of methods in the

object. For each ordered pair of methods, (mi;mj), a Boolean expression (BEi;j)is

de�ned. BEi;j is evaluated to determine whether or not mi and mjcan execute

concurrently. In many object-oriented systems, the execution of a single method of

an object prevents any other methods of the object from being executed, i.e. the

entire object is locked upon invocation of a single method. Through the use of

the compatibility function, the designer of an object can allow more
exibility by

de�ning the semantics of the compatibility of each pair of methods. By allowing

a higher degree of concurrent access to the object through its methods, perhaps

even relaxing serializability, the a�ected data may become imprecise. An in depth

discussion of the semantic locking technique that utilizes the compatibility function

to provide concurrency control to an object in RTSORAC can be found in [DW93].

Consider the following examples of compatibility function speci�cations:

CF(Get OilPressure(), Get OilTemp()) = TRUE

CF(Put OilPressure(OP reading), ShowLog(Log)) = (Log <> "OilPressure")

In the �rst example, the compatibility function is used to specify that the meth-

ods Get OilPressure and Get OilTemp of the Train object can always run con-

currently (always TRUE). This is appropriate since these two methods operate on

di�erent attributes, OilPressure and OilTemp. The second example speci�es that

Put OilPressure and ShowLog can run concurrently as long as the log to be dis-

played is not \OilPressure". If the requested log is \OilPressure", then the execution

of the ShowLog method may be delayed or aborted.

3.2 Relationships

Relationships represent aggregations of two or more objects. In the RTSORAC

model, a relationship (Figure 3.3) consists of hN;A;M;C;CF; P; ICi. The �rst �ve

components of a relationship are identical to the same components in the de�nition

31

Relationship = hN;A;M;C;CF; P; ICi
N = UniqueID

A = fa1; a2; :::; amg where attribute ai = hNa; V; T; Ii
M = fm1;m2; :::;mng where method mi = hNm; Arg;Exc;Op;OCi
C = fc1; c2; :::; crg where constraint ci = hNc; AttrSet; P red;ERi
CF = compatibility function
P = fp1; p2; :::; psg where participant pi = hNp; OT;Cardi
IC = fic1; ic2; :::; ictg where interobject constraint

ici = hNic; PartSet; P red;ERi

Figure 3.3: Relationship Characteristics in RTSORAC

of an object. In addition, objects that can participate in the relationship are speci�ed

in the participant set P , and a set of interobject constraints is speci�ed in IC.

Figure 3.4 illustrates an example of a Energy Management relationship for

relating a Train object with a Track object. The Track object stores information

such as track pro�le and grade, speed limits, maximum load, and power available.

The energy management relationship uses both train and track information to de-

termine fuel e�cient throttle and brake settings.

3.2.1 Participants

P is a set of participants in the relationship, each participant is of the form

hNp; OT;Cardi. Np is the name of the participant. OT is the type of the object

participating in the relationship. Card is the cardinality of the participant, which

is either single or multi [DG91]. Constraints can be used to express cardinality re-

quirements of the relationship, such as minimum and maximum cardinality of the

participants. In Figure 3.4, Train and Track are single cardinality participants.

3.2.2 Interobject Constraints

IC is a set of interobject constraints placed on objects in the participant set, and is of

the form hNic; PartSet; P red;ERi. Nic, Pred, and ER are as in object constraints,

and PartSet is a subset of the relationship's participant set P . The predicate is

expressed using objects from the PartSet, allowing the constraint to be speci�ed

32

N EnergyMgt35
M

CF

A

...

TrackTrain

Train.Get_Speed() <
 Track.Speed_Limit(Train.Get_Location())

IC : Pred

OptimalThrottleSetting
BestSpeed ...

C : Pred

BestSpeed < 200 Get_BestSpeed()

Get_OptimalThrottleSetting()

C A

M

...

CF

C A

M

...

CF

Track0527NN Train0605

Figure 3.4: Example of Energy Management Relationship

over multiple objects participating in the relationship. Enforcement rules are de�ned

as before by hExc;Op;OCi, however the operations Op can now include invocations

of methods of the objects participating in the relationship.

As an example of an interobject constraint, consider the Energy Manage-

mentrelationship in Figure 3.4. A Train object will be on one speci�c segment of

track, represented by the Track object participating in the relationship. The train

should obey the speed limits set on the track, so the following interobject constraint

predicate could be speci�ed:

Pred : Train.Get Speed() < Track.Speed Limit(Train.Get Location())

If the speed of the train exceeds the speed limit posted at the train's location on the

track, then the corresponding enforcement rule signals SpeedLimitExceeded.

3.3 Transactions

A transaction has six components, hNt; O;OC;PreCond; PostCond;Resulti, where

Nt is a unique name or identi�er, O is a set of operations, OC is a set of operation

constraints, PreCond is a precondition, PostCond is a postcondition, and Result is

the result of the transaction. Each of these components is brie
y described below.

33

Transaction = hN;O;OC;PreCond; PostCond;Resulti
N = UniqueID

O = fo1; o2; :::; omg where oi is an operation
OC = foc1; oc2; :::; ocng where oci = hNoc; OpSet; P red;ERi
PreCond = Preconditions of the transaction
PostCond = Postconditions of the transaction
Result = Information returned by the transaction

Figure 3.5: Transaction Characteristics in RTSORAC

3.3.1 Operations

O is set of operations that represent the implementation of the transaction. These

operations may include method invocations (MI), initiations of subtransactions,

commit or abort statements, and statements for conditional branching, looping, and

reads/writes on local variables. A subtransaction initiation allows for transactions

to appear within the scope of other transactions. Method invocations (MI) are

of the form hMN;ArgInfoi, where MN is the method name (prepended with the

appropriate object id) and ArgInfo is a set of tuples containing argument informa-

tion. Each tuple is of the form haa;maximp; tcri where aa is the actual argument

to the method, maximp is the maximum allowable imprecision of the argument, and

tcr is the temporal consistency requirement of the argument. The �elds maximp

and tcr are speci�ed only for arguments that are used to return information to the

transaction. These �elds allow the transaction to specify requirements that di�er

from those de�ned on the data in the objects. For example, the transaction might

be willing to accept a value whose temporal consistency requirements have been vi-

olated so as to meet other timing constraints. The data may still be useful to the

transaction because of other available information (for example, it may be able to do

some extrapolation). A transaction may also specify that data returned by a method

invocation must be precise (maximp is zero).

34

3.3.2 Operation Constraints

OC is a set of constraints on the operations of the transaction. These con-

straints are of the same form as the operation constraints speci�ed for methods,

hNc; OpSet; P red;ERi. As with methods, these constraints can be used to express

precedence constraints, execution constraints, and timing constraints. For example,

a transaction may require that a sensor reading which has been stored in the database

be returned within two seconds.

3.3.3 Precondition, Postcondition, Result

PreCond represents preconditions that must be satis�ed before a transaction is made

ready for execution. For example, it may be appropriate for a transaction to execute

only if some speci�ed event has occurred. The event may be the successful termi-

nation of another transaction, or a given clock time. PostCond represents postcon-

ditions that must be satis�ed upon completion of the operations of the transaction.

The postconditions can be used to specify the semantics of what constitutes a commit

of a transaction containing subtransactions. Result represents information that is

returned by the transaction. This may include values read from objects as well as

values computed by the transaction.

3.4 RTSORAC Features in RTSQL

The RTSORAC model provides a foundation for many of the language constructs

found in RTSQL. This following paragraphs will highlight some of these features. Of

particular interest is representation of data, constraints, and transactions.

Data. In the RTSORACmodel, attributes in objects are used to represent the data

items stored in the database. Recall that attributes have three �elds for storing values

associated with the data item. Currently, RTSQL provides support for storing two

of these �elds: the value �eld and the timestamp �eld. The value �eld will be stored

as a column of a table. The mechanism used to store the value of the timestamp

35

�eld is not speci�ed in RTSQL, it is left to the underlying system to decide. RTSQL

does provides a function for determining the timestamp value of an attribute. Future

work in RTSQL will also provide support for the logical imprecision �eld.

Thus, the attributes of a RTSORAC object will be represented as columns in

a RTSQL table. Each row of the table is used to store the values that would be

associated with a single instance of a RTSORAC object.

Constraints. The RTSORAC model provides three types of constraints: con-

straints on data items, inter-object constraints, and operation constraints. Con-

straints on data items are modeled using a predicate and an enforcement rule. In

RTSQL this corresponds to two constructs. The predicate of the RTSORAC con-

straint is roughly equivalent to a constraint speci�cation in RTSQL. Constraints in

RTSQL state the logical and temporal consistency requirements of the data using a

boolean expression. The RTSORAC enforcement rule is roughly equivalent to the

condition handling mechanism of RTSQL. It provides a means of specifying some

action to be taken if a constraint violation should occur.

The RTSORAC inter-object constraints are used to specify constraints on groups

of objects. They also consist of a predicate and an enforcement rule. In RTSQL,

the predicate of an inter-object constraint would be equivalent to specifying a con-

straint over groups of tables. Since RTSQL extends SQL, and SQL provides allows

constraints to extend over more than one table, RTSQL can support inter-object

constraints of RTSORAC.

Operation constraints in RTSORAC are used to express precedence constraints,

execution constraints, and timing constraints. The most developed support in RT-

SQL is for timing constraints. Some support is provided for execution constraints

and precedence constraints. RTSORAC operation constraints consist of a predicate

and an enforcement rule. The predicate for timing constraints in RTSQL will appear

as a timing constraint clause on an SQL statement or block. For example, to express

a deadline for completion of a particular statement, RTSQL provides a "COMPLETE

BEFORE time-exp" clause. As in constraints on data items and inter-object con-

straints, the enforcement rule is implemented in RTSQL using the condition handling

36

mechanism.

Transactions. RTSQL supports most of the features of RTSORAC transactions.

RTSQL provides a mechanism for specifying a series of operations for the transac-

tion. The operation constraints are the same as those discussed in the previous para-

graph. RTSQL provides constructs for specifying pre-conditions and post-conditions

for transactions. The operations of the transaction will produce the results as spec-

i�ed in the RTSORAC transaction model. RTSQL does not support imprecision in

the parameters of a transaction, nor imprecision in any of the results.

37

Chapter 4

Language Extensions

In this chapter we present the syntax and semantics of initial extensions to SQL2

to support real-time database systems. We call the resulting extended language

RTSQL. These extensions to SQL2 appear in three areas. The �rst area is how the

notion of SQL2 constraints is extended for both data and execution. Constraints are

used to specify the semantics of correctness (including the aspect of time) of data,

operations, and transactions. The second area is the addition of a new construct

called a directive. A directive is used to specify assertions about data, operations,

and transactions. The third area is transaction structure. Transaction structure

addresses what information will be presented to the system on behalf of a transaction.

Each of these areas is discussed in the following sections.

4.1 Constraints

Since real-time databases essentially add the notion of timing constraints to con-

ventional databases, constraints are a primary focus of the extensions provided in

RTSQL. Recall that constraints in SQL2 are mechanisms for specifying the logical

consistency requirements of data. In RTSQL, the notion of constraints is extended

in two ways. First, temporal consistency requirements of the data can be speci�ed.

Second, data manipulation statements and transactions can have timing constraints

speci�ed upon their execution.

38

4.1.1 Temporal Consistency of Data

Typical database systems provide for the speci�cation of constraints and recovery

from their violations. In this section we discuss how RTSQL provides for the speci�ca-

tion and recovery associated with data temporal consistency constraints. In addition,

this section discusses how data temporal consistency violations are detected.

Speci�cation of Data Temporal Consistency Constraints. In RTSQL, data

constraint de�nitions are extended to allow for speci�cation of temporal consistency

requirements of the data. These requirements are usually expressed by indicating

the maximum acceptable age for a data item. Computation of the age of a data

item requires that the system record the time that the data value was determined

(perhaps it is the time the value was generated by a sensor, or the time that the value

was written). Since it would not be necessary to determine the age of every data

item in the database, the following RTSQL clause can be speci�ed during de�nition

of a data item to specify that a timestamp will be required:

<data timestamp clause> ::=

[WITH TIMESTAMP <datetime type>]

Note that <datetime type> is a type provided by SQL2. Access to this times-

tamp value is through a function on the data item called TIMESTAMP. For exam-

ple, the timestamp value on the data item temp reading would be accessed as

TIMESTAMP(temp reading). Also note that SQL2 provides a function that returns

the current time called CURRENT TIMESTAMP. SQL2 provides syntax for constraint

speci�cation that can be used to specify temporal consistency requirements when

used in conjunction with CURRENT TIMESTAMP and the TIMESTAMP function. For ex-

ample, the following constraint, temp reading avi, speci�es that for the data item

temp reading to be absolutely temporally consistent, it must be less than ten sec-

onds old:

CONSTRAINT temp_reading_avi

CHECK (CURRENT_TIMESTAMP - TIMESTAMP(temp_reading)) DAY to SECOND

< INTERVAL '10' SECOND

39

Here, the SQL2 CHECK clause contains a boolean expression which computes the

age of temp reading and determines whether it is less than 10 seconds old. SQL2

does not allow constraint speci�cations to include references to any of the functions

that return dates and times (such as CURRENT TIMESTAMP) [DD92]. From the example

shown, it is obvious that this restriction must be relaxed in RTSQL.

Relative temporal consistency among data items can be expressed by comparing

their timestamps. For example, the following constraint speed bearing rvi speci�es

the relative temporal consistency requirements of speed and bearing:

CONSTRAINT speed_bearing_rvi

CHECK TIMESTAMP(speed) BETWEEN

TIMESTAMP(bearing) - INTERVAL '2' SECOND

AND TIMESTAMP(bearing) + INTERVAL '2' SECOND

Here, the speed timestamp is checked to see if it is within two seconds of the

bearing timestamp.

Constraints themselvesmay be valid only for a given period of time. The following

RTSQL clauses can be speci�ed as part of a constraint speci�cation to indicate when

a constraint is active:

<constraint validity interval clause> ::=

[AFTER <datetime value expression>]

[BEFORE <datetime value expression>]

For example, the previous speed bearing rvi constraint is speci�ed to be active

only after CONTACT MADE, where CONTACT MADE is of a datetime data type:

CONSTRAINT speed_bearing_rvi

CHECK TIMESTAMP(speed) BETWEEN

TIMESTAMP(bearing) - INTERVAL '2' SECOND

AND TIMESTAMP(bearing) + INTERVAL '2' SECOND

AFTER CONTACT_MADE

Note that the <constraint validity interval clause> may be applied to any

constraint speci�cation.

40

Detecting Data Temporal Consistency Violations. A violated data temporal

consistency constraint is an indication that the data did not get refreshed as expected.

In such situations, the database system should react. A simple response might be to

refresh the data by causing the appropriate update action to be executed.

The main issue with respect to data temporal consistency is how to determine

when the constraints are evaluated. One technique represents the passive approach,

where the database system waits until the data value is read, and checks the con-

straint at that time. The second technique is the active approach, where the database

system checks the constraint periodically. The active approach could be implemented

through the use of timers, where timers are set (or reset) when data values are writ-

ten. When a timer expires, it indicates that the next update did not occur. The

active approach carries more overhead, especially if there are a large number of data

items, and their update intervals are relatively short. Constraints in RTSQL that

specify the temporal consistency requirements of data use the passive approach for

detecting violations. The active approach could be supported through an extended

version of the trigger mechanism speci�ed in SQL3.

Recovery from Data Temporal Consistency Violations. When the con-

straint violation is detected, a repair action must be taken. SQL2/PSM provides

basic condition handling facilities (see Section 2.2.1), which must be extended to

handle data temporal consistency violations.

The current version of the SQL2/PSM condition handling mechanism does not

provide a means of associating a named constraint with an exception. When a named

constraint is violated in SQL2/PSM, a generic exception condition is raised. At this

point, a GET DIAGNOSTICS statement could be used to determine which constraint

was actually violated, and allow the user to specify the appropriate corrective action.

A more direct approach is to allow the user to associate an exception with the

violation of a named constraint. When the constraint is violated, the exception is

raised. This approach allows the user to write exception handlers speci�c to each

constraint speci�ed.

Since constraints in RTSQL are supported using the passive approach, constraint

41

violations will be detected when a data value is read. This means that the exception

will be raised by a statement that may have a corresponding exception handler

available. Such a constraint violation could occur if the sensor supplying the data

malfunctions, or the transaction responsible for the update misses its deadline. An

exception handler could attempt to update the data value or it may simply signal

the user that a sensor check should be performed.

4.1.2 Timing Constraints on Execution

Typical database systems do not provide any mechanisms for placing timing con-

straints on statements or transactions. Timing constraints on execution are used to

de�ne the semantics of what constitutes the correct execution of a statement with

respect to time. In this section we discuss how RTSQL extends constraints to provide

this functionality.

Speci�cation of Execution Timing Constraints. RTSQL speci�es time con-

strained execution by placing timing constraints on individual data manipulation

statements or, as appears in SQL2/PSM, a block of statements. This speci�cation

uses the following clauses:

<timing constraint clause> ::=

[START BEFORE <datetime value expression>]

[START AFTER <datetime value expression>]

[COMPLETE BEFORE <datetime value expression>]

[COMPLETE AFTER <datetime value expression>]

[PERIOD <interval value expression>

[START AT <time expression>]

[UNTIL <boolean expression>]]

<datetime value function> ::=

CURRENT_DATE | CURRENT_TIME[<time precision>] |

CURRENT_TIMESTAMP[<timestamp precision>]

The START BEFORE and COMPLETE BEFORE clauses are used to express the latest

start time and latest �nish time for the execution of the statement. The START AFTER

and COMPLETE AFTER clauses are used to express the earliest start time and earliest

42

�nish time for the execution of the statement. The PERIOD clause allows for the

establishment of a periodic execution of a statement. The START AT portion of the

PERIOD clause establishes the period frame. The UNTIL portion of the clause allows

for the speci�cation of the conditions that must be met before periodic execution

may terminate.

Recall that in SQL2, datetime valued expressions have been de�ned, and can

include references to datetime value functions. In RTSQL, if such functions are in-

cluded in an expression, they are all evaluated before the statement begins execution.

Further, all of the occurrences of the datetime value functions in a statement will

appear to have been evaluated at the same instance of time. This holds true for

nested statements, where a compound statement may contain statements or other

compound statements.

For example, suppose we have the following:

X:BEGIN

SELECT price FROM stocks WHERE name="Acme"

COMPLETE BEFORE CURRENT_TIMESTAMP + INTERVAL '30' SECOND;

-- other computations

END X COMPLETE BEFORE CURRENT_TIMESTAMP + INTERVAL '1' MINUTE;

The execution timing constraint on the SELECT statement speci�es that it must

complete execution within 30 seconds. The timing constraint on the compound

statement speci�es that it must complete execution within 1 minute. Note that the

value of CURRENT TIMESTAMP will be the same for both timing constraints (since they

appear in the same compound statement).

