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Abstract

Assuring end-to-end timeliness properties in a distributed
real-time system poses a variety of challenges at each, of
several, levels of abstraction. The challenges vary with
levels of abstraction that correspond generally to levels of
architectural scale. In particular, there are key differences
in the design forces for resource scheduling (1) within the
operating system kernel, (2) within the middleware infras-
tructure on a single endsystem, and (3) distributed across
endsystems in the entire system. While there is signifi-
cant commonality related to the system’s end-to-end time-
liness requirements, the forces and their resolution vary
non-trivially with each level of abstraction. Some design
forces are seen at, or even span, multiple levels of scale.
We document patterns that offer an organizing approach
to design, within which the design forces at and across
each level of abstraction can be resolved. This paper
describes a pattern language for rationalizing resource
scheduling at multiple levels of scale in distributed real-
time and embedded systems.

Keywords: Real-Time Middleware and Operating Sys-
tems, Quality of Service Issues, Adaptive Resource Man-
agement, Distributed Systems.

1 Introduction

Many systems design paradigms, e.g., RMS [1], Low-
Level Middleware Frameworks [2, 3], and POSIX [4],
concentrate their attention at a single level of system ab-
straction. To achieve portability and generality, they of-
ten assume immutable properties at some other level of
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abstraction. However, fixing the mode of interaction of
one level with an adjacent one inevitably limits the ex-
tent of cross-level integration available. This limitation
reduces the designer’s options to resolve design forces
that cross level boundaries. This may result in inefficien-
cies and unnecessarily constrain the designer’s degrees of
freedom. For example, the POSIX priority-based thread
management model is often cited [5] as functionally com-
plete in that it is possible to implement any of the well-
known scheduling paradigms by manipulating thread pri-
ority levels. However, the feasibility of such implemen-
tations can be significantly constrained by the time scales
within which the priority manipulations will take effect.

This paper presents a pattern language, illustrated in
Figure 1, for increasing coordination of resource man-
agement across multiple levels of architectural scale. In
particular, it guides the designer toward greater degrees
of freedom to achieve necessary end-to-end timeliness as-
surances for distributed real-time and embedded (DRE)
systems. We examine patterns within, and bridging, each
of three levels of abstraction for resource management
within the context of DRE systems: (1) the operating sys-
tem, (2) low-level middleware on a local endsystem, and
(3) higher-level distributed middleware services that span
endsystems.

OS Level: The operating system kernel has direct ac-
cess to resources such as the CPU, network interfaces,
and storage devices, and can perform fine-grain coordi-
nation of those resources, e.g., through scheduling inter-
rupt handling, to achieve rigorous local timeliness assur-
ances. The OS kernel also provides resource manage-
ment abstractions such as thread scheduling models, e.g.,
the KURT-Linux Real-Time Scheduling Server (RTSS) or
the POSIX priority-driven preemptive thread scheduling
model [5], to software outside the kernel. These abstrac-
tions may be used both to obtain and restrict access to the
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Figure 1: Map of the Resource Rationalizer Pattern Language

kernel-level system resources.

Endsystem Middleware: Above the operating system,
low-level endsystem middleware frameworks such as
ACE [2] and Kokyu [6] use abstractions from the op-
erating system and other low-level middleware frame-
works, to provide portable and consistent resource access
across endsystem architectures. These low-level middle-
ware frameworks provide abstractions for resource coor-
dination within the local endsystem, which may in turn be
used by higher-level middleware services.

Distributed Middleware: Higher-level middleware
such BBN’s Quo [7] and the URI Global Scheduling
Service framework [8] must coordinate resource access
across endsystems, to provide timeliness assurances,
load balancing, load shedding, and admission control

end-to-end in DRE systems.

To achieve rigorous end-to-end timeliness assurances
for DRE systems, resource management must be coordi-
nated both within and across each of these levels of ab-
straction. In applying the patterns described in this paper,
the system designer is given latitude to balance the conse-
quences of each design choice at each level. Returning to
the previous POSIX example, using priority manipulation
to implement the Request Partition pattern (Section 4.3) at
the middleware endsystem level might be replaced at the
middleware level, for example, by the Pacing Requests
pattern (Section 4.1). Alternatively, in the context of an
open source operating system, the designer could apply a
different OS level pattern. For example, a system might
use Planned Scheduling (Section 3.1) or Share Allocation
(Section 3.3) instead of Priority-Driven Scheduling (Sec-
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tion 3.2).
In this paper we examine design forces and patterns

at each level of abstraction, and consider how additional
cross-level patterns can be combined to form a pattern
language we call Resource Rationalizer, for rationalizing
end-to-end resource scheduling in distributed real-time
systems. Figure 1 shows the interactions between patterns
in the Resource Rationalizer pattern language. Most of
the patterns are fundamentally about scheduling, though
a few of the patterns (i.e., Masking Interrupts, Distributed
Temporal Coherency) are needed for closure of the lan-
guage, i.e., to resolve remaining forces not addressed by
the other patterns. The additional patterns allow the lan-
guage to produce generative designs for rational resource
allocation, end-to-end in a distributed system.

The remainder of the paper is organized as follows.
Section 2 describes the key design forces at each level of
abstraction. Section 3 describes scheduling patterns at the
kernel level. Section 4 describes scheduling patterns at the
endsystem level. Section 5 describes scheduling patterns
at the distributed scheduling level. Section 6 describes
patterns applied to bridge between levels of abstraction
and architectural scale. Finally, Section 7 draws conclu-
sions about distributed real-time scheduling and the impli-
cations of this pattern language for developing distributed
real-time and embedded systems.

2 Design Forces

The design forces addressed by this pattern language are
summarized in Table 1, in the order in which they are dis-
cussed in this section. In describing a pattern language for
multi-scale resource scheduling, careful analysis of the
design forces the pattern language must resolve is crucial.
Specifically, it is necessary to distinguish design forces
that are part of the fundamental problem context from
those introduced by particular design decisions made in
the process of reconciling the overall system of design
forces.

For example, rate monotonic analysis and assignment
of task priorities [9, 10] is a mechanism commonly used to
partition resource access requests into ordered groups, to
ensure lower-frequency requests do not interfere with ser-
vicing higher-frequency requests. In certain cases, such as
mutually exclusive use of resources shared among threads

of different priorities, the semantics of priority-based re-
source allocation must be modified to ensure timeliness
properties are maintained. For example, priority inver-
sions [11] must be bounded to ensure resource allocation
assurances are maintained so that stated timeliness assur-
ances are not violated.

Table 1: Summary of Scheduling Design Forces

# Force Level(s)
F1 Temporally constrained request All
F2 Request asynchrony All
F3 Concurrency All
F4 Performance constraints All
F5 Space constraints All
F6 Resource allocation semantics All
F7 Constrained resource supply Kernel
F8 Concurrent access to a resource Kernel
F9 Request cost Kernel

F10 Allocation granularity trade-offs Kernel
F11 Resource utilization trade-offs Endsystem
F12 Safety vs. interference Endsystem
F13 Coordination and communication Endsystem
F14 Encapsulation limitations Endsystem
F15 Priority management Endsystem
F16 Dynamic ordering Endsystem
F17 Activities spanning endsystems Distributed
F18 Multiple suitable resources Distributed

spanning endsystems
F19 Heterogeneity among operating Distributed

systems’ and endsystems
local scheduling

F20 Dynamic heterogeneous Distributed
applications within
an endsystem

F21 Competing quality of service Distributed
requirements

F22 Abstract state consistency Distributed
F23 Temporal consistency Distributed

The key insight offered by this example is that the pri-
ority inversion problememergesfrom the combination of:
(1) the fundamental design force that some rational allo-
cation of resources is necessary to ensure satisfaction of
the specified timeliness constraints, (2) the design choice
to use priority-driven preemptive thread scheduling, and
(3) mutual exclusion semantics among threads due to the
need for exclusive access to shared data.

