Resource Rationalizer: A Pattern Language for Multi-Scale Scheduling

Christopher Gill and Douglas Niehalis Lisa DiPippo and Victor Fay Wolfe
and Venkita Subramonian {dipippo,wolfe; @cs.uri.edu
{cdgill,niehaus,venkitg@cs.wustl.edu Department of Computer Science
Department of Computer Science University of Rhode Island

Washington University, St. Louis

Abstract abstraction. However, fixing the mode of interaction of
one level with an adjacent one inevitably limits the ex-
t of cross-level integration available. This limitation
uces the designer’s options to resolve design forces
t cross level boundaries. This may result in inefficien-

Assuring end-to-end timeliness properties in a distribut
real-time system poses a variety of challenges at eachr
several, levels of abstraction. The challenges vary w'ﬁa

anagement model is often cited [5] as functionally com-
lete in that it is possible to implement any of the well-

endsystems in the entire system. While there is signé'own scheduling paradigms by manipulating thread pri-

i lity related to th tenm’ dt dt ity levels. However, the feasibility of such implemen-
cantcommonailty refated 1o the system s end-to-endims 1o can pe significantly constrained by the time scales
liness requirements, the forces and their resolution var

trivially with h level of abstract S d ‘Aithin which the priority manipulations will take effect.
non-triviafly with €ach level ot abstraction. S0me design ;¢ paper presents a pattern language, illustrated in

L?/[aﬁi?&%ii?nzst%e?r:se;ﬁ:t z?fi?’a?ﬂ:'p;iilzeixeim r?)(; ure 1, for increasing coordination of resource man-
P 9 9 approafile ment across multiple levels of architectural scale. In

to design, within wh|ch the design forces at an(_:l acroB rticular, it guides the designer toward greater degrees
each .Ievel of abstraction can be res'olveq.' This PaP&f freedom to achieve necessary end-to-end timeliness as-
describes a pattern language for rationalizing resourc rances for distributed real-time and embedded (DRE)
spheduling at multiple levels of scale in distributed rea?ystems. We examine patterns within, and bridging, each
time and embedded systems. of three levels of abstraction for resource management
Keywords: Real-Time Middleware and Operating Syswithin the context of DRE systems: (1) the operating sys-
tems, Quality of Service Issues, Adaptive Resource Masam, (2) low-level middleware on a local endsystem, and

operating system kernel, (2) within the middleware infra
tructure on a single endsystem, and (3) distributed acr

agement, Distributed Systems. (3) higher-level distributed middleware services that span
endsystems.
1 Introduction OS Level: The operating system kernel has direct ac-

cess to resources such as the CPU, network interfaces,

Many systems design paradigms, e.g., RMS [1], Low@nd storage devices, and can perform fine-grain coordi-
Level Middleware Frameworks [2, 3], and POSIX [4]hation of those resources, e.g., through scheduling inter-
concentrate their attention at a single level of system 48Pt handling, to achieve rigorous _'005“ timeliness assur-

straction. To achieve portability and generality, they ofnces. The OS kernel also provides resource manage-

ten assume immutable properties at some other level#nt abstractions such as thread scheduling models, e.g.,
the KURT-Linux Real-Time Scheduling Server (RTSS) or

*This work was funded in part by The Boeing Company, the DARF’&1e POSIX priority-driven preemptive thread scheduling
Quorum program, and ONR.

tDr. Niehaus contributed to this work while on sabbatical from th@_mdel [5], to software outside t'he kernel. These abstrac-
University of Kansas. tions may be used both to obtain and restrict access to the

A=aternatives C = conpl enent s | =inplenents M= nodi fi es

Planned .
Scheduling \.\ c
Share Hierarchical

Allocation Scheduling

Masking

Interrupts
Priority-Driven
Preemptive

Scheduling

Synchronous
Locks II
OSLevel Distributed

1]
K A \-\ Temporal
Coherency

Partition c
Srategy
Composition
Endsystem Strategic Request Application
Middleware geg“‘iﬂ Propagation Level QoS
Leve raering Adjustment

A/
Distributed
Scheduling

Distributed
Resource /
Consisten M
, | nsistency J M| - Global
{C} Load

Distribute i
&cheduling Global Allocation
Service Overload C
Management Global to
Local
Priority
Ml———>/ Mapping

Distributed MiddlewareLevel | MultipleLevels

Figure 1: Map of the Resource Rationalizer Pattern Language

kernel-level system resources. end-to-end in DRE systems.

Endsystem Middleware: Above the operating system To achieve rigorous end-to-end timeliness assurances
for DRE systems, resource management must be coordi-

low-level endsystem middleware frameworks such -
ACE [2] and Kokyu [6] use abstractions from the Opr_1ated both within and across each of these levels of ab-

erating system and other low-level middleware framgdaction. Inapplying the patterns described in this paper,

works, to provide portable and consistent resource acch&sSystem designer is given latitude to balance the conse-

across endsystem architectures. These low-level middje€nces of each design choice at each level. Returning to

ware frameworks provide abstractions for resource cod}€ Previous POSIX example, using priority manipulation
dination within the local endsystem, which may in turn @ implementthe Request Partition pattern (Section 4.3) at
used by higher-level middleware services. the middleware endsystem level might be replaced at the

middleware level, for example, by the Pacing Requests
Distributed Middleware: Higher-level middleware pattern (Section 4.1). Alternatively, in the context of an
such BBN's Quo [7] and the URI Global Schedulingpen source operating system, the designer could apply a
Service framework [8] must coordinate resource accatifferent OS level pattern. For example, a system might
across endsystems, to provide timeliness assurancesg, Planned Scheduling (Section 3.1) or Share Allocation
load balancing, load shedding, and admission cont(8lection 3.3) instead of Priority-Driven Scheduling (Sec-

tion 3.2). of different priorities, the semantics of priority-based re-

In this paper we examine design forces and pattes@urce allocation must be modified to ensure timeliness
at each level of abstraction, and consider how additionibperties are maintained. For example, priority inver-
cross-level patterns can be combined to form a patteinns [11] must be bounded to ensure resource allocation
language we call Resource Rationalizer, for rationalizi@gsurances are maintained so that stated timeliness assur-
end-to-end resource scheduling in distributed real-tiraaces are not violated.
systems. Figure 1 shows the interactions between patterns) : .
in the Resource Rationalizer pattern language. Most of Table 1. Summary of Scheduling Design Forces

the patterns are fundamentally about scheduling, thougliiEs Force Level(s)
a few of the patterns (i.e., Masking Interrupts, Distributed F1 | Temporally constrained request| All

Temporal Coherency) are needed for closure of the lan- F2 | Request asynchrony All
guage, i.e., to resolve remaining forces not addressed by F3 | Concurrency All
the other patterns. The additional patterns allow the lan- F4 | Performance constraints All
guage to produce generative designs for rational resour¢e F5 | Space constraints All
allocation, end-to-end in a distributed system. F6 | Resource allocation semantics | All

The remainder of the paper is organized as follows|__F7 | Constrained resource supply | Kernel
Section 2 describes the key design forces at each level pf F8 | Concurrent access to a resource Kernel
abstraction. Section 3 describes scheduling patterns at the F9 Reque_st cost _ Kernel
kernel level. Section 4 describes scheduling patterns at th -10 | Allocation granularity trade-offs | Kernel

endsystem level. Section 5 describes scheduling patter*.sg; Resource utilization trade-offs | Endsystem

at the distributed scheduling level. Section 6 describe F13 gifoerg/i:;fi;r:j:]zrigcrfmunicatio1 E:ggztgm
patterns applied to bridge between levels of abstractioprz14 Encapsulation limitations Endsystem
and architectural scale. Finally, Section 7 draws conclur 5 Priority management Endsystem
sions about distributed real-time scheduling and the implir F1g Dynamic ordering Endsystem
cations of this pattern language for developing distributed F17 T Activities spanning endsystems | Distributed
real-time and embedded systems. F18 | Multiple suitable resources Distributed

spanning endsystems
F19 | Heterogeneity among operating| Distributed

2 Design Forces systems’ and endsystems

local scheduling
The design forces addressed by this pattern language gr&20 | Dynamic heterogeneous Distributed
summarized in Table 1, in the order in which they are dis applications within

an endsystem
F21 | Competing quality of service Distributed
requirements
F22 | Abstract state consistency Distributed
F23 | Temporal consistency Distributed

cussed in this section. In describing a pattern language f
multi-scale resource scheduling, careful analysis of th
design forces the pattern language must resolve is crucid
Specifically, it is necessary to distinguish design forces
that are part of the fundamental problem context from
those introduced by particular design decisions made inThe key insight offered by this example is that the pri-
the process of reconciling the overall system of designity inversion problenemergesrom the combination of:
forces. (1) the fundamental design force that some rational allo-
For example, rate monotonic analysis and assignmeation of resources is necessary to ensure satisfaction of
of task priorities [9, 10] is a mechanism commonly used the specified timeliness constraints, (2) the design choice
partition resource access requests into ordered groupg$ptase priority-driven preemptive thread scheduling, and
ensure lower-frequency requests do not interfere with s€8) mutual exclusion semantics among threads due to the
vicing higher-frequency requests. In certain cases, suctnasd for exclusive access to shared data.
mutually exclusive use of resources shared among threadBhroughout this section we will examine fundamental