Detecting Execution Timing Constraint Violations. Detecting an execution

timing constraint violation can be done through the use of timers. When a statement

is encountered, the timing constraints are evaluated, and timers are set for the various

types of timing constraints. For example, suppose a statement contains the following

clause:

START BEFORE CURRENT_TIMESTAMP + INTERVAL '1' MINUTE

43

This timing constraint indicates that the statement should begin execution within 1

minute. Note that statement might not begin immediate execution because some of

the resources it requires are unavailable.

Recovery from Execution Timing Constraint Violations. When an execu-

tion timing constraint is violated, an exception condition is raised. For each con-

straint alternative that can be speci�ed in the <timing constraint clause> of

Section 4.1.2, there will be a corresponding system-de�ned SQLSTATE value. Thus, a

user can provide an exception handler that speci�es the compensating actions that

should be performed when the timing constraint violation occurs. Note that the ex-

ecution of the exception handler itself falls within the timing constraint of the block,

so the block should be designed to allow for that possibility.

The user must utilize the timing constraints and condition handlers in a fashion

that supports the timing needs of an application. For example, a �nancial application

for stock trading may require that a decision for initiating a stock trade must occur

within 5 minutes. This action may involve extracting information from the database

and performing some computation. In designing the code for this, the user must be

conscious of where to place the timing constraints to meet the needs of the applica-

tion. They may wish to place timing constraints on the statements which acquire

the stock information, so that if they cannot be completed by the given deadline,

the exception handler may still have time to execute some compensating action. For

example:

Y:BEGIN

DECLARE EXIT HANDLER FOR SQLSTATE VALUE 'TC059'

BEGIN

-- compensating action if compound stmt X not completed in time

END

X:BEGIN

DECLARE EXIT HANDLER FOR SQLSTATE VALUE 'TC059'

BEGIN

-- compensating action if Acme stock price not found in time

END

44

SELECT price FROM stocks WHERE name="Acme"

COMPLETE BEFORE CURRENT_TIMESTAMP + INTERVAL '1' MINUTE;

-- other computations

END X COMPLETE BEFORE CURRENT_TIMESTAMP + INTERVAL '5' MINUTE;

END Y;

The code 'TC059' is used to represent a prede�ned condition value for the viola-

tion of a COMPLETE BEFORE timing constraint. Condition handlers have been declared

to provide a compensating actions if the constraints are violated. Note that the han-

dler declared in the compound statement X is intended to provide a compensating

action if the timing constraint on the SELECT statement is violated. The handler de-

clared in the compound statement Y is intended to provide the compensating action

if the timing constraint is violated for the compound statement X.

4.1.3 Condition Handlers

The previous example demonstrates a weakness in the condition handling mechanism

of SQL/PSM. Note that the user had to specify the SQLSTATE value to indicate which

timing constraint was being handled. This can be awkward for the user in both writ-

ing the handlers, and maintaining them later since it is unlikely they will remember

these codes. RTSQL provides a set of prede�ned constraint names to alleviate this

problem. Also, to support reusability of code, a routine may be speci�ed in place

of the compound statement. RTSQL provides the following syntax for condition

handlers (note that this is a modi�cation of the syntax proposed in SQL/PSM):

<handler declaration> ::=

DECLARE <handler type> HANDLER

FOR <condition value list>

<handler action>

<handler type> ::=

CONTINUE | EXIT | REDO | UNDO

<handler action> ::=

<routine name> [<argument list>]

45

<condition value list> ::=

<condition value> [{<comma><condition value>}...]

<condition value> ::=

SQLSTATE [VALUE] <sqlstate list>

| <constraint name>

| <system defined condition name>

<sqlstate list> ::=

<character string literal> [{<comma><character string literal>}...]

<system defined condition name> ::=

SB_CONSTRAINT

| CB_CONSTRAINT

| TC_CONSTRAINT

Three RTSQL system-de�ned constraints have been de�ned, SB CONSTRAINT ,

CB CONSTRAINT, and TC CONSTRAINT. The constraint SB CONSTRAINT is used for

violation of the START BEFORE clause. CB CONSTRAINT is used for violation of the

COMPLETE BEFORE clause. TC CONSTRAINT is used when the system detects a timing

constraint con
ict. For example, if START AFTER is earlier than START BEFORE on

the same action, then this constraint will be violated. Further discussion of the

constraint is in Section 5.2.5.

Also note <constraint name> as another possibility for a condition value. This

corresponds to the user-de�ned constraints. For example,

DECLARE EXIT HANDLER FOR stock.check_id my_handler();

declares an EXIT handler for the violation of the check id constraint de�ned in the

table stock. A handler routine my handler is speci�ed as the action to be performed

if the check id constraint is violated.

4.2 Directives

In order to support the predictability requirement of real-time databases, RTSQL in-

troduces a concept called a directive. Directives provide information to the database

46

system to facilitate maintenance of the constraints and predictability. For example,

a transaction may contain a constraint that speci�es that a temperature data item

must be retrieved within milliseconds for the transaction to produce correct results.

Since data fetched from disk has unpredictable access time, a directive could spec-

ify that the temperature data item should be maintained in main memory at all

times, thus making its data retrieval time faster and more predictable. Note that

the directive may not be su�cient to insure that the constraint will always be met.

For example, if the temperature data is unavailable due to locking, or is tempo-

rally inconsistent, it may not be accessible within the time period speci�ed by the

transaction. That is, directives are not su�cient for enforcing logical or temporal

correctness.

Directives di�er from constraints in that constraints address the logical and tem-

poral consistency requirements for data and operations. The applications that utilize

the database system determine these consistency requirements, which in turn are

mapped to constraints. For example, a speed data item may have logical consistency

requirements that specify that it must always be positive, and temporal consistency

requirements which specify that it must be less than 5 seconds old. Directives pro-

vide additional information to the database system to facilitate maintenance of the

constraints and predictable access time to data. As such, directives may involve

hardware characteristics. For example, a sensor value may be located at a particular

address in memory. It may be more e�cient to simply notify the database system

of the location of the data value so that it can use the value directly. The following

paragraphs feature the directives proposed for RTSQL.

Data Storage. One characteristic that can have an a�ect on transaction processing

and timely data availability is how and where the data is stored by the system. For

example, if a data value must be accessible within milliseconds, it might be necessary

for the database system to maintain that data in main memory. Similarly, if a table

of data itemsmust have a bounded search time, then a maximumnumber of entries in

the table could be speci�ed. RTSQL storage directives are used to allow programmers

the ability to specify where and how a data item or table is to be stored. The following

47

clause, part of a table de�nition, is used to specify storage requirements:

<storage clause> ::=

[STORE IN <storage type> [AT <location>]]

where the domains of <storage type> and <location> are architecture-dependent.

For example: STORE IN main memory could be used in a SQL table de�nition to

specify that the table be stored only in main memory. The AT <location> clause

could be used to store the table at a particular location in main memory.

To allow determination of an upper bound on the time it takes to access a table,

the following RTSQL directive clause can be speci�ed during the de�nition of a table:

<table size clause> ::=

[SIZE UPPER LIMIT <integer>]

indicating that this is the maximum number of data items that can be in this table.

Relative Importance Level. This directive allows for the speci�cation of the

relative importance of an action. A scheduling algorithmmay use relative importance

of tasks as a parameter in determining scheduling priority of the tasks. Not all

systems will utilize this directive, and as such, would be free to ignore this directive

upon noti�cation. Also, the semantics of the various levels may vary in di�erent

systems, hence the portability of this directive is limited. The importance directive

clause is as follows:

<importance clause> ::=

IMPORTANCE LEVEL <importance level>

Asynchronous Execution. In real-time applications, it may be useful to notify

the system that some actions can be done asynchronously. In systems with multiple

processors available, this may make it easier for the system to meet given timing

constraints. Applications which utilize real-time databases take advantage of this

capability by identifying which actions can be done in parallel. This concept of

asynchronous statement execution has been proposed in SQL3[MS92]. Speci�cation

of asynchronous execution of a statement in SQL3 is done using the following clause:

48

[ASYNC (<async statement identifier>)]

If left unspeci�ed, the default is synchronous. SQL3 also provides a statement for

testing the completion of an asynchronous statement:

<test completion statement> ::=

{ TEST | WAIT }

{ ALL | ANY | <async statement identifier list> } COMPLETION

The { } notation indicates alternatives. For example, the <test completion

statement>must begin with either the TEST or WAIT keyword. The TEST alternative

is used to check to see if asynchronous statements have completed execution. If they

have not, an exception condition is raised. The WAIT alternative is used to wait

for the asynchronous statements to complete execution. If the asynchronous state-

ments have already completed execution when the WAIT statement is executed, an

exception condition will be raised. The second clause speci�es which asynchronous

statement the TEST or WAIT is intended for. There are three alternatives: ALL is

for all asynchronous statements in the transaction, ANY is for any one of the asyn-

chronous statements in the transaction, and the third option is to list the particular

asynchronous statements in the transaction. Note that RTSQL requires no changes

from the asynchronous execution speci�cation proposed for SQL3; RTSQL simply

endorses the extension as necessary for real-time databases.

Worst Case Execution Time. RTSQL also allows for directives that specify the

worst case execution time (WCET) of a statement. This value is made available to the

system by the user, who has determined this value through analysis[PM94]. This

value can then be utilized by the system in a variety of ways. For example, WCET

can be used to determine feasible task schedules [LL73] or to determine if an action

will be able to complete before its deadline. In these instances, the database system

may be able to predict that a timing constraint will be violated before it actually

happens.

[WCET (<time literal>)]

49

4.3 Transaction Structural Speci�cation

As described in Section 2.2.2, conventional ACID transactions are often not suitable

for real-time database systems since their rigidity overly restricts real-time scheduling

options. The RTSQL transaction structure is designed to relax ACID requirements

by allowing transactions to be composed of subtransactions. Subtransactions may

individually preserve one or more of the ACID properties while the parent transaction

does not necessarily preserve all of the ACID properties. These capabilities allow a

transaction designer to selectively determine which ACID properties to enforce on

parts of the transaction by structuring it using appropriate subtransactions [FWP94].

4.3.1 RTSQL Flexible Transaction Concepts

To support this ability to design
exible transactions, the RTSQL speci�cation of a

transaction includes: a precondition part, a speci�cation part, a body, a postcondition

part, and a recovery part (Figure 4.1). The precondition consists of requirements

that de�ne the conditions that the transaction must satisfy to begin execution. The

speci�cation part is used to de�ne data structures, timing requirements, resource

limitations, data dependencies, transaction criticality, atomicity of the transaction,

preemptability of the transaction, and execution dependencies. The body of the

Precondition

Postcondition

Specification

Body

Recovery body

Figure 4.1: Abstract View of Flexible Transaction Structure

transaction includes database access code and transaction processing code. The

postcondition contains predicates that de�ne what constitutes a correct execution

50

of the transaction. The recovery part contains semantically de�ned recovery mecha-

nisms for de�ned errors. If this part is omitted, a default recovery can be chosen at

database de�nition time.

st1

st2

st3

(a) Sequential

st1

st2

st3

(c) Nested

st1

st2

st3

st4

(d) Interleaved

st1 st2 st3

(b) Parallel

Figure 4.2: Flexible Subtransaction Structure

There are four basic structural building blocks for decomposing transactions into

subtransactions: sequential, parallel, nested, and interleaved. For example, if we

want the simple serial string of subtransactions (Figure 4.2a) we model this by spec-

ifying that the subtransaction boundaries do not overlap (the precondition for one

subtransaction is that the predecessor subtransaction has completed) and that com-

mit is allowed upon completion of a subtransaction. This speci�cation causes the

transaction to behave as a set of disjoint subtransactions that commit serially. Such

a structure could also be used to model a long duration transaction [GMGK+91].

The transaction structure also allows the speci�cation of concurrent or parallel

executions (Figure 4.2b). Subtransactions can have the precondition that all must

begin at the same time. Conversely, the structure allows speci�cation of a set of

disjoint parallel subtransactions being commit-related, by using postconditions that

disallow commit until all are ready. Using a similar speci�cation, the structure can

also specify multi-level nested transactions by appropriately placing subtransaction

boundaries and by using pre and postconditions on executions (Figure 4.2c). To

specify a more complex interleaved model, the structure allows placement of sub-

transaction begins where needed. This speci�cation includes the partition of the

51

database on which to operate and under what conditions the subtransaction can

commit relative to interleaved siblings (Figure 4.2d).

The recovery part of the transaction speci�cation allows semantically de�ned

recovery. Conventional transaction recovery is based on recovering to a past state.

In real-time the past is gone, which implies a need for a forward recovery. Since the

application designers know how data is being used, recovery should be de�ned by the

application's needs. For example, in a periodic real-time system, recovery back to

an old state may be inappropriate. Instead, the transaction may specify recovery to

be performed by delaying restart until the next update cycle. Recovery may require

blocking other transactions until a new update, or forward recovery to move to a

present consistent state.

The
exible transaction structure allows the transaction applications writers to

select the degree of consistency and correctness they need from the database, which

can improve data availability. Simulation results verify that improvements can be

realized if transactions are decomposed into subtransactions whose commit depen-

dencies are speci�ed in pre and postconditions [For93]. Although the RT-SQL spec-

i�cations can be ad hoc, there are methodologies that can be applied to guarantee

that the database's consistency is not violated [For93, Sha85].

4.3.2 RTSQL Flexible Transaction Speci�cation

To specify the above transaction structuring, mechanisms and constraint de�nitions

that allow for control over transaction execution and commit must be de�ned. Since

SQL2 does not provide any mechanism for writing named transactions, RTSQL pro-

vides the following syntax:

<transaction-specification> ::=

TRANSACTION <transaction name> (<input parameters>)

[<local declarations>]

[[REPLACEABLE] PRECONDITION <boolean expression>]

[[REPLACEABLE] POSTCONDITION <boolean expression>]

[[REPLACEABLE] RECOVER ON <condition>

[AUTO | SEMI <transaction name> | MANUAL]]

[[REPLACEABLE] ISOLATION LEVEL <level of isolation>]

[[REPLACEABLE] ACCESS MODE <transaction access mode>]

52

[[REPLACEABLE] DIAGNOSTICS SIZE <number of conditions>]

BEGIN

<transaction body>

//A COMMIT or ROLLBACK statement must terminate execution of the transaction

END

The PRECONDITION clause allows speci�cation of a predicate that must evaluate to

true before the transaction may begin execution. The POSTCONDITION clause allows

speci�cation of a predicate that is evaluated before the COMMIT statement, and can

be used to de�ne what constitutes the correct execution of the transaction. If the

predicate evaluates to true, then the COMMIT statement is executed. If the predicate

evaluates to not true1, the transaction is aborted. The RECOVER clause speci�es the

conditions under which the recovery should be performed, and whether the recov-

ery should be automatic, semi-automatic (with a recovery transaction speci�ed), or

manual. The input parameters to the transaction allow information to be passed to

the transaction from the invoking entity.

The clauses ISOLATION LEVEL, ACCESS MODE and DIAGNOSTICS SIZE, are basi-

cally the same as those de�ned in the SQL2 SET TRANSACTION statement. ISOLATION

LEVEL allows speci�cation of the transaction's isolation level, as described in the

ACID properties. Four levels of isolation are available in SQL2: SERIALIZABLE,

READ COMMITTED, READ UNCOMMITTED, and REPEATABLE READ. ACCESS MODE is spec-

i�ed as either READ ONLY or READ WRITE. A READ ONLY transaction that attempts to

do a write will abort and generate an error. The clause DIAGNOSTICS SIZE speci�es

the size of the area used for storing errors reported by the system. E�orts within

SQL3 are examining mapping of error codes in the diagnostics area to exceptions

[Gal92].

Note that many of the clauses may be preceded by the keyword REPLACEABLE.

This is to allow the transaction writer to specify whether or not a particular char-

acteristic of the transaction can be replaced at a later time through the use of the

SET TRANSACTION statement. SQL2 provides such a statement for setting the iso-

lation level, access-mode, and the size of the diagnostics area, with syntax similar

1We use not \not true" due to SQL2's three valued logic.

53

to that shown above. To be consistent with the transaction speci�cation, the SET

TRANSACTION statement in SQL2 is modi�ed in RTSQL as follows:

<set transaction> ::=

SET TRANSACTION <transaction name>

[PRECONDITION [AND | OR] <boolean expression>]

[POSTCONDITION [AND | OR] <boolean expression>]

[RECOVER ON <condition>

[AUTO | SEMI <transaction name> | MANUAL]]

[ISOLATION_LEVEL <isolation-level>]

[ACCESS_MODE <access-mode>]

[DIAGNOSTICS SIZE <value spec>]

Any feature of the transaction speci�cation that is replaceable can be changed

using the SET TRANSACTION statement. If the precondition or postcondition is re-

placeable, then a new boolean expression can be provided. If the OR keyword is

speci�ed before the new boolean expression, the intent is to perform a disjunction

of the provided boolean expression with the original boolean expression. The AND

keyword works in a similar fashion. Note that the OR keyword allows an alternative

condition, while the AND clause allows for an additional condition.

Since SQL2 has no transaction initiating statement, RTSQL provides the follow-

ing syntax:

START TRANSACTION <transaction name> (<input arguments>)

When the START TRANSACTION statement is executed, the information contained

in the input arguments is passed to the named transaction to start its execution.

Part of this process involves checking the precondition of the transaction, and if the

precondition evaluates to true, returning a transaction identi�er (tid) that can be

used to refer to that transaction execution. If the precondition does not evaluate to

true, or the system is unable to execute the transaction, the transaction identi�er

returned will be NULL. Future work will address the use of exceptions and other

mechanisms to help the transaction writer react to such occurrences. Also note that

since START TRANSACTION is just another statement, all of the timing and execution

constraints mentioned in Section 4.1.2 apply here. Thus entire transactions can also

be time constrained.

54

TRANSACTION main ()

tid st1, st2, st3;

POSTCONDITION

(((ECOMMIT(st1) <> UNDEFINED) AND (ECOMMIT(st2) <> UNDEFINED)) OR

((ECOMMIT(st1) <> UNDEFINED) AND (ECOMMIT(st3) <> UNDEFINED)) OR

((ECOMMIT(st2) <> UNDEFINED) AND (ECOMMIT(st3) <> UNDEFINED)))

BEGIN

...

st1 := START TRANSACTION trans1();

st2 := START TRANSACTION trans2();

...

st3 := START TRANSACTION trans3();

COMMIT;

END;

Example 1: Sequential Transactions

In SQL2, datetime valued expressions have been de�ned, and can include refer-

ences to datetime value functions. To better support transaction structuring, RT-

SQL extends the available datetime value functions to include EINITIATE, ESTART,

ECOMPLETE, ECOMMIT, and EABORT. These functions take a transaction identi�er as an

argument and return a datetime value. EINITIATE returns the time the transaction

was initiated by a user or another transaction. ESTART returns the time the transac-

tion started execution in the system. ECOMMIT returns the time that the transaction

committed. EABORT returns the time that the transaction aborted. ECOMPLETE re-

turns the time that the transaction either committed or aborted. If the event has

not yet occurred, the functions will return an in�nite time value called UNDEFINED.