Throughout this section we will examine fundamental
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Figure 2: Multi-Level Scheduling Design Forces

design forces at the lowest level of system abstraction, the
OS kernel, and design forces that emerge at higher levels
as a result of the abstractions exposed at the lower level(s).
Section 2.1 describes forces fundamental enough that they
appear at multiple levels, and can across levels of abstrac-
tion. Section 2.2 examines resource scheduling forces at
the OS kernel level. Section 2.3 describes design forces
that emerge at the endsystem level. Finally, Section 2.4
considers design forces at the distributed services level.

2.1 Cross-Level and Multi-Level Forces

Some design forces are sufficiently fundamental that they
appear at more than one level of the system. We present
these fundamental forces first, to establish the overall con-
text in which the Resource Rationalizer pattern language
is applied. In some cases the force can be resolved en-
tirely within a single level, using methods suited to the
level in question. In other cases, the force manifests itself
in a way that crosses levels of abstraction, and must be
resolved by actions taken at multiple system levels. Fig-
ure 2 illustrates the forces that appear at multiple levels
of scale. The usual span of a force is shown as a solid
block in Figure 2, and special cases where the span may
be broader are illustrated by dashed lines.

F1: Temporally constrained request. In addition to its
cost, a request may bear a requirement for completion
within a given interval, which may be absolute or rela-
tive in time. The time until a request completes may be a
function of both its computation cost and of blocking or
share reduction factors due to allocation of resources to
other requests. The temporally constrained request force

F2: Request asynchrony. Not only can multiple re-
quests arrive concurrently, in general the arrival pattern of

requests may be inherently asynchronous. For example,
at the kernel level these could be due to interrupts upon
arrival of packets from a network or from other externally
initiated events. At the endsystem level these could be due
to asynchronous notification of a thread blocked on a con-
dition variable. At the distributed level these could be due
to method invocations from a remote client. This force
not only appears at multiple levels, but it may also span all
three levels, as in the asynchronous arrival of a method in-
vocation request handled at the OS level as network pack-
ets, at the endsystem level as a queued upcall command in
an ORB, and at the distributed level as a CORBA servant
request.

F3: Concurrency. This design force is, perhaps, among
the most fundamental, and has the largest influence on
system implementation and behavior. Concurrency is de-
sirable for several reasons, including ease of implementa-
tion and increased performance. For example, to achieve
better timeliness of request completion and better utiliza-
tion of resources, particularly with applications whose
use of resources is reasonably complex in time, resources
must be allocated to support, at least logically and possi-
bly physically, concurrently executing application tasks.
However, the benfits of concurrency come at the cost of
requiring additional control in many cases, particularly
those where concurrently executing threads share data
whose semantics require mutually exclusive access. The
need to ensure semantically correct use of shared data
while also satisfying the performance constraints of ev-
ery computation has an enourmous influence on system
design and implementation.

F4: Performance constraints. To meet the timeliness
constraints on a request, mechanisms and policies at all
levels of abstraction must themselves allow adaptive re-
allocation of service requests to endsystems, or of lower
level resources to requests within an endsystem, time
consumption at the distributed services level must com-
ply with the timeliness constraints of the application.
Therefore, the load balancing, admission control, load re-
duction, and load shedding algorithms used by the dis-
tributed services must themselves operate within well-
defined time constraints.

F5: Space constraints. In addition to limiting time
complexity of distributed services, the amount of space
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consumed, particularly in embedded systems, can be a
limiting factor and dictate adoption of approaches that
would otherwise not be chosen. For example, assign-
ing and managing global priorities for end-to-end time-
liness constraints can reduce the amount of state informa-
tion maintained on each endsystem, compared to using
planned schedules, thus favoring priority schemes in situ-
ations where the space consumed by the execution plan is
significant.

F6: Resource allocation semantics. In addition to lim-
iting time complexity of distributed services, the range of
ways in which a resource can be allocated while maintain-
ing required semantics is important.

2.2 Kernel Scheduling Forces

We start at the lowest level of resource abstraction, within
the operating system kernel. We defer discussion of
additional kernel-level design forces induced by design
choices at the OS kernel level until Section 3. The fun-
damental design forces for resource management at this
level of scale are as follows.

F7: Constrained resource supply. Inherent in the def-
inition of a shared resource is that access to it is con-
strained in time, and possibly in total quantity. For ex-
ample, concurrent access to a CPU is constrained in time,
while energy consumption may be constrained both in
time (power) and quantity (battery charge).

F8: Concurrent access to a resource. Multiple re-
quests contend concurrently for the resource, so that de-
pending on resource access granularity, requests must ei-
ther take turns accessing the entire resource, or receive
partial shares of the resource over a given interval.

F9: Request cost. To service a request, a certain share
of the resource must be granted to the request over a given
period of time. In some cases the total cost of a request
is insensitive to the pattern of resource allocations over
time. In others, e.g., voltage scheduling of power-aware
CPUs [12], the cost is a more complex function of the
actual resource allocation over time.

F10: Allocation granularity trade-offs. Finer granu-
larity allocation of a resource increases the level of control
the system has to produce timely results, but comes at the
price of greater overhead, which reduces the utilization of

the resource for productive work. In the case of the CPU
resource, for example, non-preemptive thread scheduling
increases the activation latency for a newlyreadythread
until at least the next yield point in the currently execut-
ing thread. In preemptive thread scheduling, the operating
system is free to switch to the newly ready thread immedi-
ately, but the frequency with which the system chooses to
switch among threads determines the portion of the CPU
resource used for the unproductive work of switching con-
text among threads.

2.3 Endsystem Scheduling Forces

The next level of abstraction for resource scheduling re-
sides above the operating system kernel but within a sin-
gle endsystem. We describe both design forces inherent
to the domain of endsystem scheduling, and design forces
induced by choices at the OS kernel level. Some of the
fundamental design forces for resource management at
the endsystem level are as follows.

F11: Resource utilization trade-offs. As the endsys-
tem scheduling infrastructure is architecturally closer to
the application than the OS, it is reasonable to place more
awareness of the application itself, i.e., at least the specific
projection of the application into one endsystem, into the
low-level endsystem middleware. Therefore, the endsys-
tem scheduling infrastructure will necessarily be respon-
sible for managing the inherent trade-offs between in-
creasing the amount of useful work performed overall,
and achieving necessary timeliness assurances for com-
pletion of individual application tasks. However, the
ability of the endsystem to do this may be significantly
constrained by the scheudling capabilities exposed to the
endsystem level by the OS level.

F12: Safety vs. interference. With the addition of con-
currency, access to resources must be ensured to be safe
with respect to timeliness requirements, due to possible
interference between tasks. Because the operating system
is in general unaware of the structure of resource requests
made by the application, it is very difficult to control re-
source protection efficiently within the operating system
without at least some hints about that structure from the
endsystem level scheduling infrastructure.

F13: Coordination and communication. While strict
isolation of resources among concurrent tasks may fa-
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cilitate safety of concurrent resource use, it may in turn
hamper computation overall, as concurrent tasks are re-
stricted in sharing results. In the endsystem scheduling
domain, coordination of resource requests and exchange
of computation results among concurrent tasks must be
managed.

In addition to the above inherent design forces, ad-
ditional design forces may be introduced by the design
choices made at the operating system level. Additional
forces relevant to the endsystem scheduling domain in-
clude the following.

F14: Encapsulation limitations. Some choices at the
OS level propagate unavoidable constraints to higher lev-
els of abstraction, as noted in Section 2.1. Each particu-
lar resolution of design forces at the OS level of abstrac-
tion may induce different semantics for safety and perfor-
mance at the endsystem middleware level. For example,
in the case of non-preemptive thread scheduling, blocking
latency for access to the CPU must be considered whether
or not synchronization abstractions, e.g., thread mutexes,
are used by the middleware or the application.

