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Abstract

This paper describes the requirements for real-time
extensions to the CORBA standard, which are being
developed by the Object Management Group's Special
Interest Group on Real-Time CORBA. The paper also
surveys e�orts that are developing Real-Time CORBA
systems. It provides a more detailed description of the
dynamic Real-Time CORBA system being developed at
the US Navy's NRaD facilities and at the University
of Rhode Island.

1 Introduction
The Object Management Group (OMG), an or-

ganization of over 600 distributed software vendors
and users, has developed the Common Object Re-
quest Broker Architecture (CORBA) as a standard
software speci�cation for distributed object environ-
ments. In 1995 a Special Interest Group (SIG) was
formed within the OMG with the goal of extending
the CORBA standard with support for real-time ap-
plications. This real-time SIG (RT SIG), which itself
is a consortium of academics, vendors, end-users, and
government researchers, is developing requirements for
extending/modifying CORBA to support real-time.

In this paper we describe Real-Time CORBA (RT
CORBA). Section 2 is a brief description of the ex-
isting CORBA standard. Section 3 summarizes some
of the requirements for RT CORBA that are outlined
in the current draft of OMG's RT SIG whitepaper
[RTSIG96]. Section 4 surveys current work in RT
CORBA development and prototyping. Section 5 pro-
vides a more detailed look at the RT CORBA research
and development at the Navy's NRaD facility and at
the University of Rhode Island. Section 6 summarizes
the status of RT CORBA.

�The authors' e�ort and the work presented in Section

5 are supported by the U.S. O�ce of Naval Research grant

N000149610401.

2 CORBA Background

The OMG has been meeting approximately ev-
ery six weeks since 1989. It has sub-groups that
develop aspects of the CORBA standard including
its relation to the Internet, business, manufacturing,
telecommunications, operating systems, and other as-
pects. The CORBA speci�cation process is evolution-
ary. Aspects of the standard are proposed, bid, de-
bated and adopted piecemeal according to a roadmap
established by the OMG. CORBA version 1.1 was re-
leased in 1992, version 1.2 in 1993, and version 2.0
in 1995. The V1.2 standard deals primarily with the
basic framework for applications to access objects in
a distributed environment. This framework includes
an object interface speci�cation and the enabling of
remote method calls from a client to a server object.
Issues such as naming, events, relationships, transac-
tions, and concurrency control are addressed in Ver-
sion 2.0 [OMG96]. Services such as time synchroniza-
tion and security are expected to be addressed in later
revisions. To date, the OMG has been remarkably
successful in agreeing upon increments to the standard
and vendors have quickly made products available that
meet the evolving standard.

CORBA is designed to allow a programmer to con-
struct object-oriented programs without regard to tra-
ditional object boundaries such as address spaces or
location of the object in a distributed system. That
is, a client program should be able to invoke a method
on a server object whether the object is in the client's
address space or located on a remote node in a dis-
tributed system. The CORBA speci�cation includes:
an Interface De�nition Language(IDL), that de�nes
the object interfaces within the CORBA environment;
an Object Request Broker (ORB), which is the mid-
dleware that enables the seamless interaction between
distributed client objects and server objects; and Ob-



ject Services, which facilitate standard client/server
interaction with capabilities such as naming, event-
based synchronization, and concurrency control.

CORBA IDL. CORBA IDL is a declarative lan-
guage that describes the interfaces to server object
implementations, including the signatures of all server
object methods callable by clients. The IDL grammar
includes a subset of ANSI C++ with additional con-
structs to support the method invocation mechanism.

Most common intrinsic C++ types are supported
in CORBA IDL. The ORB handles di�erences in type
representations among architectures (e.g. Big En-
dian, Little Endian) except for the native CORBA
octet type, which is never translated. CORBA's
IDL also speci�es C++-like exception raising and han-
dling. IDL does not provide syntax for implementing
methods: an IDL binding to the C language has been
speci�ed for that purpose. Other language bindings
include C++ and Smalltalk.

As an example, consider an object that acts as a
shared table for sensor data (represented as long in-
teger values) for clients in a distributed system. A
simple CORBA IDL for a sensor table object is:

interface sensor_table

{ readonly attribute short max_length;

short put(in short index,in long data);

long get(in short index);

}

The IDL keyword interface indicates a CORBA ob-
ject (similar to a C++ class declaration). A readonly

attribute is a data value in the object that a
client may read (the IDL compiler generates a remote
method for reading each attribute). The IDL example
also speci�es two methods: put, which stores a sensor
value at a index into the table; and get which returns
a sensor value given an index.