Datetime valued expressions and interval expressions are extended in RTSQL to ac-

commodate this value appropriately.

4.3.3 Examples of RTSQL Flexible Transaction Structures

With these extensions, RTSQL now has enough expressive power to model sequential

transactions, nested transactions, and interleaved transactions. Example 1 demon-

strates sequential execution with commit dependencies. In this example, the trans-

action main will only commit if two of the three subtransactions commit.

55

Example 2 shows nested transactions. In this example, transaction main is a

parent transaction, and trans1 is a child transaction. With respect to main, trans2

is a grandchild, and so forth. Note that a parent transaction can only see its children,

and not its children's descendents. Hence the parent's commit dependencies in the

postcondition can only be expressed on children transactions, not their children's

descendants.

TRANSACTION trans1() TRANSACTION trans2()

tid st; tid st;

BEGIN BEGIN

st := START TRANSACTION trans2(); ...

... st := START TRANSACTION trans3();

COMMIT; COMMIT;

END; END;

TRANSACTION main () TRANSACTION trans3()

tid st; BEGIN

REPLACEABLE POSTCONDITION ...

(ECOMMIT(st) <> UNDEFINED)) COMMIT;

BEGIN END;

st := START TRANSACTION trans1();

...

COMMIT;

END;

Example 2: Nested Transactions

Example 3 shows interleaved transactions. With interleaved transactions, events,

such as the commit of subtransactions, are considered important. In this example,

subtransaction trans2 can only start after subtransaction trans1 has started execu-

tion, and before trans1 completes execution. Subtransaction trans3 can only start

after the commit of trans1 (st1). Note that there is also a START BEFORE clause for

trans3 that speci�es that the transaction should start within 2 minutes of when the

START TRANSACTION statement started execution. If trans1 (st1) never commits,

the START BEFORE clause will be violated, and trans3 will never start execution.

Also note that since trans3 is started synchronously, it will block while waiting for

trans1 to complete execution.

Example 4 shows three subtransactions that may execute in parallel. Note that

56

TRANSACTION main ()

tid st1, st2, st3;

REPLACEABLE POSTCONDITION ((ECOMMIT(st1) <> UNDEFINED) OR

(ECOMMIT(st3) <> UNDEFINED))

BEGIN

st1 := ASYNC START TRANSACTION trans1();

st2 := ASYNC START TRANSACTION trans2()

START AFTER ESTART(st1)

START BEFORE ECOMPLETE(st1);

st3 := START TRANSACTION trans3()

START AFTER ECOMMIT(st1)

START BEFORE EINITIATE(st3) + INTERVAL '2' MINUTE

FINISH BEFORE EINITIATE(st3) + INTERVAL '5' MINUTE;

COMMIT;

END

Example 3: Interleaved Transactions

TRANSACTION main ()

tid st1, st2, st3;

BEGIN

BEGIN

st1 := ASYNC START TRANSACTION trans1();

st2 := ASYNC START TRANSACTION trans2();

st3 := ASYNC START TRANSACTION trans3();

END;

COMMIT;

END;

Example 4: Asynchronous Subtransactions

asynchronous execution is not su�cient to specify that the transactions will start

and end at the same time, it simply speci�es that they may run in parallel.

4.4 Discussion

This chapter presented the syntax and semantics of initial extensions to SQL2 to

support real-time database systems. The extensions appeared in three areas: con-

straints, directives, and transactions. In developing these extensions, a considerable

57

e�ort was made to use existing constructs within the language. This was most evi-

dent in the area of data temporal consistency constraints and transactions. Support

for data temporal consistency constraints required only a few modi�cations to SQL

including timestamped values (and a function to reference the value) and allowing

datetime functions to appear in constraint expressions. SQL2 transactions already

had a SET TRANSACTION statement available for setting the characteristics of a trans-

action. This statement was extended to address the additional features of RTSQL

transactions including preconditions, postconditions, and a recovery level.

Other far more extensive changes to SQL2 were also required by RTSQL. Di-

rectives, which address the resource utilization limits required in real-time database

systems, is a totally new concept to SQL2. We expect directives to be a rather con-

troversial addition to a language which traditionally has left it to the implementation

to make many of the decisions of how an action is performed and how its resources

are managed. Transactions are another area within SQL2 which are considered con-

troversial. RTSQL has constructs for named parameterized transactions, which then

allows for subtransactions (nested transactions) to be speci�ed. In SQL2, transac-

tions are not named, and the user has no control over when a transaction starts

execution. SQL3 has started to address this issue, and does support a simple START

TRANSACTION statement. The standards committee views transactions as an area of

SQL that needs extensive work.

The addition of timing constraints to actions is also a new concept to SQL2.

The constructs in RTSQL to support timing constraints are done as simple clauses

which can be added to existing statements. At this point in time, these clauses do

not change the semantics of these statements except with respect to placing time

constraints on their execution. To support condition handlers for violations of these

constraints required the addition of SQLSTATE values and system de�ned condition

names. All of these additions have been viewed as useful to SQL2 by the standards

committee, even in the context of systems which are not real-time.

One area which is not addressed by RTSQL, yet appears in the DISWG require-

ments, is concurrency control criteria and imprecision. Work in the area of bounded

imprecision in transaction processing [RP95, DP93, DiP95] is relatively new area of

58

research. Though it would be relatively easy to add imprecision �elds to data values

in RTSQL, and to allow the expression of constraints that utilize these values, con-

siderable e�ort is still required in studying the implications of these additions to the

underlying database system. For example, the concurrency control criteria that is

used by the system is tightly bound with how and when the imprecision is accumu-

lated in the data values. Concurrency control criteria and imprecision are also areas

which are considered relatively new and controversial by the standards committee.

59

Chapter 5

Implementation

This chapter describes the prototype system that was constructed to show the fea-

sibility of the timing constraint speci�cations of RTSQL. The system consists of a

RTSQL preprocessor, the real-time data manager Zip RTDBMS, and an interface

library we developed to facilitate the use of Zip RTDBMS. The RTSQL preprocessor

translates C++ programs containing RTSQL statements into C++ programs that

use the interface library. The architecture of the prototype system is shown in Figure

5.1. The implementation of each major portion of the system will be discussed in

the following sections.

Zip_RTDBMS
data

management
system

Interface library

C++ wrapper
and other class
definitions

RTSQL
preprocessor

Figure 5.1: System Architecture

60

Zip
database
instance

Zip
DDL
file

ZipDDL_parser

Zip
schema

file

Zip_RTDBMS
engine

cr
ea

te
_d

at
ab

as
e

Figure 5.2: Zip RTDBMS Data De�nition

5.1 Interface to Zip RTDBMS

The interface to Zip RTDBMS consists of C++ class de�nitions that simplify access

to the Zip RTDBMS data manager. The next section will provide a brief descrip-

tion of Zip RTDBMS. Section 5.1.2 will discuss the implementation of the interface

library.

5.1.1 Zip RTDBMS

Zip RTDBMS is a memory resident, high speed, real-time data management system

developed by DBx, Inc. It provides facilities for storing and retrieving data with de-

terministic response times. Zip RTDBMS supports the static de�nition of a schema,

which includes resource requirements and access behavior. It also provides a low

level call interface that supports connection management, data management, and

general error management.

In Zip RTDBMS, the schema speci�es the relations contained in a database, along

with their type and maximum size. Three types of relations are supported: STATIC,

BOUNDED, and ROLLING. STATIC relations are for data that changes minimally

through the lifetime of the database. ROLLING relations are for time-varying data,

61

and can be viewed as circular bu�ers with �xed capacity. ROLLING tables are

intended to handle data streams such as those associated with sensors, where the

data stored in the table will represent an interval of time, the oldest data being

replaced by the newest set of values. BOUNDED relations are basically the same as

relations found in traditional database systems except that they have a maximum

�xed size.

Figure 5.2 shows the steps necessary to create a Zip RTDBMS schema and

database instance. The user creates a �le containing Zip RTDBMS data de�nition

commands (Zip DDL �le). This �le is parsed and compiled by the utility Zip parser

to create a binary schema �le that is used by the database engine (the entity that

controls access to the database instances). The engine uses the binary schema �le at

database creation time to preallocate system resources and build symbol and hash

tables for query access. Zip RTDBMS provides another utility create database

that can be used to create an empty database instance.

Zip RTDBMS also provides a frontend function library. The function library pro-

vides the numerous functions needed to access the database. The functions provide

a low-level call interface to the database engine. These functions are divided into

�ve areas that are brie
y described below:

Connection Management - Provides the means for creating and destroying

database instances, and connecting or disconnecting from a database server.

Data Management - Provides query preparation functions along with actual query

primitives including those for retrieving, inserting, deleting, and modifying

data.

Set Management - Provide functions for working with sets of data that may be

returned as the result of a data retrieval command.

Transaction Management - Provides functions for beginning a transaction and

committing or aborting the transaction.

General Error Management - Provides a mechanism which can be used to spec-

ify a user-de�ned cleanup function.

62

C
 source
with Zip

DML#i
nc

lu
deZip

header
files

linker

C compiler

Zip
DML

object
file

Zip
Runtime
Libraries

Zip
DML

binary
file

Zip
database
instance

Zip_RTDBMS
engine

exe
cu

te D
ML fil

e

Figure 5.3: Data Manipulation in Zip RTDBMS

Figure 5.3 shows the process that the user goes through to create a program with

Zip RTDBMS data manipulation commands. The user creates a C program (Zip

DML �le) that utilizes functions from the frontend library. This �le is compiled and

linked with the Zip RTDBMS library to create a program that interacts with the

Zip RTDBMS engine to process queries on the database.

Queries in Zip RTDBMS are set up in three steps. First, query preparation

functions are used to specify the target relation (or table) and attributes (or columns)

for the query. Second, a query predicate must be speci�ed. This predicate is used to

indicate which tuples (or rows) of the table should actually be operated on by the

query. For example, if there is a table of stock information, a query for retrieving

data may specify that only the stocks with prices greater than 100 and less than

1000 should have their identi�ers and price returned. Here, the predicate is price

> 100 AND price < 1000. The last step is to actually initiate the desired query

(i.e. select, update, insert, delete).

63

Predicate expressions are somewhat limited in Zip RTDBMS. Use of the relational

operators is limited to comparisons between attributes and values. Thus, it would

not be possible to write a predicate which involves the direct comparison of two

attributes using Zip RTDBMS commands. Also, the documentation contains the

following statement:

\To achieve optimum performance at run-time, Zip RTDBMS requires

the designation and participation in a query predicate of a primary key

attribute for each relation in the data base."

This implies that a relation must identify a key attribute (the �rst attribute declared

unless otherwise speci�ed), and to achieve optimal performance, the key attribute

must appear in the query predicate.

Actual experimentation with the predicates in Zip RTDBMS has produced results

that are not consistent with the documentation. The only relational operator that

appears to work is equal (EQ). Also, though not speci�ed in the documentation, only

attributes that have an index de�ned at data de�nition time seem to work with the

EQ operator. Due to these problems, rather than parse the RTSQL predicates to

Zip RTDBMS function calls, all of the data searching will be done by the code built

by the RTSQL preprocessor that we have developed.

5.1.2 Interface Library

To facilitate the use of Zip RTDBMS, we developed an interface using three C++

classes. The �rst class, called ZipDB t, provides a C++ wrapper around the

Zip RTDBMS. The speci�cation of this class is noted in Figure 5.4. The ZipDB t

class provides interface functions for the Zip RTDBMS library functions responsi-

ble for data manipulation and connection management. For example, this class

provides a function connect() that maps directly to the Zip RTDBMS function

connectDB(DBid t *masterDBid). This is the function that is used to request a con-

nection with the Zip RTDBMS engine. Note that the interface version, connect(),

has abstracted the database identi�er masterDBid from the user of the ZipDB t class.

Management of this value and other Zip RTDBMS variables have been localized to

64

class ZipDB_t {

public:

ZipDB_t(char *);

virtual ~ZipDB_t();

DBid_t * masterDBid;

DBhandle_t * DBhandle;

char * schema_designator;

// Connection member functions

int create();

int destroy();

int connect();

int disconnect();

int describe();

// Low level query preparation functions

int declare_rel(relation_t * relation);

int add_attr(attr_base_t * attr);

int declare_pred(attr_base_t attr, relop_t relop, pointer_t value);

int declare_op(logop_t op);

// DML member functions - use after query preparation functions executed

int insert_row();

int update_rows();

int delete_rows();

// This select function may return multiple tuples

int select_rows(TIDset_t *&tids);

// so provide a counter and an iterator

int count_tuples(TIDset_t *tids);

int next_tuple(TIDset_t *&tids);

// tuple level operations

int select_row_by(TID_t tid); // called to load target tuple

int update_row_by(TID_t tid); // called after load target tuple

int delete_row_by(TID_t tid); // called after target tuple found

};

Figure 5.4: Class De�nition for Zip RTDBMS Interface

65

class relation_t {

public:

relation_t(const char *);

virtual ~relation_t() {delete rel_name;}

string_t * get_name() { return rel_name; }

rel_t get_type() { return rel_type; }

ubyte4_t get_size() { return rel_size; }

protected:

string_t * rel_name;

rel_t rel_type = BOUNDED; // zip table type

ubyte4_t rel_size = 1000; // maximum number of tuples in table

};

class attr_base_t {

public:

attr_base_t(const char *);

virtual ~attr_base_t() { delete name; }

string_t * name;

DataType_t type;

virtual int add_to_rel(DBhandle_t *) {}

virtual int add_to_pred(DBhandle_t *, relop_t) {}

};

Figure 5.5: Class De�nitions Relations and Attributes

the ZipDB t class.

Two other classes are provided to complete the interface, one for relations (ta-

bles), and the other for attributes (columns) (see Figure 5.5). The relation class

relation t is the base class for all relations that are accessed through the interface

library. For example, if the user speci�es a table with three attributes, the RTSQL

preprocessor will create a class for the new table using inheritance, relation t as

the base class, and adding member variables for the attributes. relation t con-

tains member variables for storing the characteristics of the table that are needed

by Zip RTDBMS. These variables include the name of the relation, the type of the

66

relation, and the maximum size of the relation. Currently, the relation t class sup-

ports only BOUNDED relations since they most closely resemble the tables found in

SQL.

An attribute base class attr base t is also de�ned, to represent the attributes

(or columns) a user would place in a relation. As in the relation t class, the

attr base t holds information needed by Zip RTDBMS, including the name of the

attribute and the name of the type of the attribute. The actual value of the attribute

must also be stored, but since the type is not known until the user creates a table,

the de�nition of this type is deferred to a derived class which uses attr base t as its

base class. Ideally, this speci�cation would be done using C++ templates, but since

these are not available in the version of C++ being used for the implementation,

derived classes for the most popular types where included in the interface.

The attribute class also has two member functions which are directly mapped to

functions provided by Zip RTDBMS. The �rst, add to rel, is used to specify which

attributes will be involved in a query. As mentioned in section 5.1.1, Zip RTDBMS

requires the target relation and attributes of a query be speci�ed before the actual

query is issued to the database engine. Assuming that the target relation has already

been identi�ed, add to rel will be used to add the appropriate attributes. For

example, if the user does a SELECT id, price FROM stock, stock is the target

relation, and id and price are the attributes involved in the query. The RTSQL

preprocessor takes care of determining this information from the user's query and

building the appropriate commands for preparing the query for Zip RTDBMS.

The second member function in the attribute class is add to pred. This function

is could be used to build the predicate used by Zip RTDBMS. If the problems ex-

perienced with the predicate functionality of Zip RTDBMS are corrected, then this

function will be used to build the query predicates.

5.2 RTSQL Preprocessor

The RTSQL preprocessor will translate C++ code containing RTSQL code to C++

code with interface library as discussed in section 5.1.2. As shown in Figure 5.6, the

67

RTSQL
EDD
file

Zip
database

RTSQL
EDM
file

C++
EDM

source
file

C++
EDD

header
file

C++
EXC

header
file

Zip
DDL
file

#i
nc

lu
deZip

header
files

#i
nc

lu
de

#i
nc

lu
de

#i
nc

lu
de

Zip
interface
header
files

linker

ZipDDL_parser C++ compiler

create_database

EDM
object

file

Zip
schema

file

Zip
Runtime
Libraries

Zip
Interface
Runtime
Libraries

EDM
binary

file

RTSQL preprocessor

 Zip data
manipulation
commands

Figure 5.6: RTSQL Preprocessor

68

user must create two �les, one containing data de�nition statements, the other with

RTSQL data manipulation statements embedded in C++ code. A simple example

of what these �les look like is shown in Figure 5.7. The �rst �le, tst.EDD, contains

a CREATE SCHEMA command and a CREATE TABLE command. The CREATE TABLE

command speci�es two attributes (one with a timestamp) and three constraints.

The second �le, tst.EDM, has an INSERT statement contained in a loop, and a

SELECT statement after the loop. Once these two programs are run through the

preprocessor and compiled, they can be used to place 100 rows of information in the

stock table (which is subsequently viewed using the SELECT statement.

When these two �les (tst.EDD and tst.EDM) are run through the RTSQL

preprocessor rtsql, four �les are created. Here is a brief description of the resulting

�les:

The tst.DDL �le. This �le contains Zip RTDBMS data de�nition commands.

It must be run through the Zip parser command to create a schema �le for

Zip RTDBMS.

The tstEDM.cc �le. This �le contains the translation of the tst.EDM �le from

embedded RTSQL to C++ code with library calls to the Zip RTDBMS interface.

The tstEDD.h �le. This �le contains the class de�nition corresponding to the

CREATE TABLE command in the tst.EDD �le. These classes are derived from the base

classes for tables and attributes that are contained in the Zip RTDBMS interface.

Note that this �lename appears in an #include statement in tstEDM.cc.

The tstEXC.h �le. This �le contains classes corresponding to the RTSQL blocks

speci�ed in tst.EDM. Each class stores the condition handlers and timing con-

straints associated with a block. This �le also includes the Zip RTDBMS interface

header �le, which in turn includes the header �les from Zip RTDBMS. This �le is in

an #include statement of tstEDD.h.