F15: Priority management. If the operating system
exposes a primarily priority-based interface for arbitra-
tion of thread access to the CPU, as is the case in most
commercial-off-the-shelf (COTS) operating systems and
as specified by the POSIX standard [4], then priority
management may be the only reasonable mechanism for
meeting static end-to-end timeliness requirements. Fur-
thermore, priority-based management may also be useful
to constrain the time or space complexity of distributed
scheduling, with priority-based endsystem scheduling be-
ing a natural basis for implementing the end-to-end pri-
ority approach. However, using priorities to allocate
resources may result in a new set of issues related to
a semantic “impedance mismatch” between the priority
mechanism and the fundamental application semantics.
For example, priority-based schedulers do not explicitly
consider time, so blocking times and other common fac-
tors may increase the complexity of analysis, and possi-
bly reduce the achievable degrees of assurance, for meet-
ing crucial timeliness requirements. Instead, explicitly
specifying an execution schedule to meet some kinds of
timeliness requirements may be simpler than orchestrat-
ing a priority assignment scheme to achieve the same as-
surances.

F16: Dynamic ordering. An alternative to static re-
source management is to select among resource requests
dynamically. Furthermore, in some cases, e.g., when re-
quest deadlines are not specified until the moment of ar-
rival, static resource allocation is simply not possible.

2.4 Distributed Scheduling Forces

The distributed scheduling forces described here will act
upon systems in which uniformity across the system is
essential to ensure predictability. These forces may act
upon local endsystems, the entire system globally, and on
possibly all points on the continuum between these two
endpoints.

F17: Activities spanning endsystems. Each endsys-
tem represents the outer limit of resource allocation scope
achievable at lower levels of architectural scale. How-
ever, activities such as chains of remote method invoca-
tions may traverse many such scopes, and require coordi-
nation of scope-by-scope resource allocation assurances
to achieve overall enforcement and analysis of real-time
requirements.

F18: Multiple suitable resources spanning endsys-
tems. In applications that span endsystems there may
be choices as to which endsystem to assign a task, or
which resources within various endsystems to allocate to
the task. Distributed scheduling should allocate resources
from appropriate endsystems to application tasks in a way
that facilitates overall enforcement and analysis of real-
time requirements.

F19: Heterogeneity among operating systems’ and
endsystems’ local scheduling. Multiple OS’s and/or
endsystems, each with importantly different scheduling
policies, may be involved in an application that spans
these subsystems. When referring to something that can
apply to multiple operating systems and/or endsystems,
we will use the term “subsystem”. If each subsystem pro-
vides multiple scheduling policies and/or scheduling pa-
rameters, it is possible that the global effect of the local
scheduling choices may be undesirable due to conflicting
forces in the enclosing design context. For example, if
deadline-based and priority-based scheduling were used
in two different subsystems, it may be difficult to ratio-
nalize scheduling requirements in applications that span
them [13].
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F20: Dynamic heterogeneous applications within an
endsystem. Within endsystems where tasks implement-
ing heterogeneous computations may dynamically enter
the system or change their requirements, it may be nec-
essary to abstract scheduling policies from the endsystem
to a global service that is used by all entities, to ensure a
compatible notion of policies and parameters among the
heterogeneous application tasks.

F21: Competing quality of service requirements.
Applications may specify a variety of Quality of Service
(QoS) requirements, each of which should affect schedul-
ing. For instance, timeliness requirements such as dead-
lines and periods can affect the order of execution. How-
ever, many systems consider other parameters that can
affect computation scheduling.Criticality is often used
as a parameter in addition to priority to help represent
relative importance of computations to help resolve allo-
cation conflicts, particularly in overload situations.Some
systems use a basic mandatory/optional Criticality spec-
ification, others use a ordinal Criticality value per task,
still others use utility functions to specify Criticality.

Other QoS requirements such as Security, Accuracy,
and Fault Tolerance all may also impact the scheduling.
Furthermore, these QoS requirements may conflict. For
instance, achieving timeliness may require sacrificing ac-
curacy, or vise versa. Similarly, tradeoffs arise among
most QoS requirement categories:timeliness and security,
security and accuracy, timeliness and reliability. Dis-
tributed scheduling decisions should consider global QoS
requirements and tradeoffs.

F22: Abstract state consistency. While it is not pos-
sible to maintain a completely accurate, up-to-date pic-
ture of the global state of an entire distributed system,
it is necessary to maintain a view that isconsistent,
i.e.fundamental properties such as causality are not vio-
lated, within some level of precision. This view may sim-
plify the problem by only keeping abstract state informa-
tion about key system properties, e.g., the remaining cost
of a multi-endsystem transaction. Consistency of the ab-
stract state is necessary in order to ensure schedulability
across the distributed system.

F23: Temporal consistency. As a special case of main-
taining consistency of abstract state, dynamic allocation
of resource requests across multiple endsystems may re-
quire that temporal consistency, through the use of clock

synchronization or of virtual clocks [14], be maintained
among those endsystems to assure timeliness properties
end-to-end.

3 Kernel Scheduling Patterns

Scheduling patterns at the OS kernel level of abstraction
deal with the inherent design forces raised by limitations
on the use of resources and on the resource semantics,
combined with design forces raised by semantics at higher
levels of abstraction. We document these patterns ac-
cording to Coplien’s1 format, using the name of each
pattern as its subsection title. This section is organized
as follows: Section 3.1 presents the Planned Scheduling
pattern, which in open kernel implementations offers a
natural semantics for specifying resource allocation poli-
cies to enforce timeliness requirements; Section 3.2 de-
scribes the Priority-Driven Scheduling pattern, which in
COTS POSIX-based operating systems provides another
semantics for specifying resource allocation policies; Sec-
tion 3.3 documents the Share Allocation pattern, which
allows subdivision of a resource among competing activ-
ities, and can be implemented using either the Planned
Scheduling pattern or the Priority-Driven Scheduling pat-
tern; Section 3.4 presents the Hierarchical Scheduling
pattern, which can apply a series of different schedul-
ing patterns to successively refined groups of tasks un-
til a single task is selected to run. This gives different
resource allocation semantics to different resource usage
domains. Section 3.5 documents the Masking Interrupts
pattern, which reconciles the desire to share critical sec-
tions across process and interrupt contexts, with the need
to prevent unsafe interleaving of critical section invoca-
tions. Finally, Section 3.6 describes the Synchronous
Lock pattern, which reconciles the desire to share crit-
ical sections among software executing concurrently on
separate processors in a multiprocessor machine.

3.1 Planned Scheduling
Problem: Commonly available priority-based imple-
mentations may impose semantics that are insufficiently
congruous with the application semantics. Consider the
semantics of a control system in which operational data

1http://hillside.net/patterns/definition.html
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arrives at a specific interval, and the control calculation
uses the most recent data to modify set-points of specific
devices. In a priority-driven system where the calcula-
tion is blocked on the arrival of the data event, jitter in
the data arrival is reflected in subsequent execution jitter
of the control law. In contrast, the explicit plan runs at a
specified frequency, but is free to handle the data arrival
jitter in a way that does not transfer it into execution jitter.

Context: Real-time systems in which computations
need to receive particular qualities of service, using open
operating system kernels.

Forces: The constrained resource supply, resource cost
and competition for the resource forces combine with the
temporally constrained request, request cost, and request
asynchrony forces to require temporal arbitration of re-
source access among requests. In contrast to the Priority-
Driven Scheduling pattern described in Section 3.2, ear-
lier binding to the time-line is desirable, to enforce con-
straints such as equivalent isolation of independent com-
putations.

Solution: Execution behaviors of computations in the
system are naturally expressed as intervals of execution
placed on the system timeline. Therefore, explicit plan-
ning of schedules that model the desired execution be-
haviors is often, where possible, desirable. These inter-
vals may be defined using explicit times, as in classical
time-driven scheduling approaches [15], or parameterized
by relative times of other tasks [16]. Examples of the
planned scheduling pattern appear in KURT-Linux [17],
clock-driven schedulers, and Maruti-II [18].