=

1%

F F2 F3 F4 F5 Fé requests may be inherently asynchronous. For example,

os at the kernel level these could be due to interrupts upon
Levd . . = arrival of packets from a network or from other externally

: : initiated events. At the endsystem level these could be due

Middanere | | = o | = to asynchronous notification of a thread blocked on a con-
Led A I - dition variable. At the distributed level these could be due

to method invocations from a remote client. This force

Distributed - - - - . .
Middleware not only appears at multiple levels, but it may also span all
,_._ three levels, as in the asynchronous arrival of a method in-
B Commen Cace - -1 Special Case vocation request handled at the OS level as network pack-

Figure 2: Multi-Level Scheduling Design Forces ets, at the endsystem level as a queued upcall command in
design forces at the lowest level of system abstraction, #i®ORB, and at the distributed level as a CORBA servant
OS kernel, and design forces that emerge at higher levelguest.
as aresult of the abstractions exposed at the lower level(s). , , ,
Section 2.1 describes forces fundamental enough that tﬁ% Concurrency. This design force is, perhaps, among
appear at multiple levels, and can across levels of abstral: MOst fundamental, and has the largest influence on
tion. Section 2.2 examines resource scheduling forceS¥Fte™ Implementation and behavior. Concurrency is de-
the OS kernel level. Section 2.3 describes design forgd&Ple for several reasons, including ease of implementa-

that emerge at the endsystem level. Finally, Section on and increased performance. For example, to achieve

considers design forces at the distributed services leve _'etter timeliness of request completion and better utiliza-
tion of resources, particularly with applications whose

) use of resources is reasonably complex in time, resources

2.1 Cross-Level and Multi-Level Forces must be allocated to support, at least logically and possi-
physically, concurrently executing application tasks.
gggwever, the benfits of concurrency come at the cost of

these fundamental forces first, to establish the overall cgfduM"Ng additional control in many cases, particularly
se where concurrently executing threads share data

text in which the Resource Rationalizer pattern langua : . .
0se semantics require mutually exclusive access. The

is applied. In some cases the force can be resolved dt icall ¢ t shared dat
tirely within a single level, using methods suited to theeed to ensure semantically correct use of shared data
Ili)l|e also satisfying the performance constraints of ev-

level in question. In other cases, the force manifests its& .)

in a way that crosses levels of abstraction, and must 'comput{atlon has an enourmous influence on system
resolved by actions taken at multiple system levels. Fi esign and implementation.

ure 2 illustrates the forces that appear at multiple levelg. performance constraints. To meet the timeliness

of scale. The usual span of a force is shown as a sqlighstraints on a request, mechanisms and policies at all
block in Figure 2, and special cases where the span n@ya|s of abstraction must themselves allow adaptive re-
be broader are illustrated by dashed lines. allocation of service requests to endsystems, or of lower

F1: Temporally constrained request. In additiontoits !€vel resources to requests within an endsystem, time
cost, a request may bear a requirement for Comp|et@9flsumption at the distributed services level must com-
within a given interval, which may be absolute or reldly with the timeliness constraints of the application.
tive in time. The time until a request completes may bel&erefore, the load balancing, admission control, load re-
function of both its computation cost and of blocking giuction, and load shedding algorithms used by the dis-
share reduction factors due to allocation of resourcestiiguted services must themselves operate within well-
other requests. The temporally constrained request forégfined time constraints.

Some design forces are sufficiently fundamental that t
appear at more than one level of the system. We pre

F2: Request asynchrony. Not only can multiple re- F5: Space constraints. In addition to limiting time
guests arrive concurrently, in general the arrival patternaimplexity of distributed services, the amount of space

consumed, particularly in embedded systems, can btha resource for productive work. In the case of the CPU
limiting factor and dictate adoption of approaches thedgsource, for example, non-preemptive thread scheduling
would otherwise not be chosen. For example, assignereases the activation latency for a newdndythread

ing and managing global priorities for end-to-end timemtil at least the next yield point in the currently execut-
liness constraints can reduce the amount of state inforrivey thread. In preemptive thread scheduling, the operating
tion maintained on each endsystem, compared to ussygtem is free to switch to the newly ready thread immedi-
planned schedules, thus favoring priority schemes in siaely, but the frequency with which the system chooses to
ations where the space consumed by the execution plasvistch among threads determines the portion of the CPU
significant. resource used for the unproductive work of switching con-

F6: Resource allocation semantics. In addition to lim- textamong threads.

iting time complexity of distributed services, the range of _
ways in which a resource can be allocated while maintaid-3 Endsystem Scheduling Forces

ing required semantics is important. . .
greq P The next level of abstraction for resource scheduling re-

) sides above the operating system kernel but within a sin-
2.2 Kernel Scheduling Forces gle endsystem. We describe both design forces inherent

We start at the lowest level of resource abstraction, withtﬁ)wthe domain Of_ endsystem scheduling, and design forces
uced by choices at the OS kernel level. Some of the

the operating system kernel. We defer discussion Igﬁdamental desian forces for resource manadement at
additional kernel-level design forces induced by desié}Ie endsvstem Ie\I/geI are as follows u 9
choices at the OS kernel level until Section 3. The fun- Y :

damental design forces for resource management at fhld: Resource utilization trade-offs. As the endsys-
level of scale are as follows. tem scheduling infrastructure is architecturally closer to
F7: Constrained resource supply. Inherentin the def- the application than th.e O.S’ '.t IS regsonable to place more
N ; .~ _awareness of the application itself, i.e., at least the specific
inition of a shared resource is that access to it is con- . . S :
rojection of the application into one endsystem, into the

strained in time, and possibly in tot.al quantlty. qu e.%w-level endsystem middleware. Therefore, the endsys-
ample, concurrent access to a CPU is constrained in ti

! .) " scheduling infrastructure will necessarily be respon-
while energy consumption may be constrained both | . : .
) . sible for managing the inherent trade-offs between in-
time (power) and quantity (battery charge).

creasing the amount of useful work performed overall,
F8: Concurrent access to a resource. Multiple re- and achieving necessary timeliness assurances for com-
quests contend concurrently for the resource, so that gketion of individual application tasks. However, the
pending on resource access granularity, requests mushsitity of the endsystem to do this may be significantly
ther take turns accessing the entire resource, or recejgastrained by the scheudling capabilities exposed to the
partial shares of the resource over a given interval. endsystem level by the OS level.

F9: Request cost. To service a request, a certain shafel2: Safety vs. interference. With the addition of con-

of the resource must be granted to the request over a gigarrency, access to resources must be ensured to be safe
period of time. In some cases the total cost of a requeéth respect to timeliness requirements, due to possible
is insensitive to the pattern of resource allocations ovaterference between tasks. Because the operating system
time. In others, e.g., voltage scheduling of power-awaigsin general unaware of the structure of resource requests
CPUs [12], the cost is a more complex function of th@ade by the application, it is very difficult to control re-
actual resource allocation over time. source protection efficiently within the operating system
F10: Allocation granularity trade-offs. Finer granu- without at least some hints about that structure from the

larity allocation of a resource increases the level of contfJidSystem level scheduling infrastructure.
the system has to produce timely results, but comes at Bi8: Coordination and communication. While strict
price of greater overhead, which reduces the utilizationieblation of resources among concurrent tasks may fa-

cilitate safety of concurrent resource use, it may in tuFil6: Dynamic ordering. An alternative to static re-
hamper computation overall, as concurrent tasks are setrce management is to select among resource requests
stricted in sharing results. In the endsystem schedulithgnamically. Furthermore, in some cases, e.g., when re-
domain, coordination of resource requests and exchangest deadlines are not specified until the moment of ar-
of computation results among concurrent tasks must fixal, static resource allocation is simply not possible.
managed.

In addition to the above inherent design forces, ag-
ditional design forces may be introduced by the design
choices made at the operating system level. Additiorée distributed scheduling forces described here will act
forces relevant to the endsystem scheduling domain irpon systems in which uniformity across the system is
clude the following. essential to ensure predictability. These forces may act

upon local endsystems, the entire system globally, and on

F14: Encapsulation limitations. Some choices at thepossib|y all points on the continuum between these two
OS level propagate unavoidable constraints to higher I@fdpoints.

els of abstraction, as noted in Section 2.1. Each particu- _ o]
lar resolution of design forces at the OS level of abstrdel 7 Activities spanning endsystems. Each endsys-

tion may induce different semantics for safety and perfd?—m represents the outer limit of resource allocation scope
mance at the endsystem middleware level. For exam&l{%hievable at lower levels of architectural scale. How-

in the case of non-preemptive thread scheduling, blockife" activities such as chains of remote method invoca-
latency for access to the CPU must be considered whefifdifS may traverse many such scopes, and require coordi-

or not synchronization abstractions, e.g., thread mutexa@tion of scope-by-scope resource allocation assurances
are used by the middleware or the application. to achieve overall enforcement and analysis of real-time

requirements.