69

/***

** File tst.EDD

** This file contains the RTSQL data definition commands

*/

/* stock table */

EXEC SQL CREATE TABLE stock (

id INTEGER,

price REAL WITH TIMESTAMP,

change REAL,

CONSTRAINT valid_data CHECK (id > 0 AND id <= 99 AND price <= 1000.0)

CONSTRAINT pos_change CHECK (change > 0 OR change = 0)

CONSTRAINT price_avi CHECK

(price > 0 AND TIMESTAMP(price) > CURRENT_TIMESTAMP - INTERVAL '5' SECOND)

);

/***

** File tst.EDM

** Thid file contains the embedded RTSQL data manipulation commands

*/

#include "tstEDD.h"

main() {

int i;

float j;

for (i=1; i<=100; i++) {

j = i / 2.0;

EXEC SQL INSERT INTO stock (id, price) VALUES (:i, :j);

}

EXEC SQL SELECT * FROM stock;

printf("That's all folks...\n");

}

Figure 5.7: Example of RTSQL Data De�nition and Data Manipulation Files

70

5.2.1 Program Structure

An SQL preprocessor developed in [LMB95] was used as a basis for the RTSQL

preprocessor. This SQL preprocessor was based upon SQL-89, a predecessor of

SQL2. Though this preprocessor produces a simple call to a nonexistent C-routine

exec sql() for each SQL statement, it provided a good foundation for the RTSQL

preprocessor.

The SQL preprocessor was implemented using the compiler utilities
ex and bison.

ex is a tool developed by the GNU Project of the Free Software Foundation for

automatically generating lexical analyzers. It is based upon an earlier version called

LEX [Les75]. In the SQL preprocessor, the lexical analyzer is responsible for scanning

the input �les and identifying the SQL tokens. This requires the lexical analyzer to

run in two modes, one that simply passes C++ code to an output �le, the other that

passes SQL tokens to the parser generated by bison. bison is an automatic parser

generator also developed by the GNU Project. It is based upon an earlier version

called YACC [Joh75]. In the SQL preprocessor, the parser bu�ers the SQL tokens

which constitute an SQL statement. The essential information is then passed to the

non-existent C-routine exec sql(), which could be implemented to interact with an

existing database system.

Initially, the SQL preprocessor was extended to create the RTSQL preprocessor

by modifying the input �les for
ex and bison. The input �le for
ex, which identi�es

the valid tokens of the language, was extended with the new keywords speci�c to

RTSQL. The input �le for bison, which contained the grammar rules for SQL was

replaced with a grammar �le speci�c to RTSQL. A copy of this grammar can be

found in Appendix A.

Four areas needed to be developed in creating the RTSQL preprocessor. Initially,

the data de�nition statement CREATE TABLE was implemented. This included adding

timestamps to data and a constraint checking mechanism for both logical constraints

and temporal constraints on the data. Next, the basic data manipulation operations

SELECT, INSERT, UPDATE, and DELETE were implemented. The condition handling

71

/***

** Example RTSQL data definition file

*/

EXEC SQL CREATE SCHEMA stock;

EXEC SQL CREATE TABLE stock (

id INTEGER,

price REAL WITH TIMESTAMP,

name CHAR(10)

);

Figure 5.8: RTSQL Data De�nition File

mechanism was then added to react to constraint violations. Finally, timing con-

straints on actions were added. Each of these areas is discussed in the following

sections.

5.2.2 Data De�nition Operations

Recall that all of the data de�nition statements are placed in a single �le that will

represent the database schema. This �le may contain any number of CREATE TABLE

commands. When this �le is run through the RTSQL preprocessor, two �les are

created. First, a data de�nition �le suitable for the ZipDDL parser is created. Sec-

ond, a relation class is derived from the relation t class with the addition of the

attributes speci�ed in the CREATE TABLE statement. If it has been speci�ed that an

attribute should have a timestamp maintained (by the WITH TIMESTAMP clause), the

preprocessor will automatically generate another attribute for storing the timestamp

value.

Figures 5.8, 5.9, and 5.10 are an example of an RTSQL data de�nition �le and

the �les resulting from the preprocessor. Note that one of the attributes (price) had

a timestamp speci�ed. This results in the creation of an additional column in the

relation for the Zip RTDBMS database. Also, the interface class stock t derived

from relation t has a separate attribute for the timestamp value.

The table de�nition may also contain constraint predicates. Note that constraints

72

/***

** Resulting data definition file for Zip_RTDBMS

*/

#include "zip.h"

/*

** Filename: ex1.DDL

*/

/*

** Database characteristics

*/

define database db_name ("stock");

define database db_dir_path ("/tmp");

define database db_phys_addr (0x0);

define database db_size (400000);

define database db_grants (0777);

/*

** Table stock

*/

create table stock (

id byte4,

price byte8f,

price_ts tstamp,

name string[10]);

define table stock (BOUNDED, 1000);

define index stock_idx on stock (id) load(50%), distinct(500);

Figure 5.9: RTSQL Output File for Zip RTDBMS Schema

73

/***

** Resulting data definition file for interface

*/

#include "ex1EXC.h"

class stock_t : public relation_t {

public:

stock_t(char * name) : relation_t(name),

id("id"), price("price"), price_ts("price_ts"), name("name",10) {}

attr_byte4_t id;

attr_byte8f_t price;

attr_tstamp_t price_ts;

attr_string_t name;

};

stock_t stock("stock");

TIDset_t * tids;

TID_t prevTID, currTID;

Zip_rtdbms DB("/tmp/stock.schema");

Figure 5.10: RTSQL Output File for Interface

are handled by the code built by the RTSQL preprocessor, not Zip RTDBMS. These

constraint predicates are divided into two categories, logical constraints and tempo-

ral constraints. A constraint will be identi�ed as a temporal constraint if it involves

any time expressions. The time expression usually references the timestamp value

of one of the attributes. The division of logical and temporal constraints is done

by the preprocessor so that two constraint checking functions can be created. This

is due to the nature of when these constraints are checked. Logical constraints are

generally checked when data is written. As mentioned in section 4.1.1, temporal

constraints may be checked actively (using timers and alarms) or passively (when a

data item is read). This implementation has chosen passive checking since it provides

some context for the constraint violations to be handled. The check constraint

function will be called whenever an INSERT or UPDATE operation is performed. The

check time constraint function will be called whenever a SELECT operation is per-

formed.

Figures 5.11 and 5.12 show examples of constraint speci�cations for logical and

74

/*

** Data constraints for logical consistency

*/

CONSTRAINT valid_data CHECK (id > 0 AND id <= 99 AND price <= 1000.0)

CONSTRAINT pos_change CHECK (change > 0 OR change = 0)

/*

** Resulting check_constraint function - pseudo code

*/

int check_constraints(byte4_t *id, byte8f_t *price, byte8f_t *change) {

int ans[10];

ans[0] = 1; /*Assume TRUE*/

if (id != NULL)

ans[0] = ans[0] && *id <= 99;

if (id != NULL)

ans[0] = ans[0] && *id > 0;

ans[1] = 1; /*Assume TRUE*/

if (price != NULL)

ans[1] = ans[1] && *price <= 1000.0;

ans[1] = ans[1] && ans[0];

if (!(ans[1])) {

printf("valid_data constraint violated\n");

/* Set up appropriate handler */

}

ans[0] = 1; /*Assume TRUE*/

if (change != NULL)

ans[0] = *change == 0 || *change > 0;

if (!(ans[0])) {

printf("pos_change constraint violated\n");

/* Set up appropriate handler */

}

if (problem found) {

/* raise condition */

}

} /* end check_constraints */

Figure 5.11: check constraint Function Created by RTSQL Preprocessor

75

/*

** Data constraint for temporal consistency

*/

CONSTRAINT price_avi CHECK

(price > 0 AND TIMESTAMP(price) > CURRENT_TIMESTAMP - INTERVAL '5' SECOND)

/*

** Resulting check_time_constraint function - pseudo code

*/

int check_time_constraints(byte4_t *id, byte8f_t *price, tstamp_t *price_ts,

byte8f_t *change) {

ans[0] = 1; /*Assume TRUE*/

if (price_ts != NULL)

ans[0] = ans[0] && *price_ts > current_sec() - 5;

if (price != NULL)

ans[0] = ans[0] && *price > 0;

if (!(ans[0])) {

printf("price_avi constraint violated\n");

/* Set up appropriate handler */

}

if (problem found) {

/* raise condition */

}

} /* end check_time_constraints */

Figure 5.12: check time constraint function created by RTSQL preprocessor

76

AND T F U

T T F U

F F F F

U U F U

NOTOR T F U

T T T T

F T F U

U T U U

T F U

 F T U

Figure 5.13: Three-Valued Logic Tables for SQL

temporal consistency respectively (they are shown in context in Figure 5.7). The re-

sulting functions for the logical constraints (check constraints) and temporal con-

straints (check timing constraints) are shown. These functions are parameterized

with pointers to all the possible attribute values. In the case of check constraints,

this is all of the attributes speci�ed in the CREATE TABLE de�nition. In the case of

check timing constraints, it is all of the attributes along with their timestamps.

Pointers to these values are used so that if a value is not de�ned at the point at which

the constraint function is called, a NULL pointer will be sent. SQL uses three valued

logic: TRUE, FALSE, UNKNOWN. Thus, if a simple boolean expression involves

a value which is not de�ned, the expression evaluates to UNKNOWN. Figure 5.13

shows the truth tables for the SQL three valued logic.

For each constraint speci�ed, a series of if statements are constructed to re
ect

the semantic behavior of the three valued logic. Recall that in SQL, a constraint is

violated only if it evaluates to FALSE. The series of if statements corresponding to

a given constraint are designed to return TRUE where the three valued logic would

evaluate to either TRUE or UNKNOWN.

Within the constraint checking functions, a number of constraints are checked.

It is possible that more than one constraint violation could be detected within the

function. For example, if one constraint speci�es that the pressure value must be

greater than zero, and another speci�es that the temperature value is less than 500,

then both constraints will be violated if an attempt is made to insert a pressure value

of -1 and a temperature value of 625. In this case, the SQL standard speci�es that

the system will recognize one of the constraint violations as the \primary" violation,

while any other violation will be placed in a diagnostics area, space permitting. The

standard does not specify any precedence ordering of constraint violations. This

77

implementation behaves similarly, in that only one exception will be raised upon

detection of a constraint violation. At this time, the implementation only keeps

track of one of the violations (no diagnostic area has been provided), though this

could be extended in future versions.

When the function detects a constraint violation, a unix signal will be raised.

This signal will have a signal handling function associated with it which corresponds

to the user's condition handling routine if it exists. Section 5.2.4 will discuss in detail

how this condition handling is done.

5.2.3 Basic Data Manipulation Operations

After the data de�nition commands were implemented, the next step was to im-

plement the basic database operations. This involved associating the appropriate

Zip RTDBMS interface library calls with the corresponding data manipulation op-

erations. As mentioned in section 5.1.1, a query must be setup before the actual

query function is issued to Zip RTDBMS. The preprocessor builds the appropriate

function calls to set up the query, and issue the actual database operation.

Since the Zip RTDBMS predicates are not being utilized at this time, any search-

ing of the data is done within the code built by the RTSQL preprocessor. The WHERE

clause is used indicate the searching criteria in the SELECT, DELETE, and UPDATE

statements. Code is built to extract the entire table from the database, which will

then be searched using this criteria. In the case of an UPDATE or DELETE, when an

appropriate tuple is located using the search criteria, the actual operation is then

performed on that tuple in the Zip RTDBMS.

Figure 5.14 shows an example of the code produced by the RTSQL preproces-

sor in translating an INSERT statement and a SELECT statement. Note the query

preparation functions that appear before the actual query is issued.

5.2.4 Condition Handling

The condition handling mechanism in RTSQL is speci�ed within the block structure

of SQL/PSM. The blocks provide a context for the condition handlers speci�ed by the

78

/**

** INSERT INTO stock (id, price) VALUES (:k, :j);

*/

stock.id.value = k;

stock.price.value = j;

if (stock.check_constraints(&(stock.id.value), &(stock.price.value))) {

DB.reset_query_params();

DB.declare_rel(&stock);

DB.add_attr(&(stock.id));

DB.add_attr(&(stock.price));

DB.add_attr(&(stock.price_ts));

stock.price_ts.value = current_sec();

DB.insert_row();

} /* if check_constraint */

/**

** SELECT id, price FROM stock WHERE id > 4 OR price = 1.0;

*/

DB.reset_query_params();

DB.declare_rel(&stock);

DB.add_attr(&(stock.id));

DB.add_attr(&(stock.price));

DB.select_rows(tids);

while (DB.next_tuple(tids))

if (stock.id.value > 4 || stock.price.value == 1.0)

if (stock.check_time_constraints(&(stock.id.value),

&(stock.price.value), NULL))

printf(" %d %f\n" , stock.id.value, stock.price.value);

Figure 5.14: Code Produced by Preprocesor for INSERT and SELECT

79

class b_stmt

//timing constraints
SA SB CA CB

class b0_t: public b_stmt

public:
//environment attributes
level CBlevel

.

.

.

virtual c1_handler(int);

//condition handlers

virtual c2_handler(int);

virtual cn_handler(int);

virtual SB_handler(int);

virtual CB_handler(int);

virtual TC_handler(int);

class b5_t: public b4_t

//condition handlers

virtual c2_handler(int);

virtual SB_handler(int);

virtual TC_handler(int);

IS A

IS A

public:

public:

Figure 5.15: Class De�nitions for Statements and Blocks

user. Note that blocks may be nested, thus a condition handler of an outer block may

be used in an inner block unless rede�ned by the inner block. The implementation

must keep track of the valid handlers for each block. Also, a set of default handlers

must be provided.

To associate handlers with blocks, blocks are de�ned using C++ classes with

the handlers as methods in the class. As shown in Figure 5.15, the C++ inheri-

tance mechanism is used to de�ne blocks. Note that the base class b stmt is for

statements in general, all of which may have timing constraints speci�ed (see section

4.1.1). Variables are provided to store the actual values of each of the four timing

constraints: SA for START AFTER, SB for START BEFORE, CA for COMPLETE AFTER, and

CB for COMPLETE BEFORE. Also, the class provides variables for keeping track of the

initial block which should be searched for an appropriate handler. The next class,

b0 t is the base class for all blocks, and as such, will de�ne the default handlers

for all possible constraint violations. These default handlers represent unhandled

constraint violations, and will cause program termination with an appropriate error

message.

When a block is declared in the RTSQL code, the preprocessor will assign the

80

block 0 - Main program

block 1

block 2

block 3

block 4

block 5

block 6

block 7

block 1
b1_t

block 0
b0_t

block 4
b4_t

block 6
b6_t

block 3
b3_t

block 5
b5_t

block 2
b2_t

block 7
b7_t

Figure 5.16: Class Hierarchy for Blocks

block a number and de�ne a class corresponding to this block. In the case where it

is an outermost block, it will be derived from the base class for all blocks b0 t. In

the case where it is nested within another block, it will be derived from the class for

that immediate outer block. Figure 5.16 shows a series of block declarations, and

the corresponding inheritance tree built by the preprocessor. The block numberings

shown would be generated by the preprocessor as it parses through the code. For

example, since block 3 is immediately nested with block 1, the class corresponding

to block 3 will use the class for block 1 as its base class. This methodology allows

the inheritance mechanism of C++ to manage the association of handlers with the

blocks, especially in the case where blocks are nested. For example, it a check id

constraint handler has been de�ned in block 1 but not de�ned in block 3, the class

corresponding to block 3 will inherit the check id handler from block 1. This re
ects

the desired semantics of having an outer block's handler declarations available for

the inner blocks. It also provides for the default handlers, since if a handler is never

speci�ed in a block or any of its ancestors, it will inherit the default handler from

the base class b0 t.

The actual code for the handlers is rather simple. The user will specify a routine

81

class env_t

//current block
block

public:

public:
//environment attributes
level CBlevel

.

.

.

virtual c1_handler(int);

//condition handlers

virtual c2_handler(int);

virtual cn_handler(int);

virtual SB_handler(int);

virtual CB_handler(int);

virtual TC_handler(int);

//context before block
context

env[0]

env[1]

env[level]

//current block
block

public:

//context before block
context

//current block
block

public:

//context before block
context

//current block
block

public:

//context before block
context

Figure 5.17: Environment Stack

which is to be used to handle the condition. A call to this routine will be placed in

the condition handler. Also, the user may specify that the handler is a CONTINUE

handler or an EXIT handler. Figure 5.18 shows the
ow of control for both types of

handlers. If it is a CONTINUE handler, then
ow of control will simply return to the

statement following the one that raised the constraint violation. If an EXIT handler

is speci�ed, then the condition handler should return control to the the statement

following the block in which the condition occurred (as opposed to the block con-

taining the handler). Note that this will simply cause the remainder of the block to

be abandoned. To handle both of these possibilities, the preprocessor maintains a

stack for storing information about the programming environment. This stack env

(see Figure 5.17 is designed to save information about the execution environment

at certain points in the program, so that if a block must be abandoned, there will

be some previous context for the program execution to return to. Note that each

element of the stack can store an environment state context and a block.

Before a block begins execution, the current environment and the block will be

stored on the top of the stack. If during the execution of the block, a constraint

violation occurs, and the handler is an EXIT handler, the environment at the top

82

BEGIN
DECLARE EXIT HANDLER FOR stock,check_id myhandler();
 BEGIN
 ...
 INSERT id,price INTO stocks VALUES (:i, :p);
 ...
 END;
 SELECT * FROM stock;
END;

int myhandler() {
 ...
 ...
}

1
2

3

4

EXIT handler

BEGIN
DECLARE CONTINUE HANDLER FOR stock,check_id myhandler();
 BEGIN
 ...
 INSERT id,price INTO stocks VALUES (:i, :p);
 ...
 END;
 SELECT * FROM stock;
END;

int myhandler() {
 ...
 ...
}

1
2

3

4

CONTINUE handler

Figure 5.18: Flow of Control for EXIT and CONTINUE Handlers

of the stack will be restored, the top element of the env stack will be removed,

and execution will continue at the statement following the block which caused the

constraint violation. If the block has no constraint violations, the the top element of

the env stack will simply be removed, causing the previous environment and block

to return to the top of the stack.

Before a statement begins execution, it is also saved to the top of the stack,

without a copy of the current environment. The environments are saved only for

blocks, as the semantics of EXIT handlers are de�ned only within the context of a

block.

5.2.5 Timing Constraints on Actions

Four timing constraint clauses on actions were implemented: START BEFORE, START

AFTER, COMPLETE BEFORE, and COMPLETE AFTER. These constraint clauses are spec-

i�ed at the end of a statement or block, and will be translated into a series of

statements that will appear before and after the actual translation of the statement.

83

These statements include calls to routines for setting alarms and calls to routines

for delaying execution. The following section discusses some of the implementa-

tion issues for timing constraints. The next sections describe the methodology for

each of the constraints implemented including how they were interleaved in the code

appearing before and after the actual statement (the precode and the postcode).