Resulting Context: If planned schedules are used, the
application or a system-wide scheduling service must de-
scribe computation behavior in explicit terms, so that the
operating system can synthesize a complete schedule of
execution, for the system as a whole, at the operating sys-
tem level. The Hierarchical Scheduling pattern described
in Section 3.4 may be applied to address jitter in request
arrival that cannot be handled by a planned schedule, e.g.,
by applying the Priority-Driven Scheduling pattern as a
secondary scheduling layer. Furthermore, the choice of
execution intervals in a planned schedule specifies usage
granularity of the resources it controls.

Rationale: The design makes explicit the order of exe-
cution of requests, simplifying validation of timing con-

straints. The pattern allows natural expression of a sched-
ule meeting specified constraints,in the same terminology
as the constraints themselves.

3.2 Priority-Driven Scheduling
Problem: A generic operating system implementer
needs to provide a functionally complete interface for
resource allocation, without adding noticeable program-
ming model complexity.

Context: Real-time systems in which computations
need to receive particular qualities of service, using COTS
POSIX-based operating system kernels.

Forces: The constrained resource supply, resource cost
and competition for the resource forces combine with the
temporally constrained request, request cost, and request
asynchrony forces to require partially ordered arbitration
of resource access among requests. In contrast to the
Planned Scheduling pattern described in Section 3.1, later
binding to the time-line is desirable, to strike a balance be-
tween data arrival and execution jitter, quality of service,
and isolation forces. In addition, the application program-
mer desires a familiar and easy-to-use interface. For sys-
tem performance, or due to less reliable information, a
quick and efficient decision function is also desired.

Solution: Implement priority-based scheduling at the
OS level, to provide a mapping between the integers (sim-
ple and familiar interface) and priority-based thread ex-
ecution semantics. Examples of this pattern appear in
POSIX-compliant UNIXes [5], Windows NT [19], and
OS/2 Warp [20].

Resulting Context: Analysis techniques such as RMA
are needed to map fundamental task properties such as pe-
riodicity onto a priority assignment capable of enforcing
application timeliness requirements. These analysis tech-
niques may require adjustments depending on whether
priorities are enforced preemptively or non-preemptively.

Rationale: The design simplifies the information used
to express and enforce access to resources, often to an
integer representation. The pattern provides a means to
validate and enforce timing constraints indirectly, through
analysis of the resulting schedule.
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3.3 Share Allocation
Problem: Some constraints are best expressed as shares
of a resource over an interval, and commonly available
OS-level abstractions are for explicit plans or priorities
rather than shares.

Context: Applications using either planned or priority-
based scheduling.

Forces: The constrained resource supply, resource cost,
and competition for the resource forces combine to re-
quire managed resource allocation to ensure resources are
shared accurately. Furthermore, the allocation granularity
force constrains the intervals over which share assurances
can be made.

Solution: Using either priorities or explicit schedules,
shares can be specified and enforced. Different applica-
tions may receive different shares. Furthermore, the fi-
delity of the actual allocation to each share requirement
may also differ, due to the interaction of allocation granu-
larity with the requested share interval. Examples of this
pattern appear in fair queuing network routers and time-
space partitioning architectures [21].

Resulting Context: Differences in the semantics of the
priority and explicitly planned scheduling approaches
propagates upward to the resulting share-based semantics.
For example, for completely CPU-bound executions the
semantic differences may not be noticeable as there are no
differences in the un-utilized resource intervals. However,
if there are intervals in which the CPU is unused, then the
placement of those intervals may induce semantic con-
flicts in the subsequent periods. In planned scheduling,
tasks that are not ready at the arrival of their planned ex-
ecution interval are penalized, while in priority schedul-
ing the lowest priority tasks may pay the penalty for any
higher priority task delay.

Rationale: The design ensures isolation of an applica-
tion’s resource requests from those of other applications.
The pattern also supports isolation of resource requests
within an application,e.g., between concurrent threads.

3.4 Hierarchical Scheduling
Problem: Appropriate resource allocation semantics
may vary across hierarchical levels of execution seman-
tics. For example, ensuring time-space isolation of pro-

cesses may require explicit scheduling of CPU shares,
while within a process individual threads may require
concurrency control related to application semantics.

Context: Applications whose computation scheduling
semantics may be decomposed into and coordinated
across two or more hierarchic levels of resource alloca-
tion.

Forces: The competition for the resource force occurs
at multiple hierarchical levels. Furthermore, the most
natural semantics to describe resource allocation can be
widely different at each level. Finally, the resulting con-
text of a particular OS-level scheduling pattern may be
immediately resolved by applying another complemen-
tary scheduling pattern.

Solution: Apply scheduling patterns hierarchically,
with the lower level scheduler delegating execution to the
next higher-level scheduler once its constraints are satis-
fied. Examples of this pattern appear in the Spring Ker-
nel [22], KURT-Linux, and RED-Linux [23].

Resulting Context: A particular implementation of
multi-level scheduling may introduce various additional
forces at all levels of abstraction. For example, the or-
der in which constraints are applied may have implica-
tions for endsystem-level scheduling [6] and for end-to-
end scheduling.

Rationale: The design allows scheduling strategies to
be applied selectively to different parts of a system. The
pattern can serve to rationalize scheduling for distinct but
interrelated portions of a system,e.g., for network flow
fairness or coordinated scheduling of groups of collabo-
rating processes.

3.5 Masking Interrupts
Problem: Interleaved execution of system code and in-
terrupt handler code can cause inconsistency of shared
data. For example, device drivers commonly contain code
accessing shared data within system calls executed in pro-
cess context, and within device handlers executed in inter-
rupt context.

Context: Critical section shared among code executed
under scheduler control and in interrupt context.
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Forces: The competition for the resource force com-
bines with the resource allocation semantics, exclusive
access to the shared data, and request asynchrony forces
to produce possibly unsafe executions in which access to
shared data by the asynchronously invoked computations
must be controlled to maintain consistency constraints.

Solution: Mask interrupts temporarily to execute criti-
cal sections of code. For example, a common approach
on COTS platforms such as those using the x86 processor
family is to use the CLear Interrupts (CLI) and SeT In-
terrupts (STI) instructions to mask interrupts temporarily
during critical section execution, in either system call or
interrupt handler context.

Resulting Context: The CLI/STI approach is an effec-
tive form of concurrency control on single CPU system,
but must be combined with the Synchronous Locks pat-
tern described in Section 3.6 for systems with more than
one CPU. Furthermore, coarse-grained interrupt control
can significantly impact scheduling jitter. If there are only
two interrupt levels, and any driver that needs to con-
trol concurrency by blocking interrupts interferes with the
scheduling interrupts, significant levels of execution jit-
ter can occur, potentially impacting timeliness constraints.
With multiple interrupt levels, or careful narrowing of the
critical sections, lower levels of jitter may be achieved.
For example, on platforms such as 68K family CPUs,
multiple interrupt levels exist, enabling the system to sep-
arate the scheduling interrupt at a higher level than those
used by devices, thus isolating scheudling functions from
interference by the device interrupts.

Rationale: The design allows control over asyn-
chronous forms of concurrency,i.e., due to hardware in-
terrupts. The pattern masks interrupts temporarily, and
ideally induces minimal scheduling jitter either through
inherent separation of interrupt levels or careful narrow-
ing of contention intervals.

3.6 Synchronous Locks
Problem: Concurrent executions of code accessing the
same data can result in corrupt data. For example, con-
current execution of the task scheduler by more than
one CPU can corrupt the task list or cause selection of
the same task to execute concurrently on more than one
CPU, unless preventive measures are taken. Similarly,

in a multi-threaded server process, assignment of jobs to
threads by a scheduling routine must protect the job queue
to avoid corrupting the queue or having two threads at-
tempt to serve the same job.