F15: Priority management. If the operating systemgyg. \Myttiple suitable resources spanning endsys-

exposes a primarily priority-based intgrface for arbitr@éms_ In applications that span endsystems there may
tion of thread access to the CPU, as is the case in M@st - gices as to which endsystem to assign a task, or
commercial-off-the-shelf (COTS) operating systems ajg,ich resources within various endsystems to allocate to
as specified by the POSIX standard [4], then priorifhe (55K Distributed scheduling should allocate resources
management may be the only reasonable mechanismyfgr, annropriate endsystems to application tasks in a way

meeting static end-to-end timeliness requirements. Fiyfat facilitates overall enforcement and analysis of real-
thermore, priority-based management may also be “S‘?ifHJe requirements.

to constrain the time or space complexity of distributed

scheduling, with priority-based endsystem scheduling Bel9: Heterogeneity among operating systems’ and
ing a natural basis for implementing the end-to-end pgndsystems’ local scheduling. Multiple OS’s and/or
ority approach. However, using priorities to allocatendsystems, each with importantly different scheduling
resources may result in a new set of issues relatedp@icies, may be involved in an application that spans
a semantic “impedance mismatch” between the priorifyese subsystems. When referring to something that can
mechanism and the fundamental application semanti@gply to multiple operating systems and/or endsystems,
For example, priority-based schedulers do not explicittye Will use the term “subsystem”. If each subsystem pro-
consider time, so blocking times and other common fagdes multiple scheduling policies and/or scheduling pa-
tors may increase the complexity of analysis, and posgimeters, it is possible that the global effect of the local
bly reduce the achievable degrees of assurance, for méefeduling choices may be undesirable due to conflicting
ing crucial timeliness requirements. Instead, explicitfprces in the enclosing design context. For example, if
specifying an execution schedule to meet some kindsdsfadline-based and priority-based scheduling were used
timeliness requirements may be simpler than orchestifitiwo different subsystems, it may be difficult to ratio-
ing a priority assignment scheme to achieve the same @glize scheduling requirements in applications that span
surances. them [13].

4 Distributed Scheduling Forces

6

F20: Dynamic heterogeneous applications within an synchronization or of virtual clocks [14], be maintained
endsystem. Within endsystems where tasks implemen&émong those endsystems to assure timeliness properties
ing heterogeneous computations may dynamically enésrd-to-end.

the system or change their requirements, it may be nec-

essary to abstract scheduling policies from the endsystem)

to a global service that is used by all entities, to ensure%a Kernel Scheduling Patterns

compatible notion of policies and parameters among the .)
heterogeneous application tasks. Scheduling patterns at the OS kernel level of abstraction

deal with the inherent design forces raised by limitations

F21:. Cpmpetmg qughty of service requwements: on the use of resources and on the resource semantics,
Applications may specify a variety of Quality of SerV|c%

) h of which should aff hed mbined with design forces raised by semantics at higher
.(QOS) requirements, each of which should affect schedfiye|s of abstraction. We document these patterns ac-
ing. For instance, timeliness requirements such as de

rding to Coplien's! format, using the name of each

lines and periods can affec_t the order of execution. HOWéttern as its subsection title. This section is organized
ever, many sys.tems consujer o.ther .parameters that £8%llows: Section 3.1 presents the Planned Scheduling
affect computation schgdulmg:nt.lca.\hty Is often used pattern, which in open kernel implementations offers a
as a parameter in addition to priority to help represeqiy o semantics for specifying resource allocation poli-
relative importance of computations to help resolve allgrog 14 enforce timeliness requirements: Section 3.2 de-
cation conflicts, particularly in overload situations.Sorrgecribes the Priority-Driven Scheduling pattern, which in
;ystgms use a basic manc_iatory/ thio.nal Criticality SPEOTS POSIX-based operating systems provides another
|f|pat|on, others use a oeraI Crltlcal!ty va]ge per tasEemantics: for specifying resource allocation policies; Sec-
still others use ut|I|ty functions to specify Crltllcahty. tion 3.3 documents the Share Allocation pattern, which
Other QoS requirements such as Security, AcCuragy, s shdivision of a resource among competing activ-
and Fault Tolerance all may allso impact the schgdullqgesy and can be implemented using either the Planned
.Furthermore,.thgse QOS. requirements may Cof‘f"‘?t- I:§’<fheduling pattern or the Priority-Driven Scheduling pat-
instance, achieving timeliness may require sacrificing 3Gin: Section 3.4 presents the Hierarchical Scheduling
curacy, or vise.versa. Similar!y, tr.ade.offs arise amo tt,ern, which can apply a series of different schedul-
most QoS requirement categories:timeliness and secUiffy, natterns to successively refined groups of tasks un-
security and accuracy, timeliness and reliability. - Digy 5 gingle task is selected to run. This gives different
trlbut.ed scheduling decisions should consider global QPe%ource allocation semantics to different resource usage
requirements and tradeoffs. domains. Section 3.5 documents the Masking Interrupts
F22: Abstract state consistency. While it is not pos- pattern, which reconciles the desire to share critical sec-
sible to maintain a completely accurate, up-to-date piiens across process and interrupt contexts, with the need
ture of the global state of an entire distributed systemn, prevent unsafe interleaving of critical section invoca-
it is necessary to maintain a view that é®nsistent tions. Finally, Section 3.6 describes the Synchronous
i.efundamental properties such as causality are not viack pattern, which reconciles the desire to share crit-
lated, within some level of precision. This view may simeal sections among software executing concurrently on
plify the problem by only keeping abstract state informaeparate processors in a multiprocessor machine.
tion about key system properties, e.g., the remaining cost
of a multi-endsystem transaction. Consistency of the ap-

stract state is necessary in order to ensure schedulabi |t§I/' Planned Scheduling

across the distributed system. Problem: Commonly available priority-based imple-

. . . mentations may im mantics th re insufficientl
F23: Temporal consistency. As a special case of main- entations may impose semantics that are Insufficiently

. .) .congruous with the application semantics. Consider the
taining consistency of abstract state, dynamic allocatign

. semantics of a control system in which operational data
of resource requests across multiple endsystems may re-

quire that temporal consistency, through the use of clock!http:/hillside.net/patterns/definition.html

arrives at a specific interval, and the control calculati@traints. The pattern allows natural expression of a sched-
uses the most recent data to modify set-points of specifle meeting specified constrainiisthe same terminology
devices. In a priority-driven system where the calculas the constraints themselves

tion is blocked on the arrival of the data event, jitter in

the data arrival is reflected in subsequent execution jitter Lo .)

of the control law. In contrast, the explicit plan runs at@-2 Priority-Driven Scheduling

SpeCiﬁed frequency, but is free to handle the data arri"l’&btﬂem: A generic operating system imp|ementer
jitter in away that does not transfer it into exeCUtionjittEﬁeedS to provide a functiona”y Comp|ete interface for

Context: Real-time systems in which computationgsource allocation, without adding noticeable program-
need to receive particular qualities of service, using op@ing model complexity.

operating system kernels.
P gsy Context: Real-time systems in which computations

Forces: The constrained resource supply, resource c@gled to receive particular qualities of service, using COTS
and competition for the resource forces combine with theS|X-based operating system kernels.
temporally constrained request, request cost, and request
asynchrony forces to require temporal arbitration of réorces: The constrained resource supply, resource cost
source access among requests. In contrast to the Priogtyd competition for the resource forces combine with the
Driven Scheduling pattern described in Section 3.2, etgmporally constrained request, request cost, and request
lier binding to the time-line is desirable, to enforce co@synchrony forces to require partially ordered arbitration
straints such as equivalent isolation of independent copfi-resource access among requests. In contrast to the
putations. Planned Scheduling pattern described in Section 3.1, later
. . . . : binding to the time-line is desirable, to strike a balance be-
Solution: Execution behaviors of computations in th? . S . .
. ween data arrival and execution jitter, quality of service,
system are naturally expressed as intervals of execution, . . " s
e L and isolation forces. In addition, the application program-
placed on the system timeline. Therefore, explicit plan- ! o .
. : . mer desires a familiar and easy-to-use interface. For sys-
ning of schedules that model the desired execution lfe- : :)
o . ; ._tem performance, or due to less reliable information, a
haviors is often, where possible, desirable. These inter-

vals may be defined using explicit times, as in clas:sic%llluCk and efficient decision function is also desired.

time-driven scheduling approaches [15], or parameterizggyytion: Implement priority-based scheduling at the
by relative times of other tasks [16]. Examples of thgs |evel, to provide a mapping between the integers (sim-
planned scheduling pattern appear in KURT-Linux [17}je and familiar interface) and priority-based thread ex-
clock-driven schedulers, and Maruti-11 [18]. ecution semantics. Examples of this pattern appear in
Resulting Context: If planned schedules are used, thBOSIX-compliant UNIXes [5], Windows NT [19], and
application or a system-wide scheduling service must d@S/2 Warp [20].

scribe computation behavior in explicit terms, so that the , .))
operating system can synthesize a complete schedul®gpulting Context: - Analysis techniques such as RMA

execution, for the system as a whole, at the operating s3& needed to map fundamental task properties such as pe-
tem level. The Hierarchical Scheduling pattern describEgdiCity onto a priority assignment capable of enforcing

in Section 3.4 may be applied to address jitter in r(_:,(:wé),‘.ptpl|cat|on timeliness requirements. These analysis tech-

arrival that cannot be handled by a planned schedule, d¥fUes may require adjustments depending on whether

by applying the Priority-Driven Scheduling pattern as piorities are enforced preemptively or non-preemptively.
secondary scheduling layer. Furthermore, the ChOiceF?étionale:
execution intervals in a planned schedule specifies “S?(g%xpress
granularity of the resources it controls.