Implementation Issues

Before a statement or block begins execution, all of the time expressions contained

in the timing constraint clauses must be evaluated, producing an absolute time value

for each clause. This absolute time value is expressed in seconds and microseconds

since 00:00 Universal Coordinated Time, January 1, 1970. The time expressions

often involve references to datetime valued functions such as CURRENT TIMESTAMP.

Recall that within a statement or block, all of the calls to these datetime valued

functions should appear to have been evaluated at the same instance of time. Thus,

if two of the clauses have the same time expression, they will evaluate to the same

absolute time value.

The preprocessor will translate the time expressions in RTSQL into C++ expres-

sions which will be evaluated when the code is executed. To facilitate the translation

of these expressions, a C++ class called my time t was developed to support ma-

nipulation of time values. The class my time t supports time values consisting of a

seconds �eld and a microseconds �eld. This class also provides addition and subtrac-

tion operators for the time values as well as the full set of comparison operators (i.e.

less than, less than or equal to). Also provided is a function called current ts(),

which can be used to determine the current timestamp, and will return time values

of type my time t.

After all of the timing constraint expressions are evaluated, they must be checked

for consistency. A function called check consistency was developed for this pur-

pose. This function compares the values of constraints which would be in obvious

con
ict. Three cases are checked as is shown in Figure 5.19. In case A, the time value

of the START BEFORE clause should be earlier than the time value of the START AFTER

84

time

SA SB

Case A

CA CB

Case B

Case C

SA = START AFTER CA = COMPLETE AFTER
SB = START BEFORE CB = COMPLETE BEFORE

Figure 5.19: Three Cases Checked by check consistency Function

clause. In case B, the time value of the COMPLETE BEFORE clause should be earlier

than the time value of the COMPLETE AFTER clause. In case C, the time value of the

START AFTER clause should be earlier than the time value of the COMPLETE BEFORE

clause. Each of these cases would de�nitely cause a constraint violation if they were

not true, and so a condition value TC CONSTRAINT will be raised to indicate that

one of these timing constraint con
icts has occurred. For this consistency check to

work properly in situations where only some of the constraints may have been speci-

�ed, default values for the various clauses are provided. START AFTER and COMPLETE

AFTER clauses use a default value of 0, which corresponds to January 1, 1970. The

START BEFORE and COMPLETE BEFORE clauses use a default value of 2147483647, the

maximum integer value INT MAX. This corresponds to the date January 18, 2038.

The check consistency function also checks the time value of the COMPLETE

BEFORE clause against the time value of the COMPLETE BEFORE clause of the next

outer block. For example, suppose we have the following:

BEGIN

SELECT * FROM stocks

COMPLETE BEFORE CURRENT_TIMESTAMP + INTERVAL '5' SECOND;

...

END COMPLETE BEFORE CURRENT_TIMESTAMP + INTERVAL '10' SECOND;

In this case, the deadline (e.g. time value of the COMPLETE BEFORE clause) for

the SELECT statement is earlier than the deadline for the outer block. But suppose

we had the following:

85

BEGIN

SELECT * FROM stocks

COMPLETE BEFORE CURRENT_TIMESTAMP + INTERVAL '20' SECOND;

...

END COMPLETE BEFORE CURRENT_TIMESTAMP + INTERVAL '10' SECOND;

In this case, the deadline of the SELECT statement is later than the deadline of

the next outer block. Thus, the deadline on the block will expire before the deadline

on the SELECT statement, and a timing constraint violation would occur on the

whole block instead of the SELECT statement. This means that the handler used for

the timing constraint violation should be the one intended for the block, not the

statement. To handle this situation, the deadline of the current statement or block

will be be checked against the deadline of the next outer block. If the statement or

block has a later deadline than the next outer block, it will be reset to match the

earlier value of the outer block. Since this check may reset the value of the COMPLETE

BEFORE clause, it must be done before the consistency check of the timing constraints

is performed.

Implementation of Timing Constraint Clauses

The timing constraint clauses can be divided into two categories. The �rst category,

delay constraints, contains the clauses that may cause a delay in execution. The sec-

ond category, deadline constraints, contains statement which specify some deadline

which must be met. Each of these categories is described in the following paragraphs.

Delay constraints. This category includes the START AFTER clause and the

COMPLETE AFTER clause. The preprocessor will translate these clauses into state-

ments which include a call to a routine which suspends execution until a certain

time interval has elapsed. For example, suppose we have the following statement:

SELECT id, price FROM stocks WHERE price > 1000.0

START AFTER CURRENT_TIMESTAMP + INTERVAL '5' SECOND;

The START AFTER clause indicates that the statement should begin execution

after the current timestamp plus 5 seconds. This particular constraint is used to

86

delay the time at which this statement begins execution. If the system is ready to

execute this statement before this time, it must wait until this time has elapsed.

Let SA be the time value of the START AFTER clause, let CA be the time value of

the COMPLETE AFTER clause, and let current ts() be the actual current time. The

START AFTER clause will be translated by the preprocessor into the following actions

(psuedo code shown):

if SA > current_ts() then

delay (SA - current_ts())

The COMPLETE AFTER clause will be translated by the preprocessor into the fol-

lowing actions (psuedo code shown):

if CA > current_ts() then

delay (CA - current_ts())

Deadline constraints. This category includes the START BEFORE clause and the

COMPLETE BEFORE clause. The preprocessor will translate the START BEFORE clause

into a check to see if the constraint has been violated when execution of the statement

is about to begin. For example, suppose we have the following statement:

SELECT price FROM stocks WHERE price < 1000.0

START BEFORE CURRENT_TIMESTAMP + INTERVAL '5' SECOND;

The START BEFORE clause indicates that the statement should begin execution

before the current timestamp for the block plus 5 seconds. If this statement begins

execution after this time the START BEFORE constraint is violated, and the condition

SB CONSTRAINT is raised.

The COMPLETE BEFORE clause will be translated into statements which may in-

clude a call to a routine which will set a timer expiration time. When the timer

expires, a signal will be sent to the calling routine indicating that the timer has

expired. For example, suppose we have the following statement:

SELECT id, price FROM stocks WHERE price > 1000.0

COMPLETE BEFORE CURRENT_TIMESTAMP + INTERVAL '5' SECOND;

87

The COMPLETE BEFORE clause indicates that the statement should �nish execu-

tion before the current timestamp for the block plus 5 seconds. If this statement

�nishes execution after this time the COMPLETE BEFORE constraint is violated, and

the condition CB CONSTRAINT is raised.

Let SB be the time value of the START BEFORE clause, let CB be the time value

of the COMPLETE BEFORE clause, let current ts() be the actual current time, and

let set alarm() and unset alarm() be routines for setting and unsetting a timer.

The START BEFORE clause will be translated by the preprocessor into the following

actions (psuedo code shown):

if SB < current_ts() then

set up handler routine for SB_CONSTRAINT

raise SB_CONSTRAINT

The COMPLETE BEFORE clause will be translated by the preprocessor into the

following actions (psuedo code shown):

set up handler routine for CB_CONSTRAINT

set_alarm() for CB

** execute statement **

unset_alarm() for CB

Placement of Timing Constraint Code

The previous section described the translation of each of the individual timing con-

straints. This section will describe the location of the code for the constraints relative

to the code representing the translation of the actual statement or block.

Figure 5.20 shows the placement of the code for each of the timing constraints.

After the function call to check consistency(), the code for the START AFTER clause

will appear. Recall that the check consistency() function will have already made

sure that the time value of the START AFTER clause is earlier than the COMPLETE

BEFORE clause. Next, is the code for setting up the handler for the CB CONSTRAINT

and setting the timer for the COMPLETE BEFORE clause. Note that this timer cannot

be set before the code for the START AFTER clause which involves a delay. This is due

to the fact the the routines used to cause a delay in the code execution use the same

88

/* Check for timing constraint consistency */

check_consistency()

/* Check time value of START AFTER clause */

if SA > current_ts() then

delay (SA - current_ts())

/* Set up CB_CONSTRAINT handler and set timer for COMPLETE BEFORE clause */

set up handler routine for CB_CONSTRAINT

set_alarm() for CB

/* Execute the statement or block */

** statement or block code **

/* unset timer for COMPLETE BEFORE clause */

unset_alarm() for CB

/* Check time value of the COMPLETE AFTER clause */

if CA > current_ts() then

delay (CA - current_ts())

/* Reset alarm for COMPLETE BEFORE clause */

set_alarm() for CB

/* Cleanup code for statement or block */

** cleanup code **

/* unset timer for COMPLETE BEFORE clause */

unset_alarm() for CB

Figure 5.20: Placement of Timing Constraint Code

89

signal as the timer. If the timer is set, and then the delay is initiated, the original

timer value will be lost.

The code for the actual statement or block appears next (Figure 5.20). During the

execution of this code, the timer could expire, and control would then be transferred

to the appropriate CB CONSTRAINT handler. Also, this code may generate a data

error condition and pass control to the appropriate condition handler. Even if the

timer expires while executing the condition handler for the data error, control would

be passed to the same CB CONSTRAINT handler.

Figure 5.20 also shows that upon completion of the block or statement, the timer

for the COMPLETE BEFORE clause is unset. This is due to the fact that the COMPLETE

AFTER constraint must be checked, and may involve another call to the routines to

delay execution. After this code, the timer for the COMPLETE BEFORE clause is reset.

Some cleanup code for the statement or block appears next, and then the timer for

the COMPLETE BEFORE clause is unset as the last action of the statement or block. If

the block or statement is nested within another, the timer for the COMPLETE BEFORE

clause of the outer block is reset.

5.3 Discussion

A subset of RTSQL constructs was implemented to demonstrate the feasibility of

these extensions to SQL. The implementation allows users to specify RTSQL queries

on a simple database system. The focus of the implementation is on data timing

constraints, timing constraints on statements, and condition handlers for these con-

straints if they are violated. There were three reasons why these particular constructs

were chosen. First, these constructs represent the least controversial extensions to

the SQL language. They require only slight modi�cation of some of the existing con-

structs of SQL, with the rest of the modi�cations appearing as pure extensions. For

example, providing the construct to allow a user to specify that a data value should

have a timestamp is a pure extension to SQL. But allowing the use of time valued

functions such as CURRENT TIMESTAMP in constraint speci�cations requires modifying

the current version of SQL.

90

Second, these constructs are essential in real-time applications. The ability to

time constrain data and time constrain actions is one of the most important features

of a real-time database. Non real-time applications may also �nd some of these

features useful. Members of the X3 standards committee have commented that

many commercial users have expressed interest on placing deadlines on actions in the

database system. Third, development of these constructs provides a basis for further

research. This implementation is based upon the passive approach of maintaining

temporal consistency of data. But an exception handling mechanism is now in place,

and could be extended to support the active approach.

One lesson learned from the implementation was the importance of operating

system support for timers and signals. The availability of a timer based upon absolute

time greatly simpli�ed management of the COMPLETE BEFORE constraint in a nested

environment. Signals were crucial in providing a means of implementing condition

handling. They provided a mechanism to transfer control to routines supplied by

the user when a problem was detected. Also, the implementation provided insight to

why the semantics of the EXIT handlers and CONTINUE handlers are de�ned as they

are. CONTINUE handlers are implemented by simply using the signal mechanism to

transfer control to a handler, and allowing the handler to return to the point at which

the signal was raised. EXIT handlers are implemented by saving the program context

before a block begins execution, so that the handler can return to that environment

when it is complete, having abandoned the remainder of the block.

Three areas should be addressed in future work on the implementation. First, the

implementation only supports simple database queries. Usually a database system

allows a user to create complex nested statements for manipulating data. Support

for nested statements in this implementation would distract from the issues being

addressed. It is also a feature that is very complex and encompasses a major area

of research called query optimization. On the other hand, nested queries would

provide a means of exploring condition handling and timing constraints in nested

environments. Since this is such an important issue, nesting will be supported for

compound statements. This allows us to focus on the concerns of constraints in

nested environments without the overhead of complicated queries.

91

The second area that should be addressed in future work on the implementation

is RTSQL transactions. To support transactions in a database system requires the

existence of some type of transaction manager. The transaction manager schedules

all of the transactions in the system while preserving the consistency of the database.

The Zip RTDBMS data manager was used as a basis for this implementation, and

does not provide a transaction manager. Implementation of a transaction manager

for our prototype system was beyond the scope of this work. Thus, the implementa-

tion assumes there is no contention for resources, and that all transactions commit.

Transactions are actually a controversial issue within the standards committee.

The extensions proposed here go way beyond the concepts currently under consider-

ation by the standards committee. Members of this committee have suggested that

the constructs we have proposed be introduced at a later time.

A third area that should be addresses in future work on the implementation is

directives. Many of the directives provide information to the underlying system so

that data access times are predictable and the transaction manager can determine

optimal transaction schedules. Addition of these types of features usually requires

access to the most primitive operations in the system. In our case, Zip RTDBMS

does provide main memory storage of all data, and supports bounded tables. At this

time, we do not provide access to these features, but they could be added at a later

time. Also note that our implementation does not support a transaction manager,

so many of the directives related to this cannot be implemented at this time.

92

Chapter 6

Evaluation

6.1 Implementation Tests

A series of tests were designed to evaluate the implementation. The test suite was

incremental in nature, starting with tests that focused on the basic operations imple-

mented and concluding with tests that examined more complicated scenarios such as

timing constraint violations in nested blocks. The tests are designed to verify that

the constructs implemented exhibit behavior that is consistent with the semantics

speci�ed. In the case of the basic operations, this meant verifying that the data

de�nition commands and the data manipulation commands were able to interact

with Zip RTDBMS through the interface we developed. For constraints, this meant

verifying that the constraint functions were properly created and executed at the ap-

propriate time. Also, when a constraint violation was detected, that the appropriate

handler was initiated. For timing constraints on actions, this meant verifying that

the delay constraints actually delayed execution, and that the deadline constraints

were properly detected and appropriate handlers executed when violations did occur.

These tests are summarized in the following paragraphs.

6.1.1 Test Descriptions

Test 1 - Data De�nition Commands. This test veri�es that the tables speci�ed

by the user are properly translated into code used by the ZipDDL parser and objects

93

used in the interface to Zip RTDBMS. This includes verifying correct creation of

both the timestamp columns when an attribute has a timestamp speci�ed, and the

constraint functions for the logical and temporal data constraints.

Test 2 - Data Manipulation Commands. This test veri�es that the interface

to Zip RTDBMS behaves properly. The four basic operations are tested: INSERT,

SELECT, DELETE, and UPDATE. WHERE clauses are also tested on the appropriate state-

ments.

Test 3 - Logical Data Constraint Violations. This test veri�es that logical

data constraints are properly detected and handled by the system. An attempt is

made to insert data which will violate the constraints.

Test 4 - Temporal Data Constraint Violations. This test veri�es that tempo-

ral data constraints are properly detected and handled by the system. An attempt

is made to read data which is known to be temporally inconsistent.

Test 5 - Handlers in Nested Blocks. This test veri�es that handlers speci�ed

in outer blocks will be invoked in cases where there is no handler in an inner block

that contains the constraint violation. Even if the handler in the outer block is an

EXIT handler, it should exit from the inner block only.

Test 6 - Basic Timing Constraint Violations This test veri�es that the

three types of timing constraint violations are properly detected and handled.

These constraints include the SB CONSTRAINT (for the START BEFORE clause), the

CB CONSTRAINT (for the COMPLETE BEFORE clause), and the TC CONSTRAINT (for tim-

ing constraint con
icts). The other two timing constraint clauses, START AFTER and

COMPLETE AFTER will also be veri�ed.

Test 7 - Timing Constraint Violations in Nested Blocks. This test veri�es

that handlers speci�ed in outer blocks will be invoked in cases where there is no

94

Test# Passed Not Passed - Comments

1 X
2 X
3 X
4 X
5 X
6 X
7 X
8 Problems encountered

Table 6.1: Implementation Results

handler in an inner block. Also, if an inner block has a COMPLETE BEFORE deadline

which has been reset due to an earlier COMPLETE BEFORE deadline of an outer block,

verify that the handler for the outer block is invoked even if the missed deadline is

detected in the inner block.

Test 8 - Timing Constraint Violations in Condition Handlers This test

veri�es that even if a timing constraint is violated during the execution of a constraint

handler, that control is properly passed to the handler for the timing constraint

violation.

6.1.2 Summary of Test Results

Table 6.1.1 summarizes the results of the test suite described in the previous section.

Many of the tests had a few variations which were tested. For example, Test 5

examined condition handlers in nested blocks. This required testing both temporal

and logical constraint violations on data in nested blocks. Also, tests were performed

using a nesting depth greater than two to check that handlers in more distant outer

blocks would also work.

In Test 4, we wanted to create a scenario where only some of the data processed

caused a temporal constraint violation. To accomplish this, data was entered into

95

the table at regular intervals by placing an INSERT statement with a START AFTER

clause in a loop. For example:

my_handler() {

printf("This is the local handler for stock.price_avi\n");

}

main() {

int i;

float k;

for (k=1; k<=10; k++) {

j = 0.5 * k;

EXEC SQL BEGIN

INSERT INTO stock (id, price) VALUES (:k, :j)

START AFTER CURRENT_TIMESTAMP + INTERVAL '1' SECOND;

END;

}

EXEC SQL BEGIN

DECLARE CONTINUE HANDLER FOR stock.price_avi my_handler();

SELECT * FROM stock;

END;

}

The INSERT statement creates a timestamp value for an item if it is required.

In this case, the price attribute was speci�ed to have a timestamp. Each time the

INSERT statement executes, it waits one second before it does the insertion. So

as each row of the table is inserted, the timestamp of the price attribute will be

approximately one second older than the timestamp of the price on the previous

row.

The price attribute has a temporal consistency constraint price avi speci�ed

that states that its value should be no more than �ve seconds old. When the SELECT

statement is executed, the �rst six rows have price values that violate the price avi

constraint. Figure 6.1 shows the timeline corresponding to the situation.

To test the timing constraints on actions required slowing down portions of the

code built by the preprocessor by using a routine called busy wait(n) that executes

repeated
oating point divisions. An integer value n is supplied to the routine, and

used to generate a delay of approximately n seconds. For example, suppose we have

the following statement:

96

time

10 INSERT operations
approximately one each second

SELECT
operation

5 second
validity interval

1 2 3 4 5 6 7 8 9 10

Figure 6.1: Timeline of Events for Test 4

SELECT id FROM stock

START AFTER CURRENT_TIMESTAMP + INTERVAL '1' SECOND

START BEFORE CURRENT_TIMESTAMP + INTERVAL '2' SECOND

COMPLETE AFTER CURRENT_TIMESTAMP + INTERVAL '5' SECOND

COMPLETE BEFORE CURRENT_TIMESTAMP + INTERVAL '7' SECOND;

Figure 6.2 shows the psuedo code result of the above SELECT statement. Possible

points of insertion for the busy wait routine are shown. For example, at point A, a

delay of three seconds would be su�cient to cause the START BEFORE constraint to be

violated. At points B or C, a delay of six or more seconds would be su�cient to cause

cause the COMPLETE BEFORE clause to be violated (note that one second is utilized

by the START AFTER clause). A delay at point D demonstrates the importance of

resetting the alarm after the code for the COMPLETE AFTER clause.