Context: Global or shared data accessed by multiple
threads of control executed concurrently.

Forces: The competition for the resource force com-
bines with the resource allocation semantics force (exclu-
sive access to the shared data) and the concurrency force
to produce possibly unsafe executions in which access
to shared data by the physically concurrent computations
must be controlled to maintain consistency constraints.

Solution: A common approach is to employ
semaphores managed by locks acquired and released
synchronously within each concurrent thread of exe-
cution (synchronous locks), to manage the shared data
resource. The appropriate semantics of the lock may vary
according to efficiency and correctness considerations
such as physical concurrency, self-deadlock, and intervals
of contention for the shared data.

We note that this pattern is strongly related to the Mask-
ing Interrupts pattern in Section 3.5, as both serve to con-
trol concurrency. The Masking Interrupts pattern con-
trols concurrency arising from asynchronous arrival of
interrupt signals transferring control to interrupt handler
code, while the Synchronous Locks pattern is used to con-
trol physical or logical concurrency arising from multi-
ple threads of execution. It is also important to note that
both patterns apply in uniprocessor and multiprocessor
operating systems, because both types of concurrency are
present, but only the Synchronous Locks pattern applies
in multi-threaded user code, because interrupt handlers
execute only in the operating system context.

Resulting Context: A designer may need to consider
additional details of the particular context within which
the Synchronous Locks pattern is applied, to identify the
most appropriate form of locking to employ in imple-
menting the pattern. For example, multiple CPUs within
a machine can concurrently execute both user and sys-
tem code efficiently, by allowing physical concurrency of
threads.

A spin-lock does not cause the calling thread to con-
text switch of it does not obtain the lock, rather the CPU
actively waits for the semaphore controlling the resource
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to be freed. However, a spin-lock mayonly be used with
physical concurrency, as it will exhibit self-deadlock in
a single-CPU concurrency architecture. Furthermore, a
spin-lock is desireable if and only if the resources in ques-
tion are generally held for extremely short times, so that
the cost of a context switch exceeds the cost of waiting.
When a spin-lock is not appropriate,e.g., due to the re-
source being held for longer intervals relative to the con-
text switch interval, a blocking lock should be used. De-
pending on properties, such as fairness or prioritization,
desired for the order of access to the lock by blocked
threads, a blocking lock may also employ various queue-
ing disciplines on waiting threads to enforce those prop-
erties.

Rationale: The design trades efficiency for correct-
ness, balancing safety and liveness properties of concur-
rency [24]. The pattern allows several variations to im-
prove efficiency while preserving correctness under dif-
ferent conditions of physical concurrency and relative
lengths of contention and context switch intervals.

4 Endsystem Scheduling Patterns

Scheduling patterns at the endsystem middleware level
of abstraction must deal with the design forces raised by
both the OS level and the Distributed Services level. This
section is organized as follows: Section 4.1 documents
the Request Pacing pattern, which allows the endsystem
scheduling infrastructure to influence the overall resource
usage behavior; Section 4.2 presents the Request Propa-
gation pattern, which addresses accounting for local re-
source usage within multi-endsystem requirements at the
distributed services level; Section 4.3 describes the Re-
quest Partition pattern, which allows the endsystem to iso-
late the resource requirements of one group of requests
from another, and achieve different qualities of service
for each group; Section 4.4 documents the Strategic Re-
quest Reordering pattern, which allows tailored permu-
tation of resource requests to improve quality of service,
end-to-end and within the endsystem; Finally, Section 4.5
presents the Strategy Composition pattern, which allows
combinations of other endsystem scheduling patterns to
be composed coherently, in a similar way to the Hierar-
chical Scheduling pattern described in Section 3.4.

4.1 Request Pacing
Problem: When operating near the performance enve-
lope of an operating system, overload and contention for
resources may be exacerbated by particular resource us-
age behaviors above the operating system level of abstrac-
tion. This is a general phenomenon, but is more prevalent
when real-time semantics were not a first-class design cri-
terion of the supporting operating system.

Context: Applications with stringent timeliness re-
quirements hosted on COTS operating systems.

Forces: The resource utilization trade-offs force com-
bines with the encapsulation limitations force to constrain
the rate at which requests can be made and still attain a
particular quality of service. Spacing of resource requests
in time is a major influence on utilization and availabil-
ity of resources within an endsystem. Explicit control
using the OS API to separate resource requests may be
tedious and error-prone, particularly if the application se-
mantics and underlying OS resource allocation semantics
differ significantly. Instead, explicitly pacing requests at
the endsystem middleware level induces separation of al-
location requests at the OS level.

Solution: Pace requests for resources to separate them
in time, reducing contention and improving resource allo-
cation assurance without constantly manipulating the OS
API. We thus modulate the resource requests coming to
the OS level from higher levels of abstraction, to return
the OS to a more stable operating mode.

Resulting Context: In general, pacing can be used to
reduce latency jitter in servicing resource requests, and
thus provide a more consistent allocation sequence over-
all. Some choices at the OS level, e.g., use of priority-
driven preemptive thread scheduling may be impacted as
well, with either greater or lesser context switching over-
head, depending on the resulting arrival sequence for re-
quests. Self-pacing may lead to drift in the timeline,
whereas pacing with respect to an external time stan-
dard [25] can maintain greater consistency overall.

Rationale: The design emphasizes application-level
changes in behavior to modulate overall system behavior.
The pattern guides an application to behave as a “good
citizen” in the larger context of a shared-resource system.

11



4.2 Request Propagation
Problem: End-to-end timeliness requirements cannot
be satisfied entirely within a single endsystem.

Context: Distributed real-time applications in which
activities span multiple endsystems.

Forces: The coordination and communication force
combines with the temporally constrained request force
and the resource allocation semantics force to require
endsystem-by-endsystem accounting for end-to-end re-
quirements. Resource allocation on an endsystem may
modify the remaining requirements for the activity as it
proceeds to subsequent endsystems. Furthermore, values
of parameters used to enforce compliance with the modi-
fied requirements may need to be updated as well. For ex-
ample, execution cost for a portion of a distributed trans-
action executed on one endsystem must be deducted from
the remaining expected cost of the transaction on subse-
quent endsystems.

Solution: Parameterize end-to-end requirements with
values that can be mapped to and measured on each
endsystem. Update parameters on each endsystem as the
activity progresses, thus tailoring the requirement to sub-
sequent endsystems.

Resulting Context: Communication overhead and
other sources of delay along the end-to-end path must be
considered in updating the requirement. Work that re-
duces the cost on subsequent endsystem should be dis-
tinguished from overhead that does not contribute to
progress. To construct a coherent piecewise mapping
of parameters from endsystem to endsystem, parame-
ter adaptation techniques may needed [13]. The Re-
quest Propagation pattern may be applied in implement-
ing the Distributed Scheduling (Section 5.2), Distributed
Resource Consistency Control (Section 5.3), or Global
Load Allocation (Section 5.5) patterns. In addition, for
priority-based endsystem scheduling, the Global to Local
Priority Mapping pattern (Section 5.4) can be applied to
configure the translation between local and global param-
eter values.

Rationale: The design emphasizes local accounting for
end-to-end management of timeliness and resource ac-
cess. The pattern offers a way to rationalize scheduling
of requests propagating across multiple local endsystems.

4.3 Request Partition
Problem: Resource requests from one group of tasks
may interfere with those of another, and without some
form of mediation it is not possible to enforce a rational
policy for separating the impact of one group of requests
from the other.

Context: Applications with differing quality of service
(QoS) requirements for different tasks on an endsystem,
particularly where at least one group of tasks requires
stringent QoS assurances that are at risk from interference
by other groups of resource requests.

Forces: The safety vs. interference force combines with
the concurrency force to require isolation of the effects of
one task’s resource requests on the servicing of another’s
requests. Tasks compete for shared resources that are con-
strained in their availability. Allocating a resource to one
task may delay or otherwise interfere with the ability to
allocate the resource to another task.