The design simplifies the information used
and enforce access to resources, often to an
integer representation. The pattern provides a means to
Rationale: The design makes explicit the order of exesalidate and enforce timing constraints indirectly, through
cution of requests, simplifying validation of timing conanalysis of the resulting schedule.

3.3 Share Allocation cesses may require explicit scheduling of CPU shares,

Problem: Some constraints are best expressed as shdygie within a process individual threads may require
of a resource over an interval, and commonly availagi@ncurrency control related to application semantics.

OS-level abstractions are for explicit plans or prioritieéontext'

Applications whose computation schedulin
rather than shares. pp p g

semantics may be decomposed into and coordinated
Context: Applications using either planned or priority-across two or more hierarchic levels of resource alloca-
based scheduling. tion.

Forces: The constrained resource supply, resource Qs cas: The competition for the resource force occurs

and competition for the resource forces combine to &t multiple hierarchical levels. Furthermore, the most

quire managed resource allocation to ENSUre resources,aihf al semantics to describe resource allocation can be
shared accurately. Furthermore, the allocation granula“%ely different at each level. Finally, the resulting con-
force constrains the intervals over which share assuranggs ¢ 4 particular OS-level scheduling pattern may be

can be made. immediately resolved by applying another complemen-
Solution: Using either priorities or explicit schedulestary scheduling pattern.

shares can be specified and enforced. Different applica-) .)

tions may receive different shares. Furthermore, the Fiolution: Apply scheduling patterns hierarchically,
delity of the actual allocation to each share requireméM{h the lower level scheduler delegating execution to the
may also differ, due to the interaction of allocation granfi€Xt higher-level schgduler once its constraints are satis-
larity with the requested share interval. Examples of ti§d: Examples of this pattern appear in the Spring Ker-
pattern appear in fair queuing network routers and tinfée! [22], KURT-Linux, and RED-Linux [23].

space partitioning architectures [21]. Resulting Context: A particular implementation of

Resulting Context: Differences in the semantics of thenulti-level scheduling may introduce various additional
priority and explicitly planned scheduling approachésrces at all levels of abstraction. For example, the or-
propagates upward to the resulting share-based semangies.in which constraints are applied may have implica-
For example, for completely CPU-bound executions tiens for endsystem-level scheduling [6] and for end-to-
semantic differences may not be noticeable as there arend scheduling.

differences in the un-utilized resource intervals. However,

if there are intervals in which the CPU is unused, then tR@tionale: The design allows scheduling strategies to
placement of those intervals may induce semantic cdi¢ applied selectively to different parts of a system. The
flicts in the subsequent periods. In planned schedulifgitern can serve to rationalize scheduling for distinct but
tasks that are not ready at the arrival of their planned éxterrelated portions of a systera,g, for network flow
ecution interval are penalized, while in priority schedufairness or coordinated scheduling of groups of collabo-
ing the lowest priority tasks may pay the penalty for arffating processes.

higher priority task delay.

Rationale: The design ensures isolation of an applic@.5 Masking Interrupts
tion’s resource requests from those of other applications.

The pattern also supports isolation of resource requ S[gblerr;]: :jr:terlea(;/ed execution Qf systgm code zf:mc:]m- q
within an applicatione.g, between concurrent threads. [€TUPt handler code can cause inconsistency of share
data. For example, device drivers commonly contain code

. . . accessing shared data within system calls executed in pro-
3.4 Hierarchical Scheduling cess context, and within device handlers executed in inter-
Problem: Appropriate resource allocation semantidsipt context.

may vary across hierarchical levels of execution seman- ical) h
tics. For example, ensuring time-space isolation of prg@ntext: ~ Critical section shared among code executed
under scheduler control and in interrupt context.

Forces: The competition for the resource force comin a multi-threaded server process, assignment of jobs to
bines with the resource allocation semantics, exclusiheeads by a scheduling routine must protect the job queue
access to the shared data, and request asynchrony famesoid corrupting the queue or having two threads at-

to produce possibly unsafe executions in which accesggmpt to serve the same job.

shared data by the asynchronously invoked computati@osntext,

must be controlled to maintain consistency constraints Global or shared data accessed by multiple

threads of control executed concurrently.
Solution: Mask interrupts temporarily to execute criti-

cal sections of code. For example, a common appro% ces: The competition for the resource force com-

on COTS platforms such as those using the x86 proces Ines with the resource allocation semantics force (exclu-
family is to use the CLear Interrupts (CLI) and SeT ireive access to the shared data) and the concurrency force

terrupts (STI) instructions to mask interrupts temporari‘O pr:odu(;:((aj r;osbsmtlr)]/ unhsafg e”xecutlons 'ntWh'Ch ?ctc;ess
during critical section execution, in either system call 6 shared data by he physically concurrent computations

interrupt handler context. must be controlled to maintain consistency constraints.

Resulting Context: The CLI/STI approach is an effec-S0lution: A common approach is to employ

tive form of concurrency control on single CPU systeriemaphores managed by locks acquired and released
but must be combined with the Synchronous Locks pg¥1chronously within each concurrent thread of exe-
tern described in Section 3.6 for systems with more th§{ion Gynchronous lochs to manage the shared data
one CPU. Furthermore, coarse-grained interrupt contigFource. The appropriate semantics of the lock may vary

can significantly impact scheduling jitter. If there are onfjccording to efficiency and correctness considerations
two interrupt levels, and any driver that needs to co uch as physical concurrency, self-deadlock, and intervals

trol concurrency by blocking interrupts interferes with th@f contention for the shared data.
scheduling interrupts, significant levels of execution jit- W€ Note thatthis pattern is strongly related to the Mask-

ter can occur, potentially impacting timeliness constrain{29 INteITupts pattern in Section 3.5, as both serve to con-
With multiple interrupt levels, or careful narrowing of thé;rOI concurrency. The_ Masking Interrupts patterr_l con-
critical sections, lower levels of jitter may be achieved0!S concurrency arising from asynchronous arrival of
For example, on platforms such as 68K family cpuliterrupt §|gnals transferring control to interrupt handler
multiple interrupt levels exist, enabling the system to sef2de; While the Synchronous Locks pattern is used to con-
arate the scheduling interrupt at a higher level than thd§% Physical or logical concurrency arising from multi-

used by devices, thus isolating scheudling functions frdfif threads of execution. It is also important to note that
interference by the device interrupts. both patterns apply in uniprocessor and multiprocessor
operating systems, because both types of concurrency are

Rationale: The design alloyvs control over asyNpresent, but only the Synchronous Locks pattern applies
chronous forms of concurrendye., due to hardware in- jn multi-threaded user code, because interrupt handlers

terrupts. The pattern masks interrupts temporarily, aggacute only in the operating system context.
ideally induces minimal scheduling jitter either through

inherent separation of interrupt levels or careful narrofgesulting Context: A designer may need to consider
ing of contention intervals. additional details of the particular context within which

the Synchronous Locks pattern is applied, to identify the

most appropriate form of locking to employ in imple-
3.6 Synchronous Locks menting the pattern. For example, multiple CPUs within
Problem: Concurrent executions of code accessing themachine can concurrently execute both user and sys-
same data can result in corrupt data. For example, ctem code efficiently, by allowing physical concurrency of
current execution of the task scheduler by more th#mreads.
one CPU can corrupt the task list or cause selection ofA spin-lock does not cause the calling thread to con-
the same task to execute concurrently on more than aext switch of it does not obtain the lock, rather the CPU
CPU, unless preventive measures are taken. Similadgtively waits for the semaphore controlling the resource

10

to be freed. However, a spin-lock manly be used with 4.1 Request Pacing
physical concurrency, as it will exhibit self-deadlock i
a single-CPU concurrency architecture. Furthermore
spin-lock is desireable if and only if the resources in qu
tion are generally held for extremely short times, so th

Broblem: When operating near the performance enve-
Io?)e of an operating system, overload and contention for
sources may be exacerbated by particular resource us-
e behaviors above the operating system level of abstrac-

the cost of a context switch exceeds the cost of waitir} n. This is a general phenomenon, but is more prevalent

When a spm—lock IS not appropnate.,g, dug to the re- when real-time semantics were not a first-class design cri-
source being held for longer intervals relative to the COfkrion of the supporting operating system

text switch interval, a blocking lock should be used. De-
pending on properties, such as fairness or prioritizatiabentext: Applications with stringent timeliness re-

desired for the order of access to the lock by blocke@irements hosted on COTS operating systems.
threads, a blocking lock may also employ various queue-

ing disciplines on waiting threads to enforce those profporces: The resource utilization trade-offs force com-
erties. bines with the encapsulation limitations force to constrain
the rate at which requests can be made and still attain a
Rationale: The design trades efficiency for correctparticular quality of service. Spacing of resource requests
ness, balancing safety and liveness properties of condnrtime is a major influence on utilization and availabil-
rency [24]. The pattern allows several variations to inity of resources within an endsystem. Explicit control
prove efficiency while preserving correctness under diising the OS API to separate resource requests may be
ferent conditions of physical concurrency and relativedious and error-prone, particularly if the application se-
lengths of contention and context switch intervals. mantics and underlying OS resource allocation semantics
differ significantly. Instead, explicitly pacing requests at
the endsystem middleware level induces separation of al-

4 Endsystem Scheduling Patterns location requests at the OS level.

§&Iution: Pace requests for resources to separate them

in fime, reducing contention and improving resource allo-

tion assurance without constantly manipulating the OS
I. We thus modulate the resource requests coming to
OS level from higher levels of abstraction, to return
OS to a more stable operating mode.