There were problems with Test 8, which tests for timing constraint violations

during execution of condition handlers. Delays were placed in the exception han-

dlers to force the violation of the timing constraints. If the handler was for a data

constraint violation (temporal or logical), no problems were encountered. Also, in

the case where the handler was for timing constraint con
icts or violation of the

START BEFORE constraint, the tests performed as expected. But in the case where

the handler was for a COMPLETE BEFORE clause of an inner block, a problem was

detected. Recall that the COMPLETE BEFORE clause is translated into code which sets

a handler and a timer. When the timer expires, the appropriate handler is invoked.

This handler does not currently reset the timer for the outer block. Since this timer

97

SA = NOW + 1
SB = NOW + 2
CA = NOW + 5
CB = NOW + 7

check_consistency()
place statement information on environment stack

if (stmt.SA > current_ts ())
delay (SA - current_ts ());

setup handler for CB_CONSTRAINT
set alarm for CB

if (SB < current_ts ()) {
setup handler for SB_CONSTRAINT
 raise SB_CONSTRAINT
}

/* Actual SELECT statement start */
query preparation functions for Zip_RTDBMS
actual select query for Zip_RTDBMS
while (more rows to be processed)
 if (no data timing constraint violations)
 output results;
/* Actual SELECT statement end */

/* timing constraint post-code for stmt */
unset alarm for CB
if (CA > current_ts ())
 delay (CA - current_ts ());
reset alarm for CB

/* SELECT translation end */
unset alarm for CB
remove statement information from environment stack

A

B

C

D

Figure 6.2: Examples of Insertion Points for busy wait(n) Routine

98

Requirement Description Status

3.5.2.1 Modes of real-time PA
3.5.2.2 Real-time transactions A
3.5.2.3 Concurrency control NA
3.5.2.4 Temporal consistency A
3.5.2.5 Real-time scheduling PA
3.5.2.6 Bounded logical imprecision NA
3.5.2.7 Bounded temporal imprecision NA
3.5.2.8 Main memory data A
3.5.2.9 Time fault tolerance A
3.5.2.10 Resource utilization limits A
3.5.2.11 Compilable DML A
3.6.2.1 Collection of fault information A
3.6.2.2 Retrieval of fault information A
3.6.2.6 Fault detection thresholds NA
3.6.2.7 Speci�cation of fault responses A

(A=Addressed PA=Partially Addressed NA=Not Addressed)

Table 6.2: DISWG Requirements RTSQL Summary

is never reset, the outer block's timing constraint will not be violated as it should.

This problem could be easily remedied by designing the COMPLETE BEFORE handler

to reset the alarm before the handler routine is actually executed.

6.2 DISWG Requirements Evaluation

In the following paragraphs, RTSQL will be evaluated against the DISWG require-

ments in the areas of real-time processing and fault tolerance as described in chapter

2. Table 6.2 summarizes these results.

3.5.2.1Modes of real-time. The current version of RTSQL is intended for use in

soft real-time systems. Some of the features of RTSQL also support the requirements

99

of hard real-time systems. These include directives that can be used to specify

resource utilization limits such as worst case execution time and bounded table sizes.

With this type of information, statements and transactions could be designed to meet

their timing constraints.

3.5.2.2 Real-time transactions. RTSQL provides a more complete transaction

speci�cation than SQL. This speci�cation provides some mechanisms for controlled

relaxation of the ACID properties. For example, the RECOVERY clause allows

a transaction to a�ect its durability in the system by specifying a recovery level.

Preconditions and postconditions can be used to relax atomicity. They can be used

to specify that a transaction may commit even if some of it's subtransactions have not

been able to commit (allowing for partial execution of a transaction). Transactions

no longer necessarily run in isolation from one another, one transaction may be

dependent upon another committing before it commits.

Timing constraints can be speci�ed on actions (statements and transactions).

These timing constraints can be used to specify an interval in which an action must

start execution and an interval in which an action must complete execution. Criti-

cality of an action can be speci�ed through a directive.

3.5.2.3 Concurrency control correctness criteria. The current version of RT-

SQL does not address this requirement directly. SQL provides some primitivemecha-

nisms for specifying concurrency control correctness criteria other than serializability.

For example, it is possible to allow transaction one to read data written by trans-

action two even though transaction two has not yet committed (this phenomenon is

known as dirty reads). Future versions may attempt to incorporate e�orts such as

the concurrency control mechanism developed in[DiP95].

3.5.2.4 Temporal consistency. RTSQL has extended the notion of data con-

straints to time. This allows the user to specify the temporal consistency require-

ments of data.

100

3.5.2.5 Real-time scheduling. RTSQL does not specify the real-time scheduling

to be used in the DBMS. In keeping with the spirit of SQL, the language should not

specify 'how' something should be done, but simply 'what' needs to be done. It is

left to the implementation to determine the best way to accomplish the task. Thus,

RTSQL attempts to provide su�cient information (such as worst case execution

time, criticality, and deadlines) that could be synthesized by a number of real-time

scheduling algorithms in an attempt to maintain logical and temporal consistency of

the data.

3.5.2.6 Bounded logical imprecision. RTSQL does not address imprecise data.

This issue is tightly bound with the concurrency control mechanism used by the

system. Imprecision is usually introduced into data because of a tradeo� to maintain

temporal consistency of the data. RTSQL could easily be extended to maintain an

imprecision value in a manner similar to timestamps. And, as with the timestamp of

an attribute, a function for retrieving the imprecision associated with a value could

be provided and utilized in constraint speci�cations.

3.5.2.7 Bounded temporal imprecision. RTSQL does not address temporal

imprecision of data directly. Temporal imprecision is tightly bound with the con-

currency control mechanism used by the system. Constraints are used to specify

temporal consistency requirements, and condition handlers are used to specify the

actions to be taken when a constraint is violated. If a data value is allowed to be

temporally imprecise, a handler may simply specify no action, and allow an action

to continue. Though this methodology does not quantify temporal imprecision, it

recognizes that it can exist.

3.5.2.8 Main memory data. RTSQL provides a directive for specifying that a

table should be located in main memory. It even goes one step further in providing

a directive which could be used to specify a particular location within memory.

101

3.5.2.9 Time fault tolerance. RTSQL utilizes the condition handling mechanism

of SQL/PSM (with minor enhancements) to support time fault tolerance.

3.5.2.10 Resource utilization limits. RTSQL provides some mechanisms for

specifying resource limits. For example, we can specify the worst case execution

time of a statement or transaction. Also, table sizes can be bounded, which provides

the system with the worst case storage requirements. Bounded tables also allow

computation of worst case execution times when coupled with predictable storage

access, as is the case when data is stored in main memory.

3.5.2.11 Compilable DML. RTSQL does not directly address the issue of compil-

able DML. This capability exists for SQL/PSM, which, given the support SQL/PSM

provides for condition handling, is a likely candidate for RTSQL to actually be based

upon.

3.6.2.1 Collection of fault information. SQL provides a diagnostics area for

storing information related to faults in the database system. When a statement

completes execution, information related to the completion status of the statement

is stored in this area. The diagnostics area is capable of recording information for

more than one fault should that situation occur. Given that RTSQL is based upon

SQL, it too will have this capability.

3.6.2.2Retrieval of fault information. SQl provides a GET DIAGNOSTICS state-

ment for retrieving information from the diagnostics area. This would also be avail-

able in RTSQL.

3.6.2.6 Fault detection thresholds. This requirement was not addressed by RT-

SQL.

3.6.2.7 Speci�cation of fault responses. This requirement is satis�ed by the

condition handling mechanism described in this work. The user can specify handlers

that should be executed when a particular fault occurs.

102

Summary of DISWG Results. The majority of the DISWG requirements have

been satis�ed by RTSQL. The major weakness of RTSQL is in the area of imprecise

values. The RTSORAC model provides a basis for logical imprecision to be associ-

ated with values, and the constraint mechanism can be used to bound imprecision.

RTSQL constructs could be developed from this basis to support logical imprecision.

Temporal imprecision must be added to both the RTSORAC model and RTSQL.

SQL and RTSQL are also weak in providing mechanisms for specifying di�erent

concurrency control correctness criteria.

6.3 Standards Work

Preliminary results of the RTSQL e�orts were presented to the DISWG committee

in the fall of 1994. In general, the work was well received. Their plan was to

use the proposed RTSQL to develop a standard that could be used by the Navy.

The initial phase of this project was to determine existing standards which were

related to the requirements document and evaluating them in the context of the

requirements. Appendix C shows the results of this study. Two standards were

examined in detail: Remote Data Access (RDA) and SQL2. The table in Appendix

C notes if the requirement is addressed, and if so, where the related material appears

in the standard that addresses the requirement.

Once this phase was completed, requirements that were not addressed or only

partially addressed were divided into di�erent categories. Subgroups were formed to

examine each category in detail. Just as this e�ort was starting, it was placed on

hold due to budgetary considerations. DISWG's funding was substantially curtailed

to be reevaluated in the next �scal year.

The long term goal of the DISWG committee was to have RTSQL recognized as

an international standard. To attain this goal, the committee had representatives

become members of the ANSI X3 committee. We were allowed to participate in this

process. When the DISWG funding was reduced, this e�ort was continued, since

establishing a standard is understood to be a long, complicated process.

We have become fully involved in the ANSI X3 committee as they work on the

103

next standard SQL3. We have provided input to issues which would eventually

impact RTSQL, such as condition handling. We have also had the opportunity to

request that a working group be formed under the auspices of ANSI to study RTSQL.

This involved a formal request, and a technical presentation of our preliminary results

in May of 1995. A number of members representing a diverse customer base have

encouraged us in our e�orts. These include representatives for the petroleum industry

and �nancial services industry.

At this point in time, we have been asked by the standards committee to generate

a base document for RTSQL. The intent is to have this document presented at

the international level to see the level of interest. Though ANSI has the power to

form a subgroup to study RTSQL, they prefer to keep in line with the interests of

the international community. If a su�cient number of countries support the idea,

the initial work will be under the auspices of ANSI for later acceptance by ISO

(International Standards Organization).

104

Chapter 7

Conclusion

Our goal for this work was to develop a set of language constructs which could

be used as a basis for creating a standard query language for real-time database

systems. The contributions we have made in reaching this goal include the de�nition

of the RTSORAC model, the speci�cation of RTSQL, and the demonstration of

completeness and feasibility of the resulting language. These contributions have

provided a strong foundation for the development of a standards document that could

be submitted to the standards committee for review. In this chapter we summarize

these contributions, and discuss their limitations and possible future e�orts.

7.1 Contributions

Recall that the development of RTSQL included speci�cation of language constructs,

an evaluation of their feasibility through implementation, and evaluation of the spec-

i�cation for completeness. Each of these areas is summarized in the following para-

graphs.

Language Speci�cation. The language constructs of RTSQL fall into three cate-

gories. The �rst category is constraints. Constraints are used to specify the semantics

of correctness (with respect to time) of data, operations, and transactions. Absolute

and relative temporal consistency are supported by an extension to SQL2's data

105

de�nition language allowing the speci�cation of timestamps on data. An amend-

ment to SQL2's constraint mechanism allows use of datetime functions, which, along

with the timestamps, are su�cient to specify temporal consistency constraints. Tim-

ing constraints on general data manipulation statements, including transactions, are

speci�ed with a complete set of timing constraints including: start times, deadlines

and periods. The exception handling mechanism was also extended to support spec-

i�cation of handlers for timing constraints and user-de�ned data constraints.

The second category is directives. Directives are used to specify assertions about

data, operations, and transactions. Database partitioning, which can allow higher

data availability, is supported by the addition of a DEPENDS ON data de�nition di-

rective. Relative importance of transactions is a replaceable characteristic speci�ed

by a IMPORTANCE LEVEL directive in a transaction de�nition. Directives are used to

specify system-dependent con�gurations that can a�ect predictability of execution,

such as whether a data item is kept in main memory only.

The third category is transactions. The transaction speci�cation provides mecha-

nisms for controlled relaxation of the ACID properties and more
exible transaction

structure. These capabilities allow speci�cation of various transaction and subtrans-

action structure that can facilitate early commitment and therefore increase data

availability and
exibility in real-time scheduling.

Language Completeness. RTSQL was evaluated in the context of the DISWG

requirements. Recall that the DISWG requirements were quite extensive, and that

RTSQL addresses only two of the areas in depth. Many of the other requirements

are covered by the SQL standard and the RDA standards. The evaluation of RTSQL

was focused on two areas of the requirements document: real-time processing and

fault tolerance. In the area of real-time processing, most of the requirements were

addressed by RTSQL including support for temporal data, real-time transactions,

time fault tolerance, and resource utilization limits. A subset of the fault tolerance

requirements were addressed including collection and retrieval of fault information,

fault detection thresholds, and speci�cation of fault responses through the use of

condition handling.

106

Language Feasibility. An implementation was done to determine the feasibility

of some of the proposed features. The focus of the implementation was on data

timing constraints, timing constraints on actions, and condition handlers for these

constraints if they are violated. The testing of these constructs produced favorable

results. Users could de�ne time constrained data and condition handlers which were

invoked if these constraints were violated. They could also place timing constraints

on statements and blocks and de�ne handlers which were invoked if these constraints

were violated. Provisions were made to handle con
icting timing constraints as well.

7.2 Limitations and Future Work

The work described in this dissertation provides a strong foundation for a standard

query language for real-time databases. However, there are some limitations to the

work upon which we can focus future e�orts. The following paragraphs will highlight

some of the known limitations of the RTSORAC model and RTSQL. Also, issues for

extending the implementation will be discussed.

7.2.1 RTSORAC Model.

The RTSORAC model has no support for temporal imprecision. Related research

[DiP95] has focused on concurrency control and bounding of logical imprecision, little

has been done in the study of temporal imprecision. Given that the RTSORACmodel

provides the compatibility function which is used in concurrency control, there is a

basis that could be used to study this issue.

Future e�orts could also include formalization of the RTSORAC model. As men-

tioned in Chapter 3, RTSORAC is loosely based upon the entity relationship model.

Extensive work has been done to formalize the ER model[NP88]. There have also

been e�orts to add time to the relational model in the work on temporal databases

[MS87]. In the context of these related e�orts, one area of future work would be to

formalize the RTSORAC model, including the aspect of time.

107

7.2.2 RTSQL.

RTSQL does not provide any mechanism for handling historical data. Time con-

strained data is often the result of information being gathered at regular intervals

from a sensor or other input device. In this case, there is not only the most recent

value from the sensor that is of interest, but some historical record of values that

should be maintained. For example, these values may be needed to forecast future

values through extrapolation or to evaluate past performance. Though the main-

tenance of historical data is usually a feature of temporal databases, it seems that

RTSQL should provide mechanisms for handling this situation.

The recovery mechanism provided for RTSQL transactions must be improved. In

the current version of the language, the user can specify three levels of recovery for a

transaction: automatic, user-speci�ed (where an alternative transaction is speci�ed),

or manual. Recovery needs to be enhanced because of the introduction of full and

exible transaction capabilities, and because of timing and predictability consider-

ations. In particular, mechanisms that allow for forward recovery instead of just

traditional database backward recovery should be introduced. Also, the semantics

of recovery for subtransactions must be explored.

One of the DISWG requirements that was not addressed directly by RTSQL was

concurrency control correctness criteria. SQL does provide very primitive mecha-

nisms that can be speci�ed on the transaction level which allow more concurrent

access to data while sacri�cing consistency. The RTSORAC model and work done

in [DiP95] provide a strong foundation on which extensions could be based using the

object paradigm, but further research would be necessary using the relational model.

Directives could be expanded to include worst case resource requirements for

memory needed by to execute the transaction.

7.2.3 Implementation.

The implementation presented here was a subset of the proposed constructs. Some

of these, such as transactions, will require extensive research and work. Others, such

as some of the directives, will require little e�ort to support.

108

The implementation provides a good starting point in exploring the implications

of maintaining time constrained data using the active approach as discussed in Sec-

tion 4.1.1. This is related to the work in the area of active databases[MD89]. In an

active database, one action may cause another action to be initiated, and so forth.

In real-time databases the passage of time as well as other actions can cause another

action to be initiated. The active approach of maintaining time constrained data

should be fully explored.

The work on RTSQL presented here represents the initial e�orts in establishing a

standard query language for real-time databases. With respect to creating an actual

standard, RTSQL is in its infancy. Much work must be done to get the work in a

form acceptable to the standards community. This includes identi�cation of speci�c

sections of the SQL2 standards document which are a�ected by the proposed stan-

dards. There are also speci�c rules on how to structure the document in terms of

necessary sections and their contents. But the contributions of this work: the RT-

SORAC model, the speci�cation of RTSQL, and the demonstration of completeness

and feasibility of the speci�cation provide a strong foundation for the establishment

of a standard query language for real-time databases.

109

References

[BHG87] P. Bernstein, V. Hadzilacas, and N. Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley, Reading, Mas-
sachusetts, 1987.

[BMHD89] A.P. Buchmann, D.R. McCarthy, M. Hsu, and U. Dayal. Time-critical
database scheduling: A framework for integrating real-time scheduling
and concurrency control. In The Fifth International Conference on
Data Engineering, February 1989.

[Boo91] Grady Booch. Object-Oriented Design. The Benjamin/Cummings Pub-
lishing Company, Redwood City, CA, 1991.

[Che76] P.P. Chen. The entity-relationship model - toward a uni�ed view of
data. ACM Transactions on Database Systems, 1(1), March 1976.

[DD92] C. Date and H. Darwen. A Guide to SQL Standard. Addison-Wesley
Publishing, Reading, MA., 1992.

[DG91] Oscar Diaz and Peter M. D. Gray. Semantic-rich user-de�ned relation-
ship as a main constructor in object-oriented databases. In R.A. Meers-
man, W. Dent, and S. Khosla, editors, Object-Oriented Databases:
Analysis,Design & Construction (DS4), pages 207 { 224. Elsevier Sci-
ence Publishers, B.V. (North-Holland), 1991.

[DiP95] Lisa Cingier DiPippo. Object-based semantic real-time concurrency
control. PhD thesis, University of Rhode Island, 1995.

[DP93] Pamela Drew and Calton Pu. Asynchronous consistency restoration
under epsilon serializability. Technical Report OGI-CSE-93-004, De-
partment of Computer Science and Engineering, Oregon Graduate In-
stitute, 1993.