Solution: Provide policies and mechanisms for isolat-
ing resource requests made by one group of tasks, from
the requests made by another group of tasks. For exam-
ple, the Share Allocation pattern described in Section 3.3
can be used to prevent one group of tasks from exceeding
its allocated ration of the resource, and ensure that an-
other group will not be impacted by an excessive number,
or clustering, of resource requests by that group.

Resulting Context: Priorities are often used on COTS
POSIX-based endsystems to implement request partition-
ing, e.g., Real-Time CORBA 1.0 [26] (RT CORBA) pri-
ority lanes in TAO [27]. This simplifies the decision func-
tion for allocation, and allows other optimizations such
as eliminating the queuing overhead seen for the Request
Reordering pattern described in Section 4.4, if it is suffi-
cient to dispatch requests in order of arrival within each
priority level. Planned scheduling offers another way to
provide resource partitioning that may improve perfor-
mance in some cases, e.g., if significant thread context
switching was needed to enforce preemptive priority lev-
els.

Rationale: The design emphasizes isolation of resource
requirements of one set of requests from another by parti-
tioning the requests into equivalence classes. The pattern
allows different kinds of isolation relationships between
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the equivalence classes,e.g., priority-based vs. share-
based, to provide different kinds of resource allocation
assurances.

4.4 Strategic Request Reordering
Problem: While priorities or planned schedules may be
used efficiently to isolate resource requests between task
groups, arrival of requests for resources may differ from
the expectations under which those mechanisms were ap-
plied.

Context: Applications in which resource requests ar-
rive in a sub-optimal order, for which improved re-
source allocation capacity or timeliness assurance can be
achieved by reordering the requests.

Forces: The temporally constrained request force com-
bines with the dynamic ordering force to require that re-
quests be reordered at key scheduling points in the system,
e.g., where multiple network connections are multiplexed
onto a single endsystem thread. Reordering requests may
be expensive, both in fixed overhead and in increased time
complexity. Reordering that can be performed with bet-
ter worst-case overhead bounds improves real-time assur-
ances that can be given in the face of reordering to meet
application timeliness requirements. Depending on the re-
source request behavior of a particular application, differ-
ent policies and mechanisms for reordering may give bet-
ter best-case, average-case, and/or worst-case bounds on
overhead.

Solution: Allow different policies and mechanisms for
reordering resource requests on an endsystem. For exam-
ple, if requests are ordered monotonically once enqueued,
as for deadline aging in the Earliest Deadline First (EDF)
scheduling strategy, a queue may be used efficiently to
reorder requests. If a reordering strategy is based on a
known and well bounded population of possible values for
reordering decision function parameters, then hashing can
be applied to reduce the overhead of reordering [28, 6].

Resulting Context: Reordering delays may impact
overall resource allocation latency, and thus impact fea-
sibility of timeliness assurances. Reordering delays may
also introduce jitter in latency of servicing requests.
When this pattern is applied, both of these factors must
be considered in overall schedulability analysis and en-
forcement policies on an endsystem. Furthermore, there

are practical limits on the time-scales for which request
reordering is applicable.

Rationale: The design respects the possibility that re-
quests may arrive at an endsystem incorrectly ordered for
dispatching in a way that meets timeliness requirements.
The pattern allows scheduling of streams of requests ar-
riving out of order or from different sources, to be ratio-
nalized on the local endsystem.

4.5 Strategy Composition
Problem: A scheduling pattern that is preferable to ad-
dress one resource access requirement may be poorly
suited to address other requirements.

Context: Applications with multiple resource access re-
quirements, each of which is best addressed by a different
endsystem scheduling pattern.

Forces: The encapsulation limitations force combines
with other forces, e.g., the priority management and dy-
namic ordering forces, to require a composite scheduling
approach. Requirements may be ordered, with the con-
straints imposed by one taking precedence over those of
another. Constraints that succeed others must be enforced
in a manner that is stable and meaningful with respect to
the enforcement of the preceding requirements.

Solution: Apply endsystem level and OS level schedul-
ing patterns in an ordered manner, similar to the Hierar-
chical Scheduling pattern described in Section 3.4. Unlike
the Hierarchical Scheduling pattern, the Strategy Compo-
sition pattern places less emphasis on the nesting of com-
posed patterns, but rather focuses on the stability relation-
ships among them. For example, the MUF [29] schedul-
ing strategy may use the preemptive form of the Priority-
Driven Scheduling pattern at the OS level to implement
the Partition Requests pattern at the endsystem middle-
ware level, and then use separate queues within each pri-
ority to implement the Reorder Requests pattern in a way
that does not disturb the request isolation between priori-
ties.

Resulting Context: Ensuring that the composition of
strategies exhibits necessary stability properties may add
complexity and time cost to the analysis of the result-
ing composite strategy. Strategies whose stability prop-
erties are invariant with respect to run-time factors are
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best suited to adaptive scenarios where resource feasi-
bility must be recomputed at run-time. However, new
strategies may be synthesized to support new schedul-
ing paradigms by applying this pattern, such as the use
of RMS+MLF to support imprecise computations [30].

Rationale: The design leverages the semantics of indi-
vidual scheduling strategies. The pattern allows individ-
ual strategies to be composed in a way that respects the se-
mantics of individual strategies, but rationalizes the com-
bined effect.

5 Distributed Scheduling Patterns

All of the patterns in this section address distributed
real-time systems where the application has tasks with
real-time constraints that span operating systems and/or
endsystems (subsystems) that have possibly different
scheduling policies, and the designers must be able to pre-
dict the real-time behavior of the entire system to some
reasonably high level of assurance. An example of a real-
time task spanning subsystems is a client application from
one subsystem requesting service from a servant in an-
other subsystem under a deadline. We assume that the lo-
cal OS’s and endsystems use the scheduling patterns from
Sections 3 and 4 respectively, but that to facilitate enforce-
ment and analysis of real-time requirements across the en-
tire system, the service-level patterns of this section are
needed to provide a uniform application of the choices of
policies and parameters provided by the local OS’s and
endsystems.

This section is organized as follows. Section 5.1
presents a Distributed Scheduling Service Pattern, which
may be applied, in implementing several of the other pat-
terns: Distributed Scheduling (Section 5.2), Distributed
Resource Consistency Control (Section 5.3), Global To
Local Priority Mapping (Section 5.4), and Global Over-
load Management (Section 5.6). The Distributed Schedul-
ing Service pattern is not the only way to provide the co-
ordinated scheduling required by those other service-level
patterns, but is the only one presented in this paper. The
Global Load Allocation pattern (Section 5.5) uses a sim-
ilar centralized technique for assigning tasks to resources
across the entire system in a way that facilitates enforce-
ment and analysis of real-time requirements. Both task as-

signment and then scheduling after the tasks have been as-
signed are required for predictable real-time enforcement.

5.1 Distributed Scheduling Service
Problem: If globally incompatible policy decisions are
made in the local subsystems, the system designer will not
be able to predict the real-time performance of the entire
distributed application.

Context: Distributed real-time systems where the ap-
plication has tasks that span operating systems and/or
endsystems that have varying scheduling policies, and the
designers must be able to predict the real-time behavior of
the entire system to some reasonably high level of assur-
ance.

Forces: This pattern is affected by the activities span-
ning endsystems force, the dynamic heterogeneous appli-
cations within an endsystem force, the meta-state con-
sistency force, and the heterogeneity among operating
systems’ and endsystems’ local scheduling force, all de-
scribed in Section 2.3.

Solution: Provide a scheduling service that application-
level tasks use to invoke the scheduling primitives of the
underlying operating systems and endsystems in a uni-
form, predictable, manner.