Scheduling patterns at the endsystem middleware le
of abstraction must deal with the design forces raised
both the OS level and the Distributed Services level. T
section is organized as follows: Section 4.1 docume
the Request Pacing pattern, which allows the endsyst
scheduling infrastructure to influence the overall resour

usage behavior; Section 4.2 presents the Request Pregas iting Context: In general, pacing can be used to
gation pattern, which addresses accounting for local tggce latency jitter in servicing resource requests, and
source usage within multi-endsystem requirements at {igis provide a more consistent allocation sequence over-
distributed services level; Section 4.3 describes the R~ some choices at the OS level, e.g., use of priority-
guest Partition pattern, yvhich allows the endsystemto igfiyven preemptive thread scheduling may be impacted as
late the resource requirements of one group of requ&gls| with either greater or lesser context switching over-
from another, and achieve different qualities of ServigRad, depending on the resulting arrival sequence for re-
for each group; Section 4.4 documents the Strategic %%‘ests. Self-pacing may lead to drift in the timeline,
quest Reordering pattern, which allows tailored permiynereas pacing with respect to an external time stan-

tation of resource requests to improve quality of serviggs g [25] can maintain greater consistency overall.
end-to-end and within the endsystem; Finally, Section 4.5

presents the Strategy Composition pattern, which alloRationale: The design emphasizes application-level

combinations of other endsystem scheduling patternscttanges in behavior to modulate overall system behavior.
be composed coherently, in a similar way to the HieraFhe pattern guides an application to behave as a “good
chical Scheduling pattern described in Section 3.4. citizen” in the larger context of a shared-resource system.

11

4.2 Request Propagation 4.3 Request Partition

Problem: End-to-end timeliness requirements cannBtroblem: Resource requests from one group of tasks
be satisfied entirely within a single endsystem. may interfere with those of another, and without some

e : _ . . form of mediation it is not possible to enforce a rational
Context: Distributed real-time applications in which licy f ina the | f f
activities span multiple endsystems policy for separating the impact of one group of requests

' from the other.
Egrrr?gisr; esTvT/ﬁhi?lzr?ér:tlgPalﬁ ngor?;g:?}:g'(;:tlagsrc;g%ontext: Applications with differing quality of service
and the resource aIIociltionysemantics forceq to requir 0S) requirements for different tasks on an endsystem,
. d particularly where at least one group of tasks requires
endsystem-by-endsystem accounting for end-to-end e) .
) : stringent QoS assurances that are at risk from interference
quirements. Resource allocation on an endsystem ma
i - : - t}yyother groups of resource requests.
modify the remaining requirements for the activity as i
proceeds to subsequent endsystems. Furthermore, valkggses: The safety vs. interference force combines with
of parameters used to enforce compliance with the motlie concurrency force to require isolation of the effects of
fied requirements may need to be updated as well. For ere task’s resource requests on the servicing of another’s
ample, execution cost for a portion of a distributed transequests. Tasks compete for shared resources that are con-
action executed on one endsystem must be deducted figimained in their availability. Allocating a resource to one
the remaining expected cost of the transaction on subesk may delay or otherwise interfere with the ability to
guent endsystems. allocate the resource to another task.

Solution: Parameterize end-to-end requirements wiBolution: Provide policies and mechanisms for isolat-

values that can be mapped to and measured on emghresource requests made by one group of tasks, from
endsystem. Update parameters on each endsystem athiheequests made by another group of tasks. For exam-
activity progresses, thus tailoring the requirement to sytle, the Share Allocation pattern described in Section 3.3
sequent endsystems. can be used to prevent one group of tasks from exceeding
d'ts allocated ration of the resource, and ensure that an-

Resulting Context: Communication overhead an h il . .
other sources of delay along the end-to-end path mustqt:t)eer group wi not be impacted by an excessive number,
or clustering, of resource requests by that group.

considered in updating the requirement. Work that ré
duces the cost on subsequent endsystem should be Resulting Context: Priorities are often used on COTS
tinguished from overhead that does not contribute RDSIX-based endsystems to implement request partition-
progress. To construct a coherent piecewise mapping, e.g, Real-Time CORBA 1.0 [26] (RT CORBA) pri-

of parameters from endsystem to endsystem, paramgty lanes in TAO [27]. This simplifies the decision func-
ter adaptation techniques may needed [13]. The Rien for allocation, and allows other optimizations such
guest Propagation pattern may be applied in implemeas-eliminating the queuing overhead seen for the Request
ing the Distributed Scheduling (Section 5.2), Distributelleordering pattern described in Section 4.4, if it is suffi-
Resource Consistency Control (Section 5.3), or Glokaént to dispatch requests in order of arrival within each
Load Allocation (Section 5.5) patterns. In addition, fagpriority level. Planned scheduling offers another way to
priority-based endsystem scheduling, the Global to Logabvide resource partitioning that may improve perfor-
Priority Mapping pattern (Section 5.4) can be applied toance in some cases, e.g., if significant thread context
configure the translation between local and global paraswitching was needed to enforce preemptive priority lev-
eter values. els.

Rationale: The design emphasizes local accounting f&®ationale: The design emphasizes isolation of resource
end-to-end management of timeliness and resource @rjuirements of one set of requests from another by parti-
cess. The pattern offers a way to rationalize schedulitigning the requests into equivalence classes. The pattern
of requests propagating across multiple local endsystemltows different kinds of isolation relationships between

12

the equivalence classes,g, priority-based vs. share-are practical limits on the time-scales for which request
based, to provide different kinds of resource allocatiorordering is applicable.

assurances. Rationale: The design respects the possibility that re-

)) guests may arrive at an endsystem incorrectly ordered for
4.4 Strategic Request Reordering dispatching in a way that meets timeliness requirements.

Problem: While priorities or planned schedules may béhe pattern allows scheduling of streams of requests ar-
used efficiently to isolate resource requests between t8¥0g out of order or from different sources, to be ratio-
groups, arrival of requests for resources may differ frof@lized on the local endsystem.

the expectations under which those mechanisms were ap-

plied. 4.5 Strategy Composition

Context: Applications in which resource requests aproblem: A scheduling pattern that is preferable to ad-

rive in a sub-optimal order, for which improved regress one resource access requirement may be poorly
source allocation capacity or timeliness assurance carsfifed to address other requirements.

achieved by reordering the requests. o))
Context: Applications with multiple resource access re-

Forces: The temporally constrained request force Comyirements, each of which is best addressed by a different
bines with the dynamic ordering force to require that "@hdsystem scheduling pattern.

guests be reordered at key scheduling points in the system,

e.g., where multiple network connections are multiplex&®rces: The encapsulation limitations force combines
onto a single endsystem thread. Reordering requests i other forces, e.g., the priority management and dy-
be expensive, both in fixed overhead and in increased tiffghic ordering forces, to require a composite scheduling
complexity. Reordering that can be performed with bedPproach. Requirements may be ordered, with the con-
ter worst-case overhead bounds improves real-time as§ti@ints imposed by one taking precedence over those of
ances that can be given in the face of reordering to maagpther. Constraints that succeed others must be enforced
application timeliness requirements. Depending on the fid-2 manner that is stable and meaningful with respect to
source request behavior of a particular application, difféfe enforcement of the preceding requirements.