Client code in C to access a sensor table object in
a CORBA environment might look like:

long retval;

sensor_table *p;

p = bind("my_sensor_table");

retval = p->get(500);

Here, the client declares a pointer, p, to a sensor table

object called my sensor table. The client then makes
a call to an ORB service to locate and bind the
pointer to a reference to a remote server containing
the sensor table object. To retrieve a value from the
sensor table at index 500, the client issues the method
invocation: p->get(500). This method invocation
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Figure 1: CORBA IDL Compilation Process

assumes that a sensor table server was previously im-
plemented and registered with the CORBA ORB.

Implementing Clients and Servers. The process
of implementing a client and server object is shown in
Figure 1. The IDL speci�cation is processed by an
IDL compiler, which generates a header �le for the
CORBA object, stub code for linking into the client,
and skeleton code for the server object. The client
stub contains code that hides details of interaction
with the server from the client code. Client stubs
stand in for normal method calls by transparently di-
recting normal-appearing C++ method requests into
the ORB. Server skeleton code is used by the ORB in
forwarding method invocation requests to the server,
and in returning results to the client.

The ORB. An ORB provides the services that:

� locate a server object implementation for servic-
ing a client's request;

� establish a connection to the server;

� communicate the data making up the request;

� activate and deactivate objects and their imple-
mentations;

� generate and interpret object references.

A client and its stubs, a server and its skeleton, and
the interaction through the ORB are shown in Figure
2. Some parts of the ORB are not shown, such as the
Dynamic Invocation Interface since it is not fully de-
veloped in the CORBA standard nor is it expected to
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be used in real-time applications. The stubs and skele-
tons are produced by the IDL compiler as described
before. Figure 2 also shows calls to some object ser-
vices.

Object Services. CORBA 2.0 contains the speci�-
cations for the following Object Services:

� Naming. This service provides the ability to bind
a name to an object relative to a naming context.
It guarantees unique names for objects.

� Event. This service provides basic capabilities for
noti�cation of named events. Suppliers can gener-
ate events without knowing the IDs of consumers.
Consumers can use events without knowing the
IDs of suppliers.

� Life Cycle. This service allows creatation and de-
struction of objects in the CORBA system.

� Persistence. This service allows making objects
persistent on some storage medium.

� Transactions. This service allows construction
of transactions, which are atomic collections of
client calls to server objects.

� Concurrency Control. This service allows objects
to be locked by clients. The locking scheme is a
version of database read/write locking.

� Externalization. This service allows objects to be
passed in a CORBA environment and among en-
vironments.

� Relationship. This service allows the expression
of semantic relationships among objects.

The CORBA roadmap for future services calls for
time synchronization, security, system startup, redun-
dancy, recovery, query processing, and other services
to be provided.

3 Real-Time CORBA
RT CORBA is being de�ned by the OMG RT SIG.

The essence of its de�nition is:

RT CORBA deals with the expression and
enforcement of real-time constraints on end-
to-end execution in a CORBA system.

Consider a real-time scenario where a client needs
to perform a get method from the sensor table server
within timing constraints. This interaction means
that the client must have some way of expressing tim-
ing constraints on its request, and that the CORBA
system must provide an ORB and Object Services
that support enforcement of the expressed timing con-
straints. It also means that the underlying operating
systems on the client and server nodes, along with the
network that they use to communicate, can support
enforcement of real-time constraints.

That is, there are two main categories of RT
CORBA requirements: requirements on the operat-
ing environment (operating systems and networks);
and requirements on the CORBA run-time system.
In this section, we summarize some of these require-
ments. The full set of requirements can be found in
the RT SIG whitepaper [RTSIG96].

3.1 Operating Environment

Some requirements of the RT CORBA operating
environment are:

� Synchronized Clocks. All clocks on nodes in an
ORB should be synchronized to within a bounded
skew of each other.

� Bounded Message Delay. The underlying commu-
nication mechanism should ensure a worst-case
message delay from one CORBA system task to
another.