Resulting Context: All application scheduling-related
calls must go through the scheduling service and not
be made directly to the OS/endsystem. This allows the
scheduling service to provide centralized coordination of
all local subsystem policy decisions and resulting subsys-
tem calls in a uniform way that supports predictability.
Furthermore, assurances of uniform policies may make
forms of real-time analysis possible across the entire sys-
tems - thus further enhancing the required predictability.

Rationale: The design emphasizes coordination and of
scheduling policies within a single service. The pattern
provides uniformity of scheduling decisions within an in-
tegrated service interface.

5.2 Distributed Scheduling
Problem: Local subsystem scheduling parameters,
such as thread priority, attached to a task that spans sub-
systems may not be meaningful in the remote subsystem
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due to inconsistent scheduling models. For example, in
priority-based scheduling, some local operating systems
order threads’ priorities from low to high, while others
order from high to low. These inconsistencies must be
reconciled in order to have a coherent global scheduling
model.

Context: Distributed real-time systems where the ap-
plication has tasks that span operating systems and/or
endsystems, and the designers must be able to predict the
real-time behavior of the entire system to some reason-
ably high level of assurance .

Forces: This pattern is affected by the activities span-
ning endsystems force, the dynamic heterogeneous appli-
cations within an endsystem force, and the heterogeneity
among operating systems’ and endsystems’ local schedul-
ing force, all described in Section 2.3.

Solution: Provide a coherent set of global scheduling
parameters that can map to the specific parameters of the
local endsystems and operating systems. For example,
in a priority-based system, we could assign priorities to
all tasks in the entire system from a single global priority
ordering.

Resulting Context: The assignment of global schedul-
ing parameters requires globally consistent knowledge of
all tasks in the system (which can be achieved with the
Distributed Scheduling Service pattern). Local subsys-
tems require the ability to map these scheduling param-
eters to their local parameters in a way that supports the
required global predictability. For example, the Global to
Local Priority Mapping Pattern described in Section 5.4
may be used to implement the Distributed Scheduling pat-
tern: providing a global priority ordering facilitates us-
ing the many well-known single-node priority-based en-
forcement and analysis techniques in the distributed sys-
tem to increase predictability. The Distributed Schedul-
ing pattern is seen in the Juno?? meta-programming ar-
chitecture for heterogeneous scheduling disciplines, and
in RT CORBA compliant ORBs such as TAO [31] and
ZEN [32].

Rationale: The designadaptsdisparate local parame-
ter value schemes to provide a uniform global view of
those parameters. The pattern shields system develop-
ers from accidental scheduling complexities introduced
by platform and endsystem heterogeneity.

5.3 Distributed Resource Consistency Con-
trol

Problem: If incompatible resource access control pol-
icy decisions are made in the local subsystems, the system
designer will not be able to predict the real-time perfor-
mance of the entire application or the overall consistency
of the resources.

Context: Distributed real-time systems where the ap-
plication has tasks that span operating systems and/or
endsystems that have various local resource access control
policies, and the tasks share resources, and the designers
must be able to predict the real-time behavior of the entire
system to some reasonably high level of assurance.

Forces: This pattern is affected by the activities span-
ning endsystems force, the dynamic heterogeneous appli-
cations within an endsystem force, and the heterogeneity
among operating systems’ and endsystems’ local schedul-
ing force, all described in Section 2.3.

Solution: Require that all tasks in the distributed sys-
tem access resources using consistent local resource ac-
cess mechanisms and parameters.

Resulting Context: Ensuring consistent resource ac-
cess mechanisms and parameters requires coordination
across all tasks in the system (which can be achieved with
the Distributed Scheduling Service Pattern). This use of
global resource access mechanisms and parameters will
facilitate calculation of blocking times of the tasks, which
in turn facilitates analysis and reasoning about system
predictability.

Rationale: The design is based on local coherency of
scheduling decisions. The pattern ensures that local con-
sistency enforced coherently across endsystems results in
end-to-end consistency.

5.4 Global to Local Priority Mapping
Problem: Global priorities provide a uniform mecha-
nism for ordering all tasks in a real-time system. How-
ever, at the OS/endsystem level local priorities may be
constrained to smaller ranges than the global priorities.
For example, RT CORBA provides 32K global priorities
for distributed scheduling. But global tasks must execute
on specific operating systems where the number of prior-
ities is smaller (POSIX real-time mandates only 32 local
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priorities, for instance). When multiple global priorities
are mapped to a single local priority, priority inversion
can occur that can compromise the real-time predictabil-
ity and performance of the overall system.

Context: A distributed real-time system in which tasks
are assigned global priorities to support real-time pre-
dictability across the entire system, but where the tasks
may be executed and enforced on different operating sys-
tems/endsystems that have different priority mechanisms.

Forces: This pattern is affected by the activities span-
ning endsystems force, the dynamic heterogeneous appli-
cations within an endsystem force, and the heterogeneity
among operating systems’ and endsystems’ local schedul-
ing force, all described in Section 2.3.

Solution: Map global priorities to local endsystem-
level or OS-level priorities by spreading out the tasks on
a particular subsystem among the available local priori-
ties. If any tasks with different global priorities must be
mapped to the same local priority (e.g. because there are
more global tasks than local priorities), then take into ac-
count any priority inversion that may occur and use this in
any schedulability analysis that is done on the system to
support predictability.

Resulting Context: Priority mapping should be done in
such as way as to consider future tasks that may arrive.
In a dynamic distributed system, tasks must be mapped
from global to local priorities as they become available
to execute. The priority mapping scheme must consider
the overall expected set of tasks to be scheduled (perhaps
using probability distributions) so that global priorities
are mapped as evenly across the local priorities as pos-
sible. Otherwise, a poorly designed mapping algorithm
will cause many tasks to be mapped to a very few local
priorities.

Rationale: Similar to the Distributed Scheduling pat-
tern, the designadapts disparate local priority value
schemes to provide a uniform global view of priority.
The Global to Local Priority Mapping pattern focuses on
priorities, and can be used to implement the Distributed
Scheduling pattern.

5.5 Global Load Allocation

Problem: When deciding among several subsystems on
which to place the execution of a particular task, certain
resources can become overutilized while others may be
underutilized. This poor global allocation of resources
could cause some tasks to unnecessarily violate timing
constraints.

Context: A real-time distributed system in which par-
ticular tasks may use any of a set of equivalent resources
from one of several operating systems or endsystems.

Forces: This pattern is affected by the multiple capa-
ble resources spanning endsystems force, the meta-state
consistency force, and the dynamic heterogeneous appli-
cations within an endsystem force, both described in Sec-
tion 2.3.

Solution: Allocate tasks to the subsystems that yield the
best chance that the specified timing constraints will be
met. Further, consider future tasks when making this al-
location. For example, as in classic memory management
algorithms, if an task is allocated to the subsystem on
which it fits and produces the highest utilization (best fit),
when the system becomes highly loaded, there may be
small “holes” on the resulting high utilization resources
that will not fit any future tasks. Instead, if the task is allo-
cated to the subsystem that will yield the lowest utilization
(worst fit), more “medium holes” are left, but one “large
hole” gets smaller which reduces the chance of a future
large task fitting. The load allocation schemes should
choose subsystems with future tasks in mind. This may be
done by examining prior distributions of tasks in similar
applications, as well as by choosing subsystems on which
execution time will likely be freed soon, i.e. subsystems
that have tasks ending.

Resulting Context: Load allocation techniques as de-
scribed above may require some run-time analysis of cur-
rent system conditions. This will incur added overhead to
the execution of the application. For this reason, load al-
location algorithms should be designed and implemented
carefully to utilize as much precomputed system informa-
tion as possible, and avoid unnecessary analysis. Alterna-
tively, simple load allocation techniques (like first fit, or
simple balancing algorithms) may be sufficient and would
incur less overhead.
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Rationale: The design emphasizes load distribution to
improve overall distributed system behavior. The pattern
balances overhead of analysis with expected future behav-
ior of the system and potential improvements in system
performance.