ent policies and mechanisms for reordering may give be&f|ution: Apply endsystem level and OS level schedul-
ter best-case, average-case, and/or worst-case boundg@patterns in an ordered manner, similar to the Hierar-
overhead. chical Scheduling pattern described in Section 3.4. Unlike
Solution: Allow different policies and mechanisms foithe Hierarchical Scheduling pattern, the Strategy Compo-
reordering resource requests on an endsystem. For exgitien pattern places less emphasis on the nesting of com-
ple, if requests are ordered monotonically once enqueup@sed patterns, but rather focuses on the stability relation-
as for deadline aging in the Earliest Deadline First (EDERips among them. For example, the MUF [29] schedul-
scheduling strategy, a queue may be used efficientlyig strategy may use the preemptive form of the Priority-
reorder requests. If a reordering strategy is based oRrven Scheduling pattern at the OS level to implement
known and well bounded population of possible values fe Partition Requests pattern at the endsystem middle-
reordering decision function parameters, then hashing aeare level, and then use separate queues within each pri-
be applied to reduce the overhead of reordering [28, 6]0rity to implement the Reorder Requests pattern in a way

Resulting Context: Reordering delays may impac{hat does not disturb the request isolation between priori-

overall resource allocation latency, and thus impact fen:

sibility of timeliness assurances. Reordering delays mBgsulting Context: Ensuring that the composition of
also introduce jitter in latency of servicing requeststrategies exhibits necessary stability properties may add
When this pattern is applied, both of these factors musimplexity and time cost to the analysis of the result-
be considered in overall schedulability analysis and eng composite strategy. Strategies whose stability prop-
forcement policies on an endsystem. Furthermore, therées are invariant with respect to run-time factors are

13

best suited to adaptive scenarios where resource feagjament and then scheduling after the tasks have been as-
bility must be recomputed at run-time. However, nesigned are required for predictable real-time enforcement.
strategies may be synthesized to support new schedul-

ing paradigms by applying this pattern, such as the e : :
of RMS+MLF to support imprecise computations [30].%?']' Distributed Scheduling Service

Problem: If globally incompatible policy decisions are
Rationale: The design leverages the semantics of indinade in the local subsystems, the system designer will not
vidual scheduling strategies. The pattern allows individe able to predict the real-time performance of the entire
ual strategies to be composed in a way that respects thedsstributed application.
mantics of individual strategies, but rationalizes the CorB_ontext'

bined effect. Distributed real-time systems where the ap-

plication has tasks that span operating systems and/or
endsystems that have varying scheduling policies, and the
designers must be able to predict the real-time behavior of
the entire system to some reasonably high level of assur-

5 Distributed Scheduling Patterns

All of the patterns in this section address distribute%nce'

real-time systems where the application has tasks witArces: This pattern is affected by the activities span-
real-time constraints that span operating systems andJtig endsystems force, the dynamic heterogeneous appli-
endsystems (subsystems) that have possibly differéations within an endsystem force, the meta-state con-
scheduling policies, and the designers must be able to istency force, and the heterogeneity among operating
dict the real-time behavior of the entire system to sorf#stems’ and endsystems’ local scheduling force, all de-
reasonably high level of assurance. An example of a re$gfibed in Section 2.3.

time task spanning subsystems is a client application fre§g|ytion: Provide a scheduling service that application-
one subsystem requesting service from a servant in @iz tasks use to invoke the scheduling primitives of the

other subsystem under a deadline. We assume that th%}ﬂierlying operating systems and endsystems in a uni-
cal OS’s and endsystems use the scheduling patterns fegpp, predictable, manner.

Sections 3 and 4 respectively, but that to facilitate enforce-
ment and analysis of real-time requirements across the Bgsulting Context: All application scheduling-related
tire system, the service-level patterns of this section &&lls must go through the scheduling service and not
needed to provide a uniform application of the choices B¢ made directly to the OS/endsystem. This allows the
policies and parameters provided by the local OS's apeheduling service to provide centralized coordination of
endsystems. all local subsystem policy decisions and resulting subsys-
This section is organized as follows. Section 5!¢M calls in a uniform way that supports predictability.
presents a Distributed Scheduling Service Pattern, whick/thermore, assurances of uniform policies may make
may be applied, in implementing several of the other p4"ms of real-time anaIyS|s. possible across the entire sys-
terns: Distributed Scheduling (Section 5.2), Distributd§MS - thus further enhancing the required predictability.

Resource Consistency Control (Section 5.3), Global Rationale: The design emphasizes coordination and of
Local Priority Mapping (Section 5.4), and Global Ovelscheduling policies within a single service. The pattern

load Management (Section 5.6). The Distributed Schedgtovides uniformity of scheduling decisions within an in-
ing Service pattern is not the only way to provide the cegrated service interface.

ordinated scheduling required by those other service-level
patterns, but is the only one presented in this paper. 'IE L .

Global Load Allocation pattern (Section 5.5) uses a si —'92 Distributed Scheduling

ilar centralized technique for assigning tasks to resour¢é@®blem: Local subsystem scheduling parameters,
across the entire system in a way that facilitates enforseich as thread priority, attached to a task that spans sub-
ment and analysis of real-time requirements. Both task agstems may not be meaningful in the remote subsystem

14

due to inconsistent scheduling models. For example,503 Distributed Resource Consistency Con-
priority-based scheduling, some local operating systems trol
order threads’ priorities from low to high, while Other?’roblem'

. : . . If incompatible resource access control pol-
order from high to low. These inconsistencies must be s .
Icy decisions are made in the local subsystems, the system

reconciled in order to have a coherent global scheduliy signer will not be able to predict the real-time perfor-
model. mance of the entire application or the overall consistency
Context: Distributed real-time systems where the apf the resources.

plication has tasks that span operating systems an or

ndsvstems. and the desianers must be able to predi ntext: Distributed real-time systems where the ap-
endsystems, and the designers must be able 1o prediCiyfe, ion has tasks that span operating systems and/or
real-time behavior of the entire system to some reas

ably high level of assurance rFfdsystems that have various local resource access control
' policies, and the tasks share resources, and the designers
Forces: This pattern is affected by the activities spamust be able to predict the real-time behavior of the entire
ning endsystems force, the dynamic heterogeneous apgfstem to some reasonably high level of assurance.
cations within an endsystem force, and the heterogen@'
among operating systems’ and endsystems’ local scheq]-
ing force, all described in Section 2.3.

rces: This pattern is affected by the activities span-
\g endsystems force, the dynamic heterogeneous appli-
cations within an endsystem force, and the heterogeneity
Solution: Provide a coherent set of global schedulirmmong operating systems’ and endsystems’ local schedul-
parameters that can map to the specific parameters ofititgforce, all described in Section 2.3.

local endsystems and operating systems. For examglgy yion: Require that all tasks in the distributed sys-

In a prlor.|ty—based_ system, we could_a35|gn pr|0r|t|_es.{8m access resources using consistent local resource ac-
all tasks in the entire system from a single global Proritysss mechanisms and parameters

ordering. . . .
Resulting Context: Ensuring consistent resource ac-

Resulting Context: - The assignment of global schedulaagg mechanisms and parameters requires coordination
ing parameters requires globally consistent knowledge ol 55) tasks in the system (which can be achieved with
all tasks in the system (which can be achieved with th&, pistributed Scheduling Service Pattern). This use of
Distributed Scheduling Service pattern). Local subSY§yona) resource access mechanisms and parameters will
tems require the ability to map these scheduling parafzjjitate calculation of blocking times of the tasks, which

eters to their local parameters in a way that supports i€, facilitates analysis and reasoning about system
required global predictability. For example, the Global tﬁ’redictability.

Local Priority Mapping Pattern described in Section 5.4 _ o
may be used to implement the Distributed Scheduling p&@tionale: - The design is based on local coherency of
tern: providing a global priority ordering facilitates usScheduling decisions. The pattern ensures that local con-

ing the many well-known single-node priority-based efistency enforceq coherently across endsystems results in
forcement and analysis techniques in the distributed s§8§d-to-end consistency.

tem to increase predictability. The Distributed Schedul-

ing pattern is seen in the JuR@ meta-programming ar-5.4 Global to Local Priority Mapping

ehitecture for heterogeneous scheduling disciplines, qgrq)blem: Global priorities provide a uniform mecha-
in RT CORBA compliant ORBs such as TAO [31] andyis, for ordering all tasks in a real-time system. How-

ZEN [32]. ever, at the OS/endsystem level local priorities may be
Rationale: The designadaptsdisparate local parame-constrained to smaller ranges than the global priorities.
ter value schemes to provide a uniform global view &or example, RT CORBA provides 32K global priorities

those parameters. The pattern shields system devefop-distributed scheduling. But global tasks must execute
ers from accidental scheduling complexities introduce specific operating systems where the number of prior-
by platform and endsystem heterogeneity. ities is smaller (POSIX real-time mandates only 32 local

15

priorities, for instance). When multiple global prioritie$.5 Global Load Allocation

Can oG that can Compromise the reaHime preicagfCeM: When deciding among several subsystems on

ity and performance of the overall system which to place the execution o.f.a part|c.ular task, certain
' resources can become overutilized while others may be

underutilized. This poor global allocation of resources

Context: A distributed real-time system in which taskgoy|d cause some tasks to unnecessarily violate timing
are assigned global priorities to support real-time prggnstraints.

dictability across the entire system, but where the tasks

may be executed and enforced on different operating sgentext: A real-time distributed system in which par-

tems/endsystems that have different priority mechanismsular tasks may use any of a set of equivalent resources
from one of several operating systems or endsystems.