� Priority-based Operating Environment Schedul-
ing. All components used in the underlying
CORBA environment should support priority-
based scheduling and queueing where a higher
priority task is scheduled before a lower-priority
task. This scheduling should be preemptive where
possible (such as CPU scheduling).

� Operating Environment Priority Inheritance. All
components used in the underlying CORBA en-
vironment that synchronize tasks by blocking
one task for another should implement priority-
inheritance.

3.2 CORBA Run-Time System.
Some requirements of the ORB and Object Services

components of the CORBA standard are:

� Time Type. The CORBA standard should spec-
ify a standard type for absolute time and relative
time.

� Transmittal of Real-Time Method Invocation In-
formation. The standard should allow the follow-
ing information to be established by the client and
attached to its method invocation request so that
the information is available to the ORB, ORB
Services, skeletons, and server implementations:
Deadline; Importance; Earliest Start Time; Lat-
est Start Time; Period; what quality of service
(QoS) is required; and should the ORB o�er a
guarantee. This information is likely needed to
enforce real-time constraints through techniques
like assigning priorities and setting operating sys-
tem alarms.

� Global Priority. The ORB should establish pri-
orities for all execution. These priorities should
be \global" across the ORB. That is, the priori-
ties of any tasks that compete for any resource in
the CORBA environment should be set relative
to each other. This requires that the compet-
ing tasks have priorities that \make sense" rela-
tive to each other. Several priority schemes, such
as rate-monotonic priority assignment, earliest-
deadline-�rst priority assignment, or a variation
that weights tasks based on importance, are possi-
ble. The standard will not dictate how priorities
are set. Instead, the standard will specify only
that the information needed to set priorities is
available, and that the priorities will be enforced.

� Priority Queueing of All CORBA Services. All
CORBA-level software should use priority based
queuing. Enforcing priorities at all points in the

end-to-end path, including CORBA service re-
quests, is desirable for soft real-time and neces-
sary for hard real-time. For instance, queues of
requests for CORBA 2.0 services such as Naming
or Lifecycle should be priority queues.

� Real-Time Events. The CORBA environment
should provide the ability for clients and servers
to determine the absolute time value of \events".
These events may include the current time (pro-
vided by a Global Time Service), or named events
provided by the CORBA 2.0 Event Service. The
speci�cation of timing constraints requires the de-
termination of the time for the constraint. These
times are absolute times. Most application spec-
i�cations denote these times as relative o�sets
from events. For instance \within 10 seconds"
typically means \within 10 seconds of the current
time" and thus needs the current time. \Within
10 seconds of completion of Task A" needs the
time that a named event for \completion of Task
A" occurred. Furthermore, events should be de-
livered in an order re
ecting either the priority of
the event or the priority of the event consumer,
or both.

� Priority Inheritance. All RT CORBA-level soft-
ware that queues one task while another is execut-
ing should use priority inheritance. This require-
ment includes the locking done by the CORBA
2.0 Concurrency Control Service, but also in-
cludes simple queuing such as waiting for the
Naming Service.

� Real-Time Exceptions. The CORBA exception
mechanism should be extended to raise the ex-
ceptions including missed deadline and violated
guarantee. These exceptions should be handled
within the context of the CORBA exception han-
dling mechanism.

� Documented Execution Times. The CORBA
standard should specify that vendors must pub-
lish worst case bounds for all execution in their
product.

� ORB Guarantees. If the client speci�es that it
wishes a guarantee for a certain QOS with tim-
ing constraints, the ORB should be able to either
guarantee it, or raise an exception.

4 RT CORBA Development
There have been several RT CORBA projects ini-

tiated over the past few years. This section de-
scribes some of the original approaches to RT CORBA



and then surveys current approaches as reported in
the OMG's Request For Information (RFI) on RT
CORBA [RTSIG97]. The next section then provides
detail on one approach: the dynamically scheduled RT
CORBA implementation from NRaD/URI.

CORBA On RT Operating Systems. One origi-
nal approach to RT CORBA was to install a non-real-
time ORB on real-time operating systems. This was
the approach initially taken by Iona Technologies that
released a \Real-Time ORB" which is essentially their
non-real-time ORB ported to the Lynx and VXWorks
real-time operating systems. However, these ported
ORBs do not take advantage of most of the operating
system's real-time features. Furthermore, although
implementation on a real-time operating system may
be necessary for RT CORBA, it is not su�cient to
enforce end-to-end timing constraints in a distributed
system.

