
Real-Time Databases

Lisa Cingiser DiPippo and Victor Fay Wolfe

September 23, 1995

1 Introduction

Real-time databases manage time-constrained data and time-constrained transactions. They

are useful in systems such as automated manufacturing, avionics, military command, con-

trol and communication, and programmed stock trading. In each of these applications, a

computer system uses environmental data as input and must produce output to control its

environment. Since data in the system represents the \current" state of the environment,

the data is constrained to have been recorded recently enough to be considered valid. For

instance, \current" sensor readings or \current" stock prices may be constrained to be no

more than a few seconds old. Since environmental control must often be performed within

a certain time interval to be correct, the transactions that operate on the data are also

time-constrained. For instance, a military vehicle's evasive action, determined based on a

transaction retrieving environmental data from the real-time database, may have to be per-

formed by a certain deadline to be correct. This chapter describes the issues, research, and

actual implementations of real-time database management systems.

A real-time database is a component of a real-time system. A real-time system is one in

which timing constraints, such as start times, deadlines, and periods, must be met for the

application to be correct. There has been a great deal of work in real-time systems that

in
uence real-time database design. We summarize this work in Section 2 .

The presence of real-time requirements adds requirements to real-time database manage-

ment. Typical database management systems enforce logical consistency constraints only,

whereas real-time databases have temporal consistency constraints, such as validity inter-

vals for data and time constraints for transaction execution, that must also be enforced. In

Section 3, we describe the additional dimension of temporal consistency constraints and the

requirements on the real-time database management system that it imposes.

1

To reason about, and express, these constraints, there have been several models proposed

for real-time database systems. These models incorporate various aspects of traditional

database models and various aspects of temporal consistency requirements. We describe two

relational models and one object-oriented real-time database model in Section 4.

In the rest of the chapter, Section 5 describes two existing commercial real-time database

management systems, one academic prototyping e�ort, and the Real-Time SQL standardiza-

tion e�orts. Section 6 summarizes current research in real-time database systems, focusing

mostly on transaction scheduling and concurrency control. Section 7 summarizes what real-

time database technology is available and indicates open questions in real-time database

design.

2 Real-time Systems

In a real-time system, timing constraints must be met for the application to be correct. This

requirement typically comes from the system interacting with the physical environment. The

environment produces stimuli, which must be accepted by the real-time system within timing

constraints. The environment further requires control output, which must be produced

within timing constraints.

One of the main misconceptions about real-time computing is that it is equivalent to

fast computing. Stankovic challenges this myth in [1] by arguing that computing speed is

often measured in average case performance, whereas to guarantee timing behavior, in many

real-time systems worst case performance should be used. That is, in a delicate application,

such as a nuclear reactor or avionics control, where timing constraints must be met, worst

case performance must be used when designing and analyzing the system. Thus, although

speed is often a necessary component of a real-time system, it is often not su�cient. Instead:

predictably meeting timing constraints is su�cient in real-time system design.

This section describes the characteristics and requirements of real-time systems. It also

describes work in real-time operating system scheduling, which is important when considering

how real-time database temporal consistency can be enforced.

2.1 Real-time System Requirements

Real-time systems require that timing constraints be expressed, enforced, and their violations

handled. The unit of time-constrained