Forces: This pattern is affected by the activities span-

ning endsystems force, the dynamic heterogeneous apptces: This pattern is affected by the multiple capa-

cations within an endsystem force, and the heterogendlt§ resources spanning endsystems force, the meta-state

among operating systems’ and endsystems’ local sched@psistency force, and the dynamic heterogeneous appli-
ing force, all described in Section 2.3. cations within an endsystem force, both described in Sec-

tion 2.3.

ISqu|t|on: I\rlaplglqbail' prlgrmes tod.local er;]OISYS'[EmSoIution: Allocate tasks to the subsystems that yield the
evetor OS-level priorities by sprea 'ng out the tas S Ybst chance that the specified timing constraints will be
a particular subsysiem among the avallgbig local priogey Further, consider future tasks when making this al-
ties. If:any tasks with dlffere_nt global priorities must b?ooation. For example, as in classic memory management
mapped to the same local priority (€.g. because there Af§orithms, if an task is allocated to the subsystem on

more global tasks than local priorities), then take into Afhich it fits and produces the highest utilization (best fit),

count any priority inversion that may occur and use this\':{?nen the system becomes highly loaded, there may be

any SChedu"".‘b'“tY gnalyss that is done on the SysteMdQall “holes” on the resulting high utilization resources
support predictability. that will not fit any future tasks. Instead, if the task is allo-
cated to the subsystem that will yield the lowest utilization
Resulting Context: Priority mapping should be done inworst fit), more “medium holes” are left, but one “large
such as way as to consider future tasks that may arriMgje” gets smaller which reduces the chance of a future
In a dynamic distributed system, tasks must be mappgehe task fitting. The load allocation schemes should
from global to local priorities as they become availabighoose subsystems with future tasks in mind. This may be
to execute. The priority mapping scheme must considgine by examining prior distributions of tasks in similar
the overall expected set of tasks to be scheduled (perhagsiications, as well as by choosing subsystems on which

using probability distributions) so that global prioritiegxecution time will likely be freed soon, i.e. subsystems
are mapped as evenly across the local priorities as p@t have tasks ending.

sible. Otherwise, a poorly designed mapping algorithm
will cause many tasks to be mapped to a very few lodaksulting Context: Load allocation techniques as de-
priorities. scribed above may require some run-time analysis of cur-
rent system conditions. This will incur added overhead to
Rationale: Similar to the Distributed Scheduling patthe execution of the application. For this reason, load al-
tern, the desigradapts disparate local priority value location algorithms should be designed and implemented
schemes to provide a uniform global view of prioritycarefully to utilize as much precomputed system informa-
The Global to Local Priority Mapping pattern focuses diPn as possible, and avoid unnecessary analysis. Alterna-

priorities, and can be used to implement the Distributéiiely, simple load allocation techniques (like first fit, or
Scheduling pattern. simple balancing algorithms) may be sufficient and would

incur less overhead.

16

Rationale: The design emphasizes load distribution tihe execution time (QoS Accuracy), or shedding the ex-
improve overall distributed system behavior. The patteegaution altogether of less critical task to ensure that the
balances overhead of analysis with expected future behaest critical tasks meet their timing constraints.

ior of the system and potential improvements in system , _ ,)
performance. Resulting Context: Management of load in a dis-

tributed system will require a global view of the status

of the system at any given moment. The level of overhead
5.6 Global Overload Management involved in this management depends upon the granular-
Problem: In a dynamic distributed real-time systemify of information that is accessible, and on how often this
system load can vary, sometimes exceeding the capatifprmation is needed. The strategies chosen for overload
of available resources. When there is not enough capa@nagement should weigh the benefits of having access
ity to handle all execution, the system must be able t@ detailed information with the time needed to analyze
ensure that critical tasks meet their specified timing caf-Shedding of tasks must be supported in the underlying
straints. The initial allocation of load (specified in Globatndsystem and operating system such that the tasks can
Load Allocation Pattern of Section 5.5) attempts to plate shed gracefully and efficiently without causing incon-
load on subsystems so that all timing constraints can $igtent system state.

met. The techniques involved in load allocation typically) . .
ationale: The design emphasizes distributed load bal-

use a “best-guess” at where each task execution will Tit;",) .
ncing and reallocation to tune overall distributed system

while leaving room for future execution. However, a) : h bal head of
time progresses, these guesses are replaced by real in}lﬁ'ﬂ-av'or at run-time. The pattern balances overhead o

ing task demands, which may not meet the expectation Qﬁd re-allocation with expected improvements in system
the original load allocation. performance.

Context: Distributed real-time systems where the ap-

plication has tasks that span operating systems angdpr Rationalizing Scheduling ACross
endsystems, and some application tasks may be less Crit-

ical than others. Thatis, there is a possibility that applica- Levels of Scale

tion tasks may be re-allocated, reduced or shed altogether

if system conditions require it and Critical tasks should t@nally, we present two patterns that apply across levels
completed when possible. of abstraction. The Application Level Quality of Ser-

_) , , vice Adjustment pattern (Section 6.1) allows applications
Forces: This pattern is affected by the multiple capablg, emselves adjust their scheduling parameters to fa-

resources spanning endsystems force, the dynamic Rieie petter global enforcement of real-time require-
erogeneous applications within an endsystem force, {i8 s The Distributed Temporal Coherency pattern (Sec-
meta-state consistency force, and the competing QUal, 6 1) ensures appropriate end-to-end semantics for
|Fy of Service requirements force, all described in SeFéasoning about and enforcing time, which are needed by
tion 2.3. the other patterns in this section.

Solution: Provide distributed middleware-level QoS Implementations of either of these patterns may appear
adjustment that includes monitoring and managing sy-multiple levels of abstraction, or may in fact span levels.
tem load to avoid overload on the entire system and Bor example, in a video streaming application, an appli-
each particular subsystem in a way that allows the masttion may make network bandwidth reservations at the
Critical tasks to meet their timing constraints. The mon®S level, a feasible priority assignment on one or more
toring will require an overview of what tasks are execuéndsystems. If due to, e.g., the arrival of more critical pro-
ing where, and how each resource is being utilized, aceksing, these reservations become infeasible, the Appli-
the completion status of tasks. The management of lazation Level Quality of Service Adjustment pattern may
may include reallocation of tasks from one subsystemtie applied to re-negotiate or adapt to (1) the new OS level
another to avoid overload. It may also include reducidgandwidth available, (2) the new endsystem priority as-

17

signment, or (3) a combination of the two, with respect .2 Distributed Temporal Coherency

the particular application semantics. Problem: Insufficiently fine-grained resolution in either
(2) the timeliness information available, or (2) enforce-
6.1 Application Level Quality of Service ment capabilities of mechanisms using that information,
Adjustment may limit the precision at which timeliness assurances can

be made.
Problem: Inmany applications QoS parameters such gs

timing constraints, accuracy, and security parameters ontext: Application timeliness requirements induce

e, . .
specified once and the system decides whether or not tﬁgrtmular time-scales at which temporal enforcement
can be achieved. When an application cannot receive a

miist be possible within operating systems, endsystems,
of its requested quality, there should be a way for the aapr]d distributed systems. . _ _
plication itself to negotiate a trade-off that is acceptablek®rces: The temporal consistency force is a special case
it, while still meeting the constraints of the system. of the meta-state consistency force that is essential to de-
)]) . termine end-to-end feasibility of timeliness requirements,
Context: ~ Systems in which quality of service (Q0S) nean 19 rationalize resource allocations across all levels of
gotiation among applications and implementation infragsgle. Different forms of temporal consistency can be use-
tructure is allowed, and overload may occur. ful, such as synchronization of clock periods versus syn-

Forces: This pattern is affected by the competing Qua;_hronization of clock values. Furthermore, OS-level al-
ity of Service requirements force described in Section 28rithms for clock synchronization must maintain consis-
and the fact that applications often have more informignCy Within some bound on precision needed by the dis-

tion about the best way to provide what they need th§HPuted services to assure end-to-end properties. Applica-
the overall system. tions with flne-grallned t|n.1eli|nesfs requirements may need
. _ _ ~ increased resolution of timing information and enforce-
Solution: Provide a mechanism that allows applicationsent mechanisms. In a distributed system, expense in-
to specify what they are willing to sacrifice in order tgreases with finer granularity of time consistency, up to a
meet their own constraints as well as the overall systgidssible point of diminishing returns dictated by the eco-
constraints. For example, QuO [7] provides contracts th@gmics of the system. Furthermore, the achievable reso-
specify how to reduce certain demands of an applicatiffion is ultimately bounded within strict physical limita-
when the system becomes overloaded. In [33], a regéns.
time agent specnjes sgveral e_xecutlon strateg|es_to pr.ové%‘?ution: Provide time consistency that is sufficient to
a particular service with varying levels of execution time L : . .
. - . .~ meet application requirements, in the most economical
and resulting quality. When a request for this service is hi lies both lock hronizati d
received, the agent negotiates with the scheduling Servrinanngr. This applies both to clock synchronization an
' 2 . StRer time-based factors such as the latency across a net-
to determine the quality it can provide.

work link.