Fast CORBA. Several projects including ORBs
originally created by Lockheed Martin, and by ven-
dors in DARPA's Distributed Interactive Simulation
(DIS++) High Level Architecture sought to realize
\real-time ORBs" that are stripped-down, faster, ver-
sions of existing ORBs. They removed features like
CORBA's Dynamic Invocation Interface and allowed
special protocol, �xed point-to-point connections of
clients to servers that by-passed most CORBA fea-
tures. Such high performance might also be necessary
in a RT CORBA system, but it may not be su�cient
for predictable enforcement of end-to-end timing con-
straints.

MITRE's RT CORBA. One of the �rst projects
to incorporate expression and enforcement of end-to-
end timing constraints into a CORBA system was de-
signed by Peter Krupp and Bhavani Thuraisingham's
group at MITRE in Bedford, Ma. [TKSW94, EB96].
This work identi�ed requirements for the use of real-
time CORBA in command and control systems and
prototyped the approach by porting the ILU ORB
from Xerox to the Lynx real-time operating sys-
tem. They then provided a distributed schedul-
ing service supporting rate-monotonic and deadline-
monotonic techniques. The resulting infrastructure
combines a POSIX-compliant real-time operating sys-
tem, a real-time ORB, and an ODMG-compliant real-
time ODBMS [EB96]. MITRE has successfully trans-
ferred this technology to the US Airforce AWACS pro-
gram, for incorporation into improvements scheduled
for delivery in 1998 [RTSIG97]. One application of this

approach is in information survivability (e.g., when a
user may attempt to bring down a system by over-
using its resources) [KTM97].

CORBA on the New Attack Submarine. The
Naval UnderSea Warfare Center (NUWC) and Lock-
heed Martin are investigating RT CORBA tech-
niques for the US Navy's New Attack Submarine's
(NSSN) C3I system [GWP96]. The NSSN C3I system
speci�cations mandate real-time requirements and a
CORBA system to interconnect subsystems such as
Sonar, Radar, Navigation, and Combat Control. One
part of the NSSN C3I project at NUWC has investi-
gated the impact of RT CORBA over an ATM net-
work. In addition to identifying sources of latencies,
this project also proposed a CORBA Latency Server
to supply latency estimates that may be required in
RT CORBA operation [Pal97].

Washington University's RT CORBA. Re-
searchers at Washington University in St. Louis are
developing a high-performance endsystem architecture
for real-time CORBA called TAO (The ACE ORB)
[RTSIG97]. Their objective is to identify the key
architectural patterns and performance optimizations
necessary to build high-performance, real-time ORBs.
The focus of the scheduling work at Washington Uni-
versity is on hard real-time systems, requiring a priori
guarantees of QoS requirements. The key components
of TAO include a Gigabit I/O subsystem; a real-time
inter-orb protocol; a method for specifying QoS re-
quirements; a real-time scheduling service; a real-time
object adapter with a real-time event service; and pre-
sentation layer components.

The TAO system requires that the underlying oper-
ating system and network provide resource-scheduling
mechanisms to support real-time guarantees. For in-
stance, the operating system must support scheduling
mechanisms that allow the highest priority task to run
to completion. Furthermore, real-time tasks should be
given precedence at the network level to prevent them
from being blocked by low priority applications.

The I/O subsystem optimizes conventional OS I/O
subsystems to execute at Gigabit rates over high-speed
ATM networks [HGSP96]. TAO's Real-time Inter-
ORB Protocol (RIOP) is a mapping of the general
inter-ORB protocol that allows applications to trans-
fer their QoS parameters from clients to server objects.
When a message is sent from a client to a server, the
RIOP packages attributes, such as priority and execu-
tion period, in the message in order to specify QoS re-
quirements. Along with the QoS speci�cation included



in its method invocations, TAO allows for QoS spec-
i�cation at the IDL level as well. Because TAO per-
forms a priori scheduling analysis, applications must
specify their QoS needs in order to guarantee resource
availability. Components that have real-time needs
convey their QoS requirements to the CPU through
an IDL construct called a RT Task. TAO's Real-time
Scheduling Service performs o�-line feasibility analy-
sis of real-time tasks based on the task QoS speci�-
cations. The Scheduling Service also assigns priorities
to threads during the analysis. The Object Adapter
is responsible for demultiplexing, scheduling and dis-
patching client requests onto object implementations.
In TAO, the presentation layer transforms typed op-
eration parameters from high-level to low-level repre-
sentations (and vice-versa) via client-side stubs and
server-side skeletons. These stubs and skeletons are
generated by a highly optimizing IDL compiler.