110

[DW93] L. Cingiser DiPippo and V. FayWolfe. Object-based semantic real-time
concurrency control. Proceedings of the 14th IEEE Real-time Systems
Symposium, December 1993.

[For93] P. Fortier. Early Commit. PhD thesis, University of Massachusetts
Lowell, 1993.

[For94] P. Fortier. ANSI DBSSG PRISTG: Real-time database management
systems reference model. ANSI DBSSG Predictable Real-time Infor-
mation Systems Task Group, PRISTG Document No. 94-001, January
1994.

[FS94] P. Fortier and Cdr. G. Sawyer. DISWG a new player in NGCR open
systems standards. To appear in Computer Standards and Interfaces,
1994.

[FWP94] Paul Fortier, Victor Fay Wolfe, and JJ Prichard. Flexible real-time
SQL transactions. In IEEE Real-Time Systems Symposium, Dec. 1994.

[Gal91] L. Gallagher. Database management standards: Status and applicabil-
ity. Computer Standards and Interfaces, 12, 1991.

[Gal92] L. Gallagher. Object SQL: Language extentions for object data man-
agement. In International Society for Mini and Microcomputers Con-
ference on Information and Knowledge Management, August 1992.

[GMGK+91] H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner, and K. Salem.
Modeling long-running activities as nested sagas. Bulletin of the IEEE
Technical Committee on Data Engineering, 14(1), March 1991.

[Gor93] K. Gordon. DISWG Database Management Systems Requirements.
NGCR SPAWAR 331 2B2, Alexandria, Virginia, 1993.

[Joh75] S. C. Johnson. YACC-yet another compiler compiler. Technical Report
CSTR 32, Bell Laboratories, Murray Hill, N. J., 1975.

[KS86] Eugene Kligerman and Alexander Stoyenko. Real-time Euclid: A lan-
guage for reliable real-time systems. IEEE Transactions on Software
Engineering, SE-12(9):941{949, September 1986.

[Les75] M. E. Lesk. LEX-a lexical analyzer generator. Technical Report CSTR
39, Bell Laboratories, Murray Hill, N. J., 1975.

111

[LL73] C. L. Liu and James W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of the ACM,
20(1):46{61, 1973.

[LMB95] John R. Levine, Tony Mason, and Doug Brown. lex & yacc. O'Reilly
& Associates, Inc., Sebastopol, CA, 1995.

[LN88] Kwei-Jay Lin and Swaminathan Natarajan. Expressing and maintain-
ing timing constraints in FLEX. In IEEE Real-Time Systems Sympo-
sium, pages 96{105, December 1988.

[MD89] Dennis R. McCarthy and Umeshwar Dayal. The architecture of an ac-
tive database management system. In Proceedings of the 1989 ACM
SIGMOD International Conference on the Management of Data, Port-
land Oregon, June 1989.

[Mel92] J. Melton, editor. ANSI X3.135-1992, American national Standard,
Database Language SQL. American National Standards Institute, 1992.

[Mel95] J. Melton, editor. ISO/IEC JTC1/SC21/WG3 DBL YOW-006 and
ANSI X3H2-95-086, (ISO/ANSI working draft) SQL Persistent Stored
Modules (SQL/PSM). American National Standards Institute, March
1995.

[MS87] Edwin McKenzie and Richard Snodgrass. Extending the relational
algebra to support transaction time. In Proceedings of the 1987 ACM
SIGMOD International Conference on the Management of Data, San
Francisco, California, May 1987.

[MS92] J. Melton and A. Simon. Understanding the New SQL: A Complete
Guide. Morgan Kau�man Publishers, San Mateo, CA., 1992.

[NP88] P.A. Ng and J. F. Paul. A formal de�nition of entity-relationship mod-
els. North Holland, Amsterdam, 1988.

[OV91] T. Ozsu and P. Valduriez. Principles of Distributed Database Systems.
Prentice Hall Inc., Englewood Cli�s, New Jersey, 1991.

[PDPW94] JJ Prichard, Lisa Cingiser DiPippo, Joan Peckham, and Victor Fay
Wolfe. RTSORAC: A real-time object-oriented database model. In
Proceedings of the International Conference on Database and Expert
Systems Applications, September 1994.

112

[PM94] W. Pugh and T. Marlow, editors. Proceedings of the ACM SIGPLAN
workshop on language, compiler and tool support for real-time systems.
Association for Computing Machinery, June 1994.

[Ram93] Krithi Ramamritham. Real-time databases. International Journal of
Distributed and Paralled Databases, 1(2), 1993.

[RDA] ISO/IEC 9579-2, Information Technology, Remote Database Access,
Part 2: SQL Specialization. American National Standards Institute.

[RP95] Krithi Ramamritham and Calton Pu. A formal characterization of
epsilon serializability. To appear in IEEE Transactions on Knowledge
and Data Engineering. Also available as technical report No. CUCS-
044-91 at Department of Computer Science, Columbia University, 1995.

[Sha85] L. Sha. Modular Concurrency Control and Failure Recovery { Con-
sistency, Correctness and Optimality. PhD thesis, Carnegie-Mellon
University, 1985.

[Sno94] R. Snodgrass et. al. TSQL2 language speci�cation. ACM SIGMOD
Record, 23(1):65{86, March 1994.

[Son90] Sang H. Son. Real-time database systems: A new challenge. Data
Engineering, 13(4), December 1990.

[ST90] P. Stachour and B. Thurasingham. SQL extensions for security asser-
tions. Computer Standards & Interfaces, 11(1), 1990.

[Ulu92] Ozgur Ulusoy. Current research on real-time databases. SIGMOD
Record, 21(4):16 { 21, December 1992.

[WDL93] Victor Wolfe, Susan Davidson, and Insup Lee. RTC: Language support
for real-time concurrency. Real-Time Systems, 5(1):63{87, March 1993.

[YWLS94] P. Yu, K. Wu, K. Lin, and S.Son. On real-time databases: Concurrency
control and scheduling. Proceedings of the IEEE, 82, January 1994.

113

Appendix A

RTSQL grammar

This is a copy of the actual grammar used in the implementation.

sql_list:

sql_statement ';'

| sql_list sql_statement ';'

;

sql_statement:

base_table_def

| select_statement

| insert_statement

| update_statement

| delete_statement

| compound_statement

;

/*

** RTSQL compound statement

*/

compound_statement:

BEGIN

opt_handler_list

sql_statement_list

END

opt_timing_constraint

;

114

sql_statement_list:

sql_statement ';'

| sql_statement_list sql_statement ';'

;

opt_handler_list:

/* empty */

| handler_list

handler_list:

handler ';'

| handler_list handler ';'

;

handler:

DECLARE handler_type HANDLER

FOR full_name handler_action

;

handler_type:

CONTINUE

| EXIT

;

handler_action:

routine_name '(' ')'

;

/*

** RTSQL CREATE TABLE statement

*/

base_table_def:

CREATE TABLE table_name

'(' base_table_element_commalist ')'

;

base_table_element_commalist:

base_table_element

115

| base_table_element_commalist ',' base_table_element

;

base_table_element:

column_def

| table_constraint_def

;

column_def:

column_name data_type opt_timestamp

;

opt_timestamp:

/*empty*/

| WITH TIMESTAMP

;

table_constraint_def:

CONSTRAINT constraint_name column_constraint

;

column_constraint:

CHECK '(' constraint_search_condition ')'

;

/*

** RTSQL SELECT statement

*/

select_statement:

SELECT select_list table_exp

opt_timing_constraint

;

select_list:

'*'

| column_commalist

;

116

table_exp:

from_clause

opt_where_clause

;

from_clause:

FROM table_name

;

opt_where_clause:

/* empty */

| where_clause

;

where_clause:

WHERE search_condition

;

/*

** RTSQL INSERT statement

*/

insert_statement:

INSERT INTO table_name opt_column_commalist

values_or_query_spec

opt_timing_constraint

;

opt_column_commalist:

/* empty */

| '(' column_commalist ')'

;

column_commalist:

column_name

| column_commalist ',' column_name

;

values_or_query_spec:

117

VALUES '(' insert_atom_commalist ')'

;

insert_atom_commalist:

insert_atom

| insert_atom_commalist ',' insert_atom

;

insert_atom:

atom

;

atom:

literal

| parameter

;

/*

** RTSQL UPDATE statement

*/

update_statement:

UPDATE table_name SET assignment_commalist

opt_where_clause

opt_timing_constraint

;

assignment_commalist:

assignment

| assignment_commalist ',' assignment

;

assignment:

column_name '=' numeric_exp

;

/*

** RTSQL DELETE statement

*/

delete_statement:

DELETE FROM table_name opt_where_clause

118

opt_timing_constraint

;

/*

** RTSQL search_condition clause

*/

search_condition:

search_condition OR search_condition

| search_condition AND search_condition

| NOT search_condition

| '(' search_condition ')'

| predicate

;

predicate:

comparison_predicate

;

comparison_predicate:

numeric_exp COMPARISON numeric_exp

| datetime_exp COMPARISON datetime_exp

;

numeric_exp:

numeric_exp '+' numeric_exp

| numeric_exp '-' numeric_exp

| numeric_exp '*' numeric_exp

| numeric_exp '/' numeric_exp

| '+' numeric_exp %prec UMINUS

| '-' numeric_exp %prec UMINUS

| '(' numeric_exp ')'

| numeric_primary

;

numeric_primary:

INTNUM

| APPROXNUM

| column_name

;

119

datetime_exp:

interval_exp '+' datetime_exp

| datetime_exp '+' interval_exp

| datetime_exp '-' interval_exp

| datetime_primary

;

interval_exp:

interval_literal

| '(' datetime_exp '-' datetime_exp ')' DAY TO SECOND

;

interval_literal:

INTERVAL STRING interval_qualifier

;

interval_qualifier:

DAY TO SECOND

| SECOND

;

datetime_primary:

datetime_literal

| datetime_function_ref

| TIMESTAMP '(' column_name ')'

;

datetime_literal:

TIME STRING

| TIMESTAMP STRING

;

/*

** RTSQL search_condition clause for constraints

*/

constraint_search_condition:

120

constraint_search_condition OR

constraint_search_condition

| constraint_search_condition AND

constraint_search_condition

| NOT constraint_search_condition

| '(' constraint_search_condition ')'

| constraint_predicate

;

constraint_predicate:

constraint_comparison_predicate

;

constraint_comparison_predicate:

numeric_exp COMPARISON numeric_exp

| datetime_exp COMPARISON datetime_exp

;

/*

** RTSQL opt_timing_constraint clause

*/

opt_timing_constraint:

/* empty */

| timing_constraint_list

;

timing_constraint_list:

timing_constraint

| timing_constraint_list timing_constraint

;

timing_constraint:

START AFTER datetime_exp

| START BEFORE datetime_exp

| COMPLETE AFTER datetime_exp

| COMPLETE BEFORE datetime_exp

| PERIOD interval_exp opt_start_at opt_until

;

121

opt_start_at:

/* empty */

| START AT datetime_exp

;

opt_until:

/* empty */

| UNTIL search_condition

;

/*

** RTSQL miscellaneous

*/

table_name:

NAME

;

column_name:

NAME

;

constraint_name:

NAME

;

routine_name:

NAME

;

full_name:

NAME '.' NAME

;

literal:

INTNUM

| APPROXNUM

;

122

parameter:

PARAMETER

;

datetime_function_ref:

CURRENT_TIMESTAMP

;

/* data types */

data_type:

INTEGER

| REAL

| CHARACTER '(' INTNUM ')' }

;

123

Appendix B

Using the RTSQL Preprocessor

This guide will explain how to use the RTSQL preprocessor with the Zip RTDBMS

database system.

B.1 Using Zip RTDBMS

B.1.1 Starting the Zip Database Server zerver

In order to use the Zip RTDBMS database server you must start the Zip RTDBMS

server process zerver. The command for starting this process is in the bin directory

of the home directory for Zip RTDBMS, referred to here as $(zipHome). Change

directory to the bin directory in $(zipHome) as follows:

cd $(zipHome)/bin

This is very important, the Zip RTDBMS database server will not run correctly if it

is not started from this directory. To start the server as a background process, enter

the command:

zerver &

There is no advantage to running it in the foreground.

If the Zip RTDBMS database server zerver was not shutdown properly previously,

you will see a message similar to the following:

124

zerver: master server message queue already exists.

>>File already exists

The master server process may already be running.

>>>Normal termination

You will need to remove one or more �les from the /tmp directory. Use the following

command:

rm -f /tmp/.Zerver_MQ /tmp/.MQ*

If you are unable to delete these �les (they are owned by another user), ask the

system administrator to do it for you. Once these �les have been deleted, the server

zerver may be started as shown above.

B.1.2 Creating a Zip RTDBMS Schema File

In Zip RTDBMS, a schema �le is created by using the command Zip parser. This

command takes an ascii �le with Zip RTDBMS data de�nition commands and creates

a binary �le used by the zerver process. As with starting the zerver process, you

must �rst change directories to $(zipHome)/parser. For example, if you have a

Zip RTDBMS data de�nition �le in your home directory called tst.DDL then you

could enter:

cd $(zipHome)/parser

Zip_parser < ~/tst.DDL

If the database name in the �le is noted as stocks in the /tmp directory, then this

will create the schema �le /tmp/stocks.schema.

Note that this simply creates the schema �le, an database instance must still

be created. This can be done in two ways. The �rst is from a program using the

appropriate Zip RTDBMS library calls. The second is to use the Zip RTDBMS

create database command. For example, to create an empty database from the

schema �le /tmp/stocks.schema:

$(zipHome)/bin/create_database /tmp/stocks.schema

This will create a database �le /tmp/stock.

125

B.2 Using the RTSQL Preprocessor

The RTSQL preprocessor will translate a C++ program containing embedded RT-

SQL statements to a C++ program with library calls to the Zip RTDBMS interface.

The resulting program must then be linked with the Zip RTDBMS interface library

and with the Zip RTDBMS libraries.

Two �les must be created by the user. The �rst is a �le containing all of the

CREATE TABLE statements. It is assumed that this �le will have the su�x .EDD

(extended data de�nition). For example:

/*

** File tst.EDD

*/

/* stock table */

EXEC SQL CREATE TABLE stock (

id INTEGER,

price REAL WITH TIMESTAMP,

CONSTRAINT check_id CHECK ((id > 0 AND id <= 99) AND price > 0.0),

CONSTRAINT price_ok CHECK (price <= 1000.0),

CONSTRAINT check_price_avi

CHECK (TIMESTAMP(price) < CURRENT_TIMESTAMP + INTERVAL '5' SECOND)

);

The second �le is a C++ program �le that contains embedded data manipulation

statements. It is assumed that this �le will have the su�x .EDM (extended data

manipulation). For example:

/*

** File tst.EDM

*/

#include "tstEDD.h"

main() {

int i;

float j;

for (i=1; i<=100; i++) {

j = i / 2.0;

EXEC SQL INSERT INTO stock (id, price) VALUES (:i, :j);

}

EXEC SQL SELECT * FROM stock;

126

printf("That's all folks...\n");

}

Note the the tst.EDM �le contains the include statement #include "tstEDD.h".

The �lename for the #includemust be of the form xxxEDD.h, where xxx.EDD is the

corresponding data de�nition �le.

To use the RTSQL preprocessor, use the rtsql command on the data manipula-

tion �le. For example:

rtsql tst.EDM

This will create the following �les:

tst.DDL This �le contains Zip RTDBMS data de�nition commands. It must be

run through the Zip parser command to create a schema �le for Zip RTDBMS.

tstEDM.cc This �le contains the translation of the tst.EDM �le from embedded

RTSQL to C++ code with library calls to the Zip RTDBMS interface.

tstEDD.h This �le contains the class de�nition corresponding to the CREATE

TABLE command in the tst.EDD �le. These classes are derived from the base classes

for tables and attributes that are contained in the Zip RTDBMS interface. Recall

that it was this �lename that appeared in an #include statement in tstEDM.cc.

tstEXC.h This �le contains classes corresponding to the RTSQL blocks speci�ed in

tst.EDM. Each class stores the condition handlers and timing constraints associated

with a block. This �le is is in an #include statement of tstEDD.h.

To compile the resulting code, you must link with the Zip RTDBMS interface

library ZipInterfaceLib.a and the Zip RTDBMS libraries ZipLib.a and ZipCom-

monLib.a as follows:

g++ -X tstEDM.cc ZipInterfaceLib.a ZipLib.a ZipCommonLib.a

The -X
ag is particular to the LynxOS.

127

Appendix C

DISWG Requirements

This is a summary of a study done by the NGCR DISWG committee to evalu-
ate their requirements against two existing standards: Remote Data Access (RDA)
and SQL2. The table notes if the requirement is addressed, and if so, where
the related material appears in the standard that addresses the requirement.

SECTION RDA FUNCTION(S) SQL2 FUNCTION(S)

General Requirements (3.1)
3.1.2.1 Public Speci�cations Yes Yes
3.1.2.2 Portability Yes Introduction, Section

4.33(Leveling), Section 4.34
(SQL Flagger)

3.1.2.3 Interoperability Yes Section 4.34 (SQL Flagger)
3.1.2.4 Supportability Yes Yes
3.1.2.5 Hardware Independent Yes Yes
3.1.2.6 OS Independent Yes Yes
3.1.2.7 Network Independent Yes Yes
3.1.2.8 Programming
Language Independent

Yes Section 4.23 (Embedded
Syntax),fSupports Ada, C,
COBOL, FORTRAN, MUMPS,
PL/1g

3.1.2.9 DBMS Independent Yes Yes
3.1.2.10 Scalability Yes Yes
3.1.2.11 Modularity Unclear Yes
3.1.2.12 Extensibility Yes Yes
3.1.2.13 Uniformity Yes Yes
3.1.2.14 Con�gurability Yes Yes
3.1.2.15 Compatability with
other NGCR Stds

Undetermined Undetermined

128

SECTION RDA FUNCTION(S) SQL2 FUNCTION(S)

Basic DBMS Services (3.2)
3.2.2.1 Persistent Data Part 1 Section 4.1 (Server

Execution)
Section 13 (Data Manipulation),
Section 17 (Dynamic SQL)

3.2.2.2 Multiple Users Yes Section 16 (Session Management)
3.2.2.3 Conventional Data
Types

Part 1 Section
3.1.5.1.1(Argument Spec.)
Not Explicit.

Section 4.1 (Data Types)

3.2.2.4 BLOBs Part 1 Section 3.1.5.1.1
(Argument Spec.). Not
Explicit.

3.2.2.5 Expressiveness of DML Yes Section 13 (Data Manipulation)
3.2.2.6 Planned Queries Yes Section 13 (Data Manipulation)
3.2.2.7 Ad hoc Queries Yes Section 13 (Data Manipulation)
3.2.2.8 Interactive Queries Yes Section 13 (Data Manipulation)
3.2.2.9 Embedded Queries Yes Ada, C, COBOL, FORTRAN,

MUMPS, PL/1
3.2.2.10 Compiled Queries Yes Section 13 (Data Manipulation)
3.2.2.11 Interpreted Queries Yes Section 13 (Data Manipulation)
3.2.2.12 Transactions Part 1 Section 3.1.2

(Trans Mgmt Svcs) &
Section 3.1.3 (Control
Svcs.)