Resulting Context: Allowing applications to have Resulting Context: An application may reach either
some control over how their QoS is provided will enhangge economic or physical bound first. For example in
the overall quality of the system. It will require applicagyitched ethernet where collisions are avoided, through-
tion programmers to provide more information about homt is bounded by the transmission properties of the
the application can be run, and about what they are wihedium and the buffer capabilities on the endsystem.
ing to sacrifice to meet the overall goals of the applicatignile the choice of buffer sizes in a switch may be dic-
and the system. tated by economic factors, the network medium transmis-

Rationale: The design emphasizes application-lev&/oN characteristics are determined by physics.
flexibility in adapting to QoS limitations at run-time. TheRationale: The design deals rationally with inherent
pattern rationalizes alternatives for re-establishing fealaitations on the systems ability to attain or justify in-
ble and acceptable QoS. creasingly fine granularity of temporal coherency. The

18

pattern offers a balance between inherent requiremens “Information Technology — Portable Operating System Interface

and the costs of alternatives to meet those requirements. (POSIX) — Part 1. System Application: Program Interface (API)
[C Language],” 1995.

. [5] IEEE, Threads Extension for Portable Operating Systems (Draft
7 Conclusions 10), February 1996.
[6] C.D. Gill, R. Cytron, and D. C. Schmidt, “Middleware Schedul-
The patterns described in this paper apply both within and ing Optimization Techniques for Distributed Real-Time and Em-
across different levels of abstraction in a distributed sys- bedded Systems;” iRroceedings of th&" Workshop on Object-
tem. Ultimately, they are about maintaining timeliness °rénted Real-time Dependable Syste(S&an Diego, CA), IEEE,

. . L. . Jan. 2002.
constraints in distributed real-time systems, and do so b)]
] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support

applying d'ﬁ?re”t SChEdu“ng patt.erns and supporting pa[t- for Quality of Service for CORBA Objects;Theory and Practice
terns.to .achleve rational aIIocatlgns of resources across of opject Systemsol. 3, no. 1, pp. 1-20, 1997.
the distributed system. The deSIQO ChOICQS made to r@]‘ O. Uvarov, “Dynamic real-time scheduling and load shedding
solve forces at one level of abstraction may induce conse- for gos middleware,” TR TR02-286, University of Rhode Island,
guences that are themselves forces at another level. Fur- 2002.
thermore, some patterns apply across levels of abstragr J. Lehoczky, L. Sha, and Y. Ding, “The Rate Monotonic Schedul-
tion, resolving forces that are within or possible across ing Algorithm: Exact Characterization and Average Case Behav-
the levels themselves. ior,” in Proceedings of the 10th IEEE Real-Time Systems Sympo-
A . . i .166-171, IEEE C ter Society Press, 1989.

The key contribution of this pattern language is its ex- >“™ PP~ omputer Society Press
ploration of the complex and interconnected design sp&t® M- H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Har-
f heduling distributed real-time applications. It is ca- bour,A Practitioner’s Handbook for Real-Time Analysis: Guide to
orsc g9 > . pp o Rate Monotonic Analysis for Real-Time SysterN®rwell, Mas-
pable of generating designs that adhere entirely to one sachusetts: Kluwer Academic Publishers, 1993.
design Parad@m, €.g.. preemptive Pr'or'ty'basec_i thre@g L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance Pro-
scheduling or planned time synchronized scheduling. Itis tocols: An Approach to Real-time SynchronizatiolEEE Trans-
also capable of generating designs that compose elementsactions on Computersol. 39, September 1990.
of multiple paradigms, thus offering the designer freedon?] D. zZhu, R. Melhem, and B. Childers, “Voltage/Speed Adjustment

to hybr|d|ze approaches as |Ong as the design forces are Using Slack Reclamation in Multi-Processor Real-Time Systems,”
suitably resolved in The 22nd IEEE Real-Time Systems Symposium (RTSS '01)

(London UK), December 2001.

[13] A. Corsaro, D. C. Schmidt, R. K. Cytron, and C. Gill, “Formal-
8 Than kS izing Meta-Programming Techniques to Reconcile Heterogeneous
Scheduling Disciplines in Open Distributed Real-Time Systems,”
. in Proceedings of the 3rd International Symposium on Distributed
We wish to thank our Patterns Shepherd, Angelo Corsaro, opjects and Applications.(Rome, Italy), pp. 289-299, OMG,

for his insightful comments and suggestions for improve- September 2001.

ment of this paper. [14] L. Lamport, “Time, Clocks, and the Ordering of Events in a Dis-
tributed System,Communications ACMvol. 26, no. 7, pp. 558—
565, 1978.

References

[15] H. Kopetz, “The Time-Triggered Model of Computation,” Tine
19th IEEE Real-Time Systems Symposium (RTSS (®&)drid

[1] C.Liuand J. Layland, “Scheduling Algorithms for Multiprogram- '
Spain), Dec. 1998.

ming in a Hard-Real-Time EnvironmentJACM vol. 20, pp. 46—

61, January 1973. [16] R. Gerber, W. Pugh, and M. Saksena, “Parametric Dispatching of
[2] D. C. Schmidt, “ACE: an Object-Oriented Framework for Hard Real-Time Tasks|EEE Transactions on Computenl. 44,

Developing Distributed Applications,” irProceedings of the Mar. 1995.

6" USENIX C++ Technical Conference(Cambridge, Mas- [17] B. Srinivasan, S. Pather, R. Hill, F. Ansari, and D. Niehaus, “A

sachusetts), USENIX Association, April 1994. Firm Real-Time System Implementation Using Commercial Off-
[3] D.C. Schmidt, M. Stal, H. Rohnert, and F. BuschmaRattern- The-Shelf Hardware and Free Software, Proceedings of thét"

Oriented Software Architecture: Patterns for Concurrent and Net- IEEE Real-Time Technology and Applications Symposiiran-

worked Objects, Volume New York: Wiley & Sons, 2000. ver, CO), IEEE, June 1998.

19

(28]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32

(33]

M. Saksena, J. da Silva, and K. Agrawala, “Design and Implemen-
tation of Maruti-Il,” in Advances in Real-Time Syste($ Son,
ed.), Prentice Hall, 1995.

D. A. Solomon,Inside Windows NT, 2nd E&Redmond, Washing-
ton: Microsoft Press, 2nd ed., 1998.

IBM, “OS/2 Warp.” www-3.ibm.com/software/os/
warp/ , 2002.

ARINC Incorporated, Annapolis, Maryland, USBpcument No.
653: Avionics Application Software Standard Inteface (Draft 15)
Jan. 1997.

J. A. Stankovic and K. Ramamritham, “The Spring Kernel: A New
Paradigm for Real-Time System$ZEE Softwarevol. 8, pp. 62—
72, May 1991.

Y.-C. Wang and K.-J. Lin, “Implementing A General Real-Time
Scheduling Framework in the RED-Linux Real-Time Kernel,” in
IEEE Real-Time Systems Symposipm 246255, IEEE, Bcem-
ber 1999.

D. Lea,Concurrent Java: Design Principles and Patterns, Second
Edition. Reading, Massachusetts: Addison-Wesley, 1999.

U. C. Guard, “Global Positioning System Standard Positioning
Service Specification, 2nd editiondww.navcen.uscg.mil ,
1995.

Object Management GrouReal-time CORBA Joint Revised Sub-
mission OMG Document orbos/99-02-12 ed., March 1999.

I. Pyarali, D. C. Schmidt, and R. Cytron, “Achieving End-to-End
Predictability of the TAO Real-time CORBA ORB,” i8¢ IEEE
Real-Time Technology and Applications Symposi(®an Jose),
IEEE, Sept. 2002.

D. C. Schmidt, “GPERF: A Perfect Hash Function Generator,” in
Proceedings of the”¢ C++ Conference (San Francisco, Califor-
nia), pp. 87-102, USENIX, April 1990.

D. B. Stewart and P. K. Khosla, “Real-Time Scheduling of Sensor-
Based Control Systems,” iReal-Time Programmin¢V. Halang
and K. Ramamritham, eds.), Tarrytown, NY: Pergamon Press,
1992.

J.-Y. Chung, J. W.-S. Liu, and K.-J. Lin, “Scheduling Periodic Jobs
that Allow Imprecise ResultsJEEE Transactions on Computers
vol. 39, pp. 1156-1174, September 1990.

Center for Distributed Object Computing, “The ACE ORB
(TAO).” www.cs.wustl.edulbschmidt/TAO.html, Washington
University.

Center for Distributed Object Computing, “The ZEN ORB.”
www.zen.uci.edu, University of California at Irvine.

L. C. DiPippo, V. F. Wolfe, L. Nair, E. Hodys, and O. Uvarov,
“A Real-Time Multi-Agent System Architecture for E-Commerce
Applications,” in Proceedings of the Fifth International Sympo-
sium on Autonomous Decentralized Systevtes. 2001.

20