The TAO system also provides a real-time capa-
bility within the CORBA Event Service [RTSIG97].
These extensions introduce several components aug-
menting the Event Service to support event schedul-
ing and minimize dispatch latency, based on a priori
knowledge of participating consumer(s)/supplier(s)
and periodic rate-based events. The interfaces of the
RT Event Service include QoS parameters that al-
low consumers and suppliers to specify their execution
requirements and characteristics. These parameters
are used by the event dispatching mechanism to inte-
grate with the system-wide real-time scheduling poli-
cies to determine dispatching ordering and preemption
strategies. In a real-time system, some consumers can
execute whenever an event arrives from any supplier.
Other consumers can execute only when an event ar-
rives from a speci�c supplier, or when multiple events
have arrived from a particular set of suppliers. The
RT Event Service provides �ltering and correlation
mechanisms that allow consumers to specify logical
OR and AND event dependencies. When those depen-
dencies are met, the RT Event Service dispatches all
events that satisfy the consumers dependencies. The
RT Event Service allows consumers to specify event
dependency timeouts and propagates temporal events
in coordination with system scheduling policies.

CHORUS/COOL Real-time CORBA. The
CHORUS/COOL ORB is a 
exible real-time ORB
that is being developed by Chorus Systems. Their
design enforces a strict separation between resource
management policy and mechanism. Their philosophy
also calls for providing applications full control over
operating system-level resources. Given this philoso-

phy, the goals of the CHORUS/COOL ORB include:
a 
exible binding architecture; producing minimum
CORBA on a minimal ORB; and a real-time oper-
ating environment that provides access to �ne grain
resource management.

The CHORUS/COOL architecture extends the
general CORBA binding model to allow for explicit
binding, which is done by invoking appropriate op-
erations on the Object Adapter. This extension al-
lows an application programmer to de�ne customized
and dynamic object bindings. The \componentized"
technology provided by CHORUS/COOL ORB allows
components of the ORB core and associated services
to be customized to the needs of the application. This
feature allows programmers to use the minimal imple-
mentation of the ORB that is required by the applica-
tion. When CHORUS/COOL ORB is integrated with
Chorus Systems' CHORUS/ClassiX real-time operat-
ing system, the application programmer has access to
�ne grain resources. Such resources include concur-
rency control (mutexes, etc.), priority-based schedul-
ing, and memory management.

The COOL ORB from Chorus Systems does not
provide many real-time features itself, but rather relies
on the CHORUS operating systems. A strength of the
COOL ORB is that it imposes minimal overhead on
top of the native operating systems.

Other RT CORBA Technology. Other RT
CORBA technology and position papers on RT
CORBA are collected on the OMG's Web server under
the RFI responses for RT CORBA technology at:

www.omg.org/library/schedule/Realtime_RFI.htm

5 NRaD/URI RT CORBA System
Our team at the University of Rhode Island and

the US Navy's NRaD facility have developed a proto-
type that implements many of the requirements of RT
CORBA. It is designed to support expression and en-
forcement of dynamic end-to-end timing constraints
within a CORBA system [TKSW94, WBTK95]. It
is implemented on Sparc workstations running Solaris
2.5 (with POSIX threads) using Iona Technology's Or-
bix 2.0.1MT(multi-threaded) as the CORBA baseline.
All of our prototype software assumes an operating en-
vironment that is compliant with the POSIX real-time
operating system standard. This environment satis�es
most of the RT CORBA white paper operating envi-
ronment desired capabilities of Section 3.1.

Our NRaD/URI RT CORBA system consists of a
new CORBA service for Global Priority, and modi�-
cations of existing CORBA services for Events, and



Concurrency Control. Our RT CORBA system also
includes several new IDL types for expressing real-
time parameters, along with library code that is added
to stubs of clients and skeletons of servers. Together
these components support the expression and enforce-
ment of timed distributed method invocations (TDMIs)
[WBTK95] where real-time constraints are expressed
on clients' CORBA method calls and enforced by the
CORBA system.