Section 14 (Transaction
Management)

3.2.2.13 Data Models Yes Yes
3.2.2.14 Conceptual Schema
Def.

Part 1 Section 3.1.5
(Database Lang Svcs) Not
Explicit

Section 11 (Schema De�nition
and Manipulation)

3.2.2.15 External Schema Def. Part 1 Section 3.1.5
(Database Lang Svcs) Not
Explicit

Section 11 (Schema De�nition
and Manipulation)

3.2.2.16 Internal Schema Def. Part 1 Section 3.1.5
(Database Lang Svcs) Not
Explicit

Section 11 (Schema De�nition
and Manipulation)

3.2.2.17 Identi�cation and
Authentic

Part 1 Section 3.1.1.1.1 Section 16 (Session Management)

3.2.2.18 DAC Part 1 Section 3.1.2.1.1
R-Open Service

Section 10.3 (Privileges)

3.2.2.19 Access to metadata Yes Section 13 (Data Manipulation)
3.2.2.20 Multiple DBMSs Yes Yes
3.2.2.21 Multiple Databases Yes Section 13 (Data Manipulation)
3.2.2.22 Tracing Undetermined Undetermined
3.2.2.23 Statistical Monitoring Part 1 Sec 4.2.2 Error

Diagnostics
Section 18 (Diagnostics
Management)

3.2.2.24 Training Mode Not Explicit Not Explicit

129

SECTION RDA FUNCTION(S) SQL2 FUNCTION(S)

Distribution (3.3)
3.3.2.1 Dist. Query Processing Section 15 (Connection

Management), via RDA
3.3.2.2 Dist. Transaction
Mgmt

Part 1 Section 1.3.9 (Dist.
Trans. Proc) Not Explicit

Section 15 (Connection
Management), via RDA

3.3.2.3 Location Transparency Undetermined SQL3
3.3.2.4 Fragmentation
Transparency

Undetermined

3.3.2.5 Replication
Transparency

Undetermined SQL3

3.3.2.6 Data De�nition Undetermined
3.3.2.7 Local Autonomous
Proc.

Yes Yes

3.3.2.8 Continuous Operation Yes Yes
3.3.2.9 Hardware Independent Yes
3.3.2.10 OS Independent Yes
3.3.2.11 Network Independent Yes

Heterogeneity (3.4)
3.4.2.1 Remote Database
Access

Yes SQL3

3.4.2.2 Global Transactions Undetermined
3.4.2.3 Multidatabase Systems Part 1 Section

Introduction
3.4.2.4 Federated Database
Systems

Real-Time Processing (3.5)
3.5.2.1 Modes of Real-Time
3.5.2.2 Real-Time
Transactions
3.5.2.3 Conc. Control
Correctness
3.5.2.4 Temporal Consistency
3.5.2.5 Scheduling
3.5.2.6 Bounded Logical
Imprecision
3.5.2.7 Bounded Temporal
Imprecision
3.5.2.8 Main Memory Data
3.5.2.9 Time Fault Tolerance
3.5.2.10 Resource Utilization
Limits
3.5.2.11 Compilable DBL

130

SECTION RDA FUNCTION(S) SQL2 FUNCTION(S)

Fault Tolerance (3.6)
3.6.2.1 Collection of Fault Info.
3.6.2.2 Fault Info Retrieval
3.6.2.3 Initiate Diag Tests Undetermined Section 18 (Diagnostics

Management)
3.6.2.4 Retrieve Diag Tests Undetermined Section 18 (Diagnostics

Management)
3.6.2.5 Operational Status Part 1 Section 4.1.2.1

Generation of RDA
Operation Entities

3.6.2.6 Fault Thresholds
3.6.2.7 Spec of Fault Responses
3.6.2.8 Recon�guration Undetermined Undetermined
3.6.2.9Replicated Components Yes Yes

Integrity (3.7)
3.7.2.1 Domains Part 1 Section 4.1.1 Section 11.21 (Domain

De�nition)
3.7.2.2 Keys Part 1 Section 4.1.1 Section 4.10.2 (Table

Constraints)
3.7.2.3 Referential Constraints Undetermined Undetermined
3.7.2.4 Assertions Section 4.10.4 (Assertions)
3.7.2.5 Triggers SQL3
3.7.2.6 Alerters SQL3
3.7.2.7 Manage Constraints Part 1 pgs 64, 116, 123.

Not Explicit
Section 4.10 (Integrity
Constraints)

3.7.2.8 Null Values Section 3.1 (De�nitions) &
Section 4.1 (Data Types)

Security (3.8)
3.8.2.1 MLS
3.8.2.2 Labeling SQL3
3.8.2.3 MAC Part 1 Section 3.1.4.1.1

(Speci�c Access Control
Data) Not Explicit

3.8.2.4 DAC Part 1 Section 3.1.4.1.1
(Speci�c Access Control
Data) Not Explicit

Section 10.3 (Privileges)

3.8.2.5 Role Based Access
Control

Part 1 Section 3.1.4.1.1
(Speci�c Access Control
Data) Not Explicit

Section 10.3 (Privileges)

3.8.2.6 Integrity Section 4.10 (Integrity
Constraints)

3.8.2.7 Consistency Part 1 Section 5.2.2
3.8.2.8 Identi�cation and
Authentic

Part 1 Sec 3.1.1.1.1 (User
Authentic Data)

Section 16 (Session Management)

3.8.2.9 Security Auditing SQL3

131

SECTION RDA FUNCTION(S) SQL2 FUNCTION(S)

3.8.2.10 Least Privilege Part 1 Sec 4.1.1.2
3.8.2.11 Trusted Path
3.8.2.12 Trusted Recovery Part 1 Section 5.1.2.2
3.8.2.13 Inference and
Aggregation
3.8.2.14Multilevel Data Model
3.8.2.15 SQL Extension (Standard referenced in RD)
3.8.2.16 OS Interface
3.8.2.17 Network Interface
3.8.2.18 Heterogeneity
3.8.2.19 Next-Gen MLS
3.8.2.20 Trusted Database
Interpret

Advanced Database
Management Services (3.9)
3.9.2.1 Persistent Objects
3.9.2.2 Object Identi�ers Part 1 Section 1.3.7 Not

Explicit
SQL3

3.9.2.3 Collection Data Type
3.9.2.4 User-De�ned Data
Types

Part 1 Section 3.1.5 Not
Explicit

SQL3

3.9.2.5 Sorting Order
3.9.2.6 Temporal Data
3.9.2.7 Spatial Data
3.9.2.8 Uncertain Data
3.9.2.9 Derived Attributes
3.9.2.10 Composite Objects
3.9.2.11 Object Type
Hierarchies

SQL3

3.9.2.12 Object Encapsulation SQL3
3.9.2.13 Versions and Con�gs.
3.9.2.14 Archival Storage
3.9.2.15 Schema Evolution Part 1, Section 3.1.5 Not

Explicit
Section 11 (Schema De�nition
and Manipulation)

3.9.2.16 Long Transactions
3.9.2.17 Rule Processing Part 1 Section 5.1.4

SACF Rules
SQL3

3.9.2.18 Domain-speci�c Stds Part 1 Section 5 App.
Contexts

Undetermined

132

Bibliography

Bernstein, P., Hadzilacas, V., and Goodman, N., Concurrency Control and Recovery
in Database Systems. Reading, Massachusetts: Addison-Wesley, 1987.

Biliris, A., Dar, S., Gehani, N., Jagadish, H. V., and Ramamritham,K., \ASSET: A
system for supporting extended transactions," in Proceedings of ACM SIGMOD
Conference, May 1994.

Booch, G., Object-Oriented Design. Redwood City, CA: The Benjamin/Cummings
Publishing Company, 1991.

Buchmann, A., McCarthy, D., Hsu, M., and U.Dayal, \Time-critical database
scheduling: A framework for integrating real-time scheduling and concurrency
control," in The Fifth International Conference on Data Engineering, February
1989.

Carey, M. J., DeWitt, D. J., Richardson, J. E., and Shekita, E. J., Object-Oriented
Concepts, Databases and Applications, ch. Storage Management for Objects in
EXODUS, pp. 341{369. Addison-Wesley Publishing Company, 1989.

Chen, P., \The entity-relationship model - toward a uni�ed view of data," ACM
Transactions on Database Systems, vol. 1, March 1976.

Date, C. and Darwen, H., A Guide to SQL Standard. Reading, MA.: Addison-
Wesley Publishing, 1992.

Diaz, O. and Gray, P. M. D., \Semantic-rich user-de�ned relationship as a main
constructor in object-oriented databases," in Object-Oriented Databases: Anal-
ysis,Design & Construction (DS4), (Meersman, R., Dent, W., and Khosla, S.,
eds.), pp. 207 { 224, Elsevier Science Publishers, B.V. (North-Holland), 1991.

DiPippo, L. C. and Wolfe, V. F., \Object-based semantic real-time concurrency con-
trol," Proceedings of the 14th IEEE Real-time Systems Symposium, December
1993.

133

DiPippo, L. C., Object-based semantic real-time concurrency control. PhD thesis,
University of Rhode Island, 1995.

DiPippo, L. C., Wolfe, V. F., and Black, J. K., \Supporting concurrency, tim-
ing constraints and imprecision in objects," Technical Report URI-TR94-230,
University of Rhode Island, Department of Computer Science, February 1994.

Doherty, M., Peckham, J., and Wolfe, V. F., \Implementing relationships and con-
straints in an object-oriented database using monitors," in Proceedings of the
1st International Workshop on Rules in Database Systems, Springer-Verlag, 30
Aug. - 1 Sept. 1994.

Drew, P. and Pu, C., \Asynchronous consistency restoration under epsilon serializ-
ability," Technical Report OGI-CSE-93-004, Department of Computer Science
and Engineering, Oregon Graduate Institute, 1993.

Eswaren, K., \Speci�cation, implementation and interactions of a rule subsystem
in an integrated database system," Technical Report Report RJ1820, IBM
Research, San Jose, CA, August 1976.

Fisher, D., X3H2-94-488 Real-time Extensions to SQL. 1994.

Fortier, P., \ANSI DBSSG PRISTG: Real-time database management systems ref-
erence model," ANSI Data Base Systems Study Group Predictable Real-time
Information Systems Task Group, PRISTG Document No. 94-001, January
1994.

Fortier, P., Early Commit. PhD thesis, University of Massachusetts Lowell, 1993.

Fortier, P., \A real-time database management systems reference model," Submit-
ted to ANSI Data Base Systems Study Group (DBSSG) Predictable Real-time
Information Systems Task Group (PRISTG), June 1994.

Fortier, P. and Sawyer, C. G., \DISWG a new player in NGCR open systems
standards," To appear in Computer Standards and Interfaces, 1994.

Fortier, P., Wolfe, V. F., and Prichard, J., \Flexible real-time SQL transactions,"
in IEEE Real-Time Systems Symposium, Dec. 1994.

Fortier, P., Wolfe, V. F., and Prichard, J., \RTSQL: Real-time database extensions
to the SQL2 standard," 1995. To appear in Standards and Interface Journal.

Gallagher, L., \Database management standards: Status and applicability," Com-
puter Standards and Interfaces, vol. 12, 1991.

134

Gallagher, L., \Object SQL: Language extensions for object data management," in
International Society for Mini and Microcomputers Conference on Information
and Knowledge Management, August 1992.

Garcia-Molina, H., Gawlick, D., Klein, J., Kleissner, K., and Salem, K., \Model-
ing long-running activities as nested sagas," Bulletin of the IEEE Technical
Committee on Data Engineering, vol. 14, March 1991.

Gordon, K., DISWG Database Management Systems Requirements. Alexandria,
Virginia: NGCR SPAWAR 331 2B2, 1993.

Herlihy, M. and Wing, J., \Linearizability: a correctness condition for concurrent
objects," ACM Transactions on Programming Languages and Systems, vol. 12,
July 1990.

Hughes, D., ed., Zip RTDBMS The Real-Time Data Dase Management System.
DBx, Inc., 1993.

Johnson, S. C., \YACC-yet another compiler compiler," Technical Report CSTR
32, Bell Laboratories, Murray Hill, N. J., 1975.

Kligerman, E. and Stoyenko, A., \Real-time Euclid: A language for reliable real-
time systems," IEEE Transactions on Software Engineering, vol. SE-12, pp.
941{949, Sep. 1986.

Korth, H., Levy, E., and Silberschatz, A., \A formal approach to recovery by
compensating transactions," in Proceedings of the 16th Very Large Data Base
(VLDB) Conference, 1990.

Krupp, P., Schafer, A., Thurasingham, B., and Wolfe, V. F., \On real-time exten-
sions to the common object request broker architecture," in Proceedings of the
Object Oriented Programming, Systems, Languages, and Applications (OOP-
SLA) '94 Workshop on Experiences with the Common Object Request Broker
Architecture (CORBA), September 1994.

Lesk, M. E., \LEX-a lexical analyzer generator," Technical Report CSTR 39, Bell
Laboratories, Murray Hill, N. J., 1975.

Levine, J. R., Mason, T., and Brown, D., lex & yacc. Sebastopol, CA: O'Reilly &
Associates, Inc., 1995.

Lin, K.-J. and Natarajan, S., \Expressing and maintaining timing constraints in
FLEX," in IEEE Real-Time Systems Symposium, pp. 96{105, December 1988.

135

Liu, C. L. and Layland, J. W., \Scheduling algorithms for multiprogramming in a
hard-real-time environment," Journal of the ACM, vol. 20, pp. 46{61, 1973.

McCarthy, D. R. and Dayal, U., \The architecture of an active database man-
agement system," in Proceedings of the 1989 ACM SIGMOD International
Conference on the Management of Data, (Portland Oregon), June 1989.

McKenzie, E. and Snodgrass, R., \Extending the relational algebra to support
transaction time," in Proceedings of the 1987 ACM SIGMOD International
Conference on the Management of Data, (San Francisco, California), May 1987.

Melton, J., ed., ANSI X3.135-1992, American national Standard, Database Lan-
guage SQL. American National Standards Institute, 1992.

Melton, J., ed., ISO/IEC JTC1/SC21/WG3 DBL YOW-006 and ANSI X3H2-95-
086, (ISO/ANSI working draft) SQL Persistent Stored Modules (SQL/PSM).
American National Standards Institute, March 1995.

Melton, J. and Simon, A., Understanding the New SQL: A Complete Guide. San
Mateo, CA.: Morgan Kau�man Publishers, 1992.

Ng, P. and Paul, J. F., A formal de�nition of entity-relationship models. Amster-
dam: North Holland, 1988.

Ozsu, T. and Valduriez, P., Principles of Distributed Database Systems. Englewood
Cli�s, New Jersey: Prentice Hall Inc., 1991.

Peckham, J., Constraint Based Analysis of Database Update Propagation. PhD
thesis, University of Connecticut, 1990.

Peckham, J. and Maryanski, F., \Semantic data models," ACM Computing Surveys,
vol. 20, pp. 153{189, September 1988.

Prichard, J., DiPippo, L. C., Peckham, J., and Wolfe, V. F., \RTSORAC: A real-
time object-oriented database model," in Proceedings of the International Con-
ference on Database and Expert Systems Applications, September 1994.

Pugh, W. and Marlow, T., eds., Proceedings of the ACM SIGPLAN workshop on
language, compiler and tool support for real-time systems. ACM SIGPLAN,
1994.

Purimetla, B., Sivasankaran, M., Stankovic, J., Ramamritham, K., and Towsley, D.,
\Priority assignment in real-time active databases," Technical Report TR94-
29, Department of Computer Science, University of Massachusetts, Amherst,
MA 01003-4610, April 1994.

136

Ramamritham, K., \Real-time databases," International Journal of Distributed and
Paralled Databases, vol. 1, 1993.

Ramamritham,K. and Pu, C., \A formal characterization of epsilon serializability,".
To appear in IEEE Transactions on Knowledge and Data Engineering. Also
available as technical report No. CUCS-044-91 at Department of Computer
Science, Columbia University, 1995.

ISO/IEC 9579-2, Information Technology, Remote Database Access, Part 2: SQL
Specialization. American National Standards Institute.

Sha, L., Modular Concurrency Control and Failure Recovery { Consistency, Cor-
rectness and Optimality. PhD thesis, Carnegie-Mellon University, 1985.

Snodgrass, R. and Ahn, I., \Temporal databases," IEEE Computer, vol. 19, pp. 35
{ 42, 1986.

Snodgrass, R., et. al., \TSQL2 language speci�cation," ACM SIGMOD Record,
vol. 23, pp. 65{86, March 1994.

Son, S., Yannopoulos, S., Kim, Y.-K., and Iannacone, C., \Integration of a database
system with real-time kernel for time-critical applications," in International
Conference on System Integration, June 1992.

Son, S. H., \Real-time database systems: A new challenge," Data Engineering,
vol. 13, December 1990.

Song, X., Data Temporal Consistency in Hard Real-Time Systems. PhD thesis, The
University of Illinois at Urbana-Champaign, 1992.

Soo, M. D., \Bibliography on temporal databases," ACM SIGMOD Record, vol. 20,
pp. 14 { 23, March 1991.

Stachour, P. and Thurasingham, B., \SQL extensions for security assertions," Com-
puter Standards & Interfaces, vol. 11, 1990.

Thurasingham, B. and Schafer, A., \RT-OMT: A real-time object modeling tech-
nique for designing real-time database applications," in Proceedings of the Sec-
ond IEEE Workshop on Real-Time Applications, pp. 124{129, July 1994.

Ulusoy, O., \Current research on real-time databases," SIGMOD Record, vol. 21,
pp. 16 { 21, December 1992.

137

Wells, D., Blakely, J., and Thompson, C., \Architecture of an open object-oriented
database management system," IEEE Computer, vol. 25, pp. 74 { 83, October
1992.

Wolfe, V. and Cingiser, L. B., \Issues in object-oriented real-time databases," in
Proceedings of the IEEE Workshop on Real-Time Operating Systems and Soft-
ware, May 1992.

Wolfe, V., Davidson, S., and Lee, I., \RTC: Language support for real-time concur-
rency," Real-Time Systems, vol. 5, pp. 63{87, March 1993.

Yu, P., Wu, K., Lin, K., and S.Son, \On real-time databases: Concurrency control
and scheduling," Proceedings of the IEEE, vol. 82, January 1994.

Zdonik, S. and Maier, D., Readings in Object Oriented Database Systems. San
Mateo, CA: Morgan Kau�man, 1990.

138