5.6 Global Overload Management
Problem: In a dynamic distributed real-time system,
system load can vary, sometimes exceeding the capacity
of available resources. When there is not enough capac-
ity to handle all execution, the system must be able to
ensure that critical tasks meet their specified timing con-
straints. The initial allocation of load (specified in Global
Load Allocation Pattern of Section 5.5) attempts to place
load on subsystems so that all timing constraints can be
met. The techniques involved in load allocation typically
use a “best-guess” at where each task execution will fit,
while leaving room for future execution. However, as
time progresses, these guesses are replaced by real incom-
ing task demands, which may not meet the expectations of
the original load allocation.

Context: Distributed real-time systems where the ap-
plication has tasks that span operating systems and/or
endsystems, and some application tasks may be less Crit-
ical than others. That is, there is a possibility that applica-
tion tasks may be re-allocated, reduced or shed altogether
if system conditions require it and Critical tasks should be
completed when possible.

Forces: This pattern is affected by the multiple capable
resources spanning endsystems force, the dynamic het-
erogeneous applications within an endsystem force, the
meta-state consistency force, and the competing Qual-
ity of Service requirements force, all described in Sec-
tion 2.3.

Solution: Provide distributed middleware-level QoS
adjustment that includes monitoring and managing sys-
tem load to avoid overload on the entire system and on
each particular subsystem in a way that allows the most
Critical tasks to meet their timing constraints. The moni-
toring will require an overview of what tasks are execut-
ing where, and how each resource is being utilized, and
the completion status of tasks. The management of load
may include reallocation of tasks from one subsystem to
another to avoid overload. It may also include reducing

the execution time (QoS Accuracy), or shedding the ex-
ecution altogether of less critical task to ensure that the
most critical tasks meet their timing constraints.

Resulting Context: Management of load in a dis-
tributed system will require a global view of the status
of the system at any given moment. The level of overhead
involved in this management depends upon the granular-
ity of information that is accessible, and on how often this
information is needed. The strategies chosen for overload
management should weigh the benefits of having access
to detailed information with the time needed to analyze
it. Shedding of tasks must be supported in the underlying
endsystem and operating system such that the tasks can
be shed gracefully and efficiently without causing incon-
sistent system state.

Rationale: The design emphasizes distributed load bal-
ancing and reallocation to tune overall distributed system
behavior at run-time. The pattern balances overhead of
load re-allocation with expected improvements in system
performance.

6 Rationalizing Scheduling Across
Levels of Scale

Finally, we present two patterns that apply across levels
of abstraction. The Application Level Quality of Ser-
vice Adjustment pattern (Section 6.1) allows applications
to themselves adjust their scheduling parameters to fa-
cilitate better global enforcement of real-time require-
ments. The Distributed Temporal Coherency pattern (Sec-
tion 6.1) ensures appropriate end-to-end semantics for
reasoning about and enforcing time, which are needed by
the other patterns in this section.

Implementations of either of these patterns may appear
at multiple levels of abstraction, or may in fact span levels.
For example, in a video streaming application, an appli-
cation may make network bandwidth reservations at the
OS level, a feasible priority assignment on one or more
endsystems. If due to, e.g., the arrival of more critical pro-
cessing, these reservations become infeasible, the Appli-
cation Level Quality of Service Adjustment pattern may
be applied to re-negotiate or adapt to (1) the new OS level
bandwidth available, (2) the new endsystem priority as-
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signment, or (3) a combination of the two, with respect to
the particular application semantics.

6.1 Application Level Quality of Service
Adjustment

Problem: In many applications QoS parameters such as
timing constraints, accuracy, and security parameters are
specified once and the system decides whether or not they
can be achieved. When an application cannot receive all
of its requested quality, there should be a way for the ap-
plication itself to negotiate a trade-off that is acceptable to
it, while still meeting the constraints of the system.

Context: Systems in which quality of service (QoS) ne-
gotiation among applications and implementation infras-
tructure is allowed, and overload may occur.

Forces: This pattern is affected by the competing Qual-
ity of Service requirements force described in Section 2.3
and the fact that applications often have more informa-
tion about the best way to provide what they need than
the overall system.

Solution: Provide a mechanism that allows applications
to specify what they are willing to sacrifice in order to
meet their own constraints as well as the overall system
constraints. For example, QuO [7] provides contracts that
specify how to reduce certain demands of an application
when the system becomes overloaded. In [33], a real-
time agent specifies several execution strategies to provide
a particular service with varying levels of execution time
and resulting quality. When a request for this service is
received, the agent negotiates with the scheduling service
to determine the quality it can provide.

Resulting Context: Allowing applications to have
some control over how their QoS is provided will enhance
the overall quality of the system. It will require applica-
tion programmers to provide more information about how
the application can be run, and about what they are will-
ing to sacrifice to meet the overall goals of the application
and the system.

Rationale: The design emphasizes application-level
flexibility in adapting to QoS limitations at run-time. The
pattern rationalizes alternatives for re-establishing feasi-
ble and acceptable QoS.

6.2 Distributed Temporal Coherency
Problem: Insufficiently fine-grained resolution in either
(1) the timeliness information available, or (2) enforce-
ment capabilities of mechanisms using that information,
may limit the precision at which timeliness assurances can
be made.

Context: Application timeliness requirements induce
particular time-scales at which temporal enforcement
must be possible within operating systems, endsystems,
and distributed systems.

Forces: The temporal consistency force is a special case
of the meta-state consistency force that is essential to de-
termine end-to-end feasibility of timeliness requirements,
and to rationalize resource allocations across all levels of
scale. Different forms of temporal consistency can be use-
ful, such as synchronization of clock periods versus syn-
chronization of clock values. Furthermore, OS-level al-
gorithms for clock synchronization must maintain consis-
tency within some bound on precision needed by the dis-
tributed services to assure end-to-end properties. Applica-
tions with fine-grained timeliness requirements may need
increased resolution of timing information and enforce-
ment mechanisms. In a distributed system, expense in-
creases with finer granularity of time consistency, up to a
possible point of diminishing returns dictated by the eco-
nomics of the system. Furthermore, the achievable reso-
lution is ultimately bounded within strict physical limita-
tions.

Solution: Provide time consistency that is sufficient to
meet application requirements, in the most economical
manner. This applies both to clock synchronization and
other time-based factors such as the latency across a net-
work link.

Resulting Context: An application may reach either
the economic or physical bound first. For example in
switched ethernet where collisions are avoided, through-
put is bounded by the transmission properties of the
medium and the buffer capabilities on the endsystem.
While the choice of buffer sizes in a switch may be dic-
tated by economic factors, the network medium transmis-
sion characteristics are determined by physics.

Rationale: The design deals rationally with inherent
limitations on the systems ability to attain or justify in-
creasingly fine granularity of temporal coherency. The
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pattern offers a balance between inherent requirements
and the costs of alternatives to meet those requirements.

7 Conclusions

The patterns described in this paper apply both within and
across different levels of abstraction in a distributed sys-
tem. Ultimately, they are about maintaining timeliness
constraints in distributed real-time systems, and do so by
applying different scheduling patterns and supporting pat-
terns to achieve rational allocations of resources across
the distributed system. The design choices made to re-
solve forces at one level of abstraction may induce conse-
quences that are themselves forces at another level. Fur-
thermore, some patterns apply across levels of abstrac-
tion, resolving forces that are within or possible across
the levels themselves.

The key contribution of this pattern language is its ex-
ploration of the complex and interconnected design space
for scheduling distributed real-time applications. It is ca-
pable of generating designs that adhere entirely to one
design paradigm, e.g., preemptive priority-based thread
scheduling or planned time synchronized scheduling. It is
also capable of generating designs that compose elements
of multiple paradigms, thus offering the designer freedom
to hybridize approaches as long as the design forces are
suitably resolved.
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