5.1 Timed Distributed Method Invoca-
tions

A TDMI uses a new CORBA RT Environment

structure and a new C++ RT Manager class to
convey real-time information. A RT Environment

structure contains attributes that include impor-
tance, deadline, and period. Other real-time and
quality-of-service parameters can also be added to the
RT Environment. A RT Manager class contains a
RT Environment structure and methods for setting
the RT Environment attributes, starting a TDMI,
and completing a TDMI.

In a TDMI, the client expresses real-time con-
straints on a CORBA method invocation as attributes
of a RT Environment structure. Our RT CORBA
run-time system attaches the RT Environment struc-
ture to all execution that results from the client's
TDMI request. Other parts of our RT CORBA run-
time system examine this structure to acquire infor-
mation necessary to enforce the expressed real-time
requirements by doing things such as establishing pri-
ority and setting alarms.

Figure 3 shows an example of a RT CORBA
client that invokes a TDMI to a get operation on
a Sensor Table object. The client �rst creates a
RT Manager object (Label 1 in Figure 3). It then
binds to the appropriate server (Label 2). Next, it
calls the RT Manager functions necessary to set the
real-time parameters (Label 3). In Figure 3 the client
uses a Set T ime Constraint() method to set a rela-
tive deadline of 3 seconds from the current time. Other
parts of Figure 3 are explained throughout this sec-
tion.

Once the real-time parameters are established, our
RT CORBA run-time system uses library code to en-
force the implied constraints by setting a transient pri-
ority for the TDMI and by setting operating system
alarms to detect when crucial times, such as dead-
lines, have arrived. A transient priority is a sin-
gle integer that is derived by the new RT CORBA
Global Priority Service based on the information in the
RT Environment for the TDMI. The Global Priority
Service ensures that the transient priority is mean-

#include Sensor_Table.hh // from IDL compiler

#include RT_Manager.h // from RT CORBA

#include Sensor_Table_i.h // from impl.

:

(1) RT_Manager rt_mgr; // create RT_Manager obj.

Sensor_Table* Sensor_Table_Obj;

:

int main() // main procedure of CORBA client

{

:

// bind to the appropriate Sensor_Table

(2) Sensor_Table_Obj =

Sensor_Table::_bind("Sensor_Table_Server");

CORBA::Long track_id = 42;

try {

:

: // set constraints and

// scheduling parameters

// deadline = NOW + 3 seconds

(3) rt_mgr.Set_Time_Constraint_Now(BY,REL,3,0);

(4) rt_mgr.Start_RT_Invocation();

// * calculate transient priority

// * call RT Daemon to register

// * map transient priority to this

// node's priority

// * set this thread to new priority

// * arm the timer

(5) Track_Record track =

Sensor_Table_Obj->Get(track_id,

rt_mgr.Get_RT_Env());

(6) rt_mgr.End_RT_Invocation();

// * call RT Daemon and deregister

// * disarm the timer

// * restore this thread to orig. prio.

}

// catch RT_Exception

(7) catch(const RT_Exception &rtp) {

cout << ``RT_Exception Raised :''

<< rtp.reason << endl;

}

:

}

Figure 3: Example TDMI to get operation of
Sensor Table Object



ingful relative to all other transient priorities in the
RT CORBA system. How this is done is described in
Section 5.3. In Figure 3, the library code to do this
enforcement is contained in the RT Manager method
Start RT Invocation() (Label 4).

The method call in Figure 3 is:
Sensor Table Obj->Get(track id,

rt mgr.Get RT Env()) (Label 5). Note the inclusion
of the RT Environment that was set earlier and is re-
turned by the RT Manager's Get RT Env method.
After the method invocation, the RT Manager

End RT Invocation() call (Label 6) ends the TDMI
by re-setting the client's priority to its value before the
client performed the TDMI, and disarms the deadline
timer.

Our RT CORBA run-time system also augments
the CORBA exception mechanism to handle real-time
exceptions. These exceptions are derived from the at-
tributes set in the RT Environment, such as a dead-
line and/or a period. In the example of Figure 3
a violation of the expressed deadline is caught as a
CORBA exception (Label 7). Our prototype imple-
ments the mapping of deadline exceptions to CORBA
exceptions by catching the signal sent by the POSIX
alarm that was set for deadline and then raising the
CORBA exception in library code.

5.2 Global Time Services

For expressed timing constraints to be meaningful
in a distributed system, a common global notion of
time must be supported. Our RT CORBA system
implements this by synchronizing the clocks (our pro-
totype uses a variant of the NTP protocol [Mil91]) and
by providing a Global Time Service, which clients and
servers can call to get the current time. In the example
of Figure 3, the Global Time Service is called in the
rt_mgr.Set_Time_Constraint_Now(BY,REL,3,0);

call (Label 3) due to the REL paramenter that speci-
�es a deadline (BY) relative to the current time. That
is, the library code calls the Global Time Service to
get the current time, and then adds three seconds to
establish the deadline.

5.3 Global Priority Service and Dis-
tributed Real-Time Scheduling

Real-Time scheduling is performed by the our
CORBA run-time system in cooperation with other
components, such as the local real-time operating sys-
tems' schedulers. Recall that this scheduling is based
on a transient priority, which is a single integer that
is derived from a function of the attributes in the
RT Environment for a TDMI. The transient priority
is only valid while the TDMI is active. That is, the
client and all execution on its behalf assume the tran-

sient priority during the execution of the TDMI, but
the client resumes a previous priority when the TDMI
completes. Schedulers and queues throughout the
distributed RT CORBA system, such as RT POSIX
priority-based operating system schedulers, use these
transient priorities to order all execution that is asso-
ciated with a TDMI.

The transient priority for each TDMI is estab-
lished by our RT CORBA Global Priority Service.
This service uses a uniform function (uniform for all
clients and servers in the system) to compute tran-
sient priority as a function of the attributes in the
RT Environment object associated with the TDMI.
Our prototype uses a function to compute tran-
sient priorities that orders priorities based on the
importance attribute �rst, and then based on the
deadline attribute - essentially establishing a global
earliest-deadline-�rst within importance level schedul-
ing policy throughout our RT CORBA system. The
call to the Global Priority Service in the example
of Figure 3 is made in the library code for the
rt mgr.Start RT Invocation() (Label 4). Changing
the calculatation of transient priorities based on other
scheduling policies, such as global rate-monotonic pri-
ority assignment, is facilitated by the function's cen-
tral implementation in the RT CORBA Global Prior-
ity Service.

The implementation of the Global Priority Service
in the our prototype is accomplished in a combination
of library code and a RT Daemon process running
on each node. The library code calculates the tran-
sient priority. The RT Daemon on each node maps
the transient priority to the priorities available on the
local real-time operating system. In our prototype,
which uses RT Solaris operating systems with 60 lo-
cal priorities, the RT Daemon must map the (wide)
range of transient priorities into the 60 local priori-
ties. The mapping is done by using a statistical model
of the likely deadlines and calculating transient pri-
orities such that TDMIs are probabalistically evenly
distributed among the local priorities. For example, if
there were 60 TDMIs on a Solaris node, the mapping
would ensure the highest probability of each TDMI
being at a unique priority.

Additionally, the RT Daemon enforces aging of
transient priorities. Aging is the process of increas-
ing priority as time goes on, which is necessary in dy-
namic earliest-deadline-�rst scheduling. The RT Dae-
mon keeps track of the transient priorities on its node.
The RT Daemon increases a TDMI's transient priority
if, due to the passage of time, the TDMI's priority is
too low compared to a newly-arrived TDMI. The ag-



ing facility can be \turned o�" for real-time schedul-
ing policies that don not require aging, such as a static
rate-monotonic-based policy.

5.4 Real-Time Event Service

Recall from Section 2, that the current CORBA
event service allows for the exchange of named events
in the CORBA system. For instance, a client might
synchronize with another client by waiting for that
client to generate a CORBA event. Our RT CORBA
system has implemented a modi�ed RT Event Service
that prioritizes the delivery of events and delivers the
time that the event occurred. Prioritized events are
based on the transient priorities of the producers and
consumers and are important to maintain global real-
time priority scheduling. Delivery of the (global) time
of the event occurrence is important to allow events
to be used to establish timing constraints relative to
them.

Our implementation of a RT Event Service is based
on IP multicasting [Moy] and takes advantage of the
multithreaded environment of Solaris 2.5. Each node
has a CORBA Event Channel interface [OMG96] and
is con�gured to \listen" to a pre-de�ned IP multicast
group. Each real-time event has a unique event ID
number, which is mapped to the IP address for the
multicast group. Suppliers transport real-time event
data to each RT Event Channel by multicasting to its
IP address. Event consumers can wait for delivery of
real-time events to the IP multicast groups associated
with the events, or they can invoke the local RT Event
Channel to retrieve the real-time event. In our pro-
totype, each RT Event Channel bu�ers the incoming
events in priority order so that consumers can look for
the bu�ered high priority real-time events �rst. If the
real-time event data is not in the bu�er, then the RT
Event Channel raises a RT exception to the consumer,
which is handled as described in Section 5.1.

5.5 RT Concurrency Control Service

Recall from Section 2, that CORBA provides a
Concurrency Control Service to maintain consistent
access to servers. Our prototype RT CORBA system
includes a RT Concurrency Control Service that im-
plements priority inheritance [Raj91]. When a TDMI
requests a lock on a resource from the RT Concur-
rency Control Service, the TDMI transient priority is
compared to those of all TDMI's holding con
icting
locks on that resource. Con
icting clients with lower
priorities are raised to the requesting TDMI's priority,
and the requesting TDMI is suspended. Whenever a
lock is released, the releasing TDMI resets its prior-
ity to that of the highest priority TDMI it still blocks
(this is possible since clients can hold several locks of

di�erent types). If it no longer blocks any higher pri-
ority TDMIs, then the releasing TDMI is reset to its
original priority. Finally, the highest priority blocked
TDMI that can now run is allowed to obtain its lock
and continue execution.

5.6 Products and Applications

This NRaD/URI RT CORBA software is packaged
as a set of daemon processes, library code, and IDL
de�nitions, that are suitable for extending commercial
CORBA software systems that execute on RT POSIX-
compliant operating systems. Currently it is being
delivered to several companies and organizations for
inclusion into their CORBA software including Iona
Technologies, Tri-Paci�c Corporation, Computing De-
vices International, MITRE, and several US Navy pro-
grams.

6 Conclusion
The speci�cation and development of RT CORBA

is still emerging. The OMG's RT CORBA SIG is �-
nalizing its whitepaper describing the philosophy and
requirements for RT CORBA [RTSIG96]. The OMG
had a Request For Information in Feburary 1997 in
which vendors and end-users were encouraged to de-
scribe their product/need for RT CORBA. These re-
sults are available at [RTSIG97]. The RT SIG plans to
issue Requests For Proposals (RFPs) within the next
year. These RFPs will ask vendors to propose actual
additions/modi�cations to the standards to support
real-time.

Research and prototyping has been conducted and
in conjunction with the RT SIG e�orts, Section 5 de-
scribed the on-going NRaD/URI development of a RT
CORBA system which is focusing on some of the fea-
tures for dynamic expression and enforcement of end-
to-end timing constraints. CORBA clients can now
express timing requirements, such as deadlines, im-
portance and quality of service, on requests that they
make to servers. Once these requirements are spec-
i�ed, the new and/or extended object services pro-
vide for their enforcement. The Global Priority Ser-
vice ensures that all CORBA requests are scheduled
at all points in the distributed system according to the
same (real-time) policy. The Real-Time Concurrency
Control Service provides CORBA object-level locking
with priority inheritance. The Real-Time Event Ser-
vice enforces the distribution of real-time events in
priority order with real-time enforcement of event re-
sponse time. Washington University's ORB is similar
to the NRaD/URI approach, but focuses on hard-real-
time static priority scheduling. They have also pro-
duced interesting results that investigate the impact
of networks and protocols on RT CORBA. Lockheed



Martin is developing a similar RT CORBA system.
The original RT CORBA development from MITRE
is now emphasizing research towards a modular ap-
proach to ORB design where ORB components, in-
cluding RT components, can be con�gured to meet
various requirements.

Tackling the substantial requirements posed by us-
ing CORBA in a real-time environment is a monu-
mental undertaking, but necessary if standard, open,
distributed computing environments are to be used
in real-time applications. The results of the various
e�orts surveyed in this paper are important steps to-
wards achieving this goal. However, many other steps,
including signi�cant research, are still needed to pro-
duce a viable RT CORBA speci�cation and implemen-
tation.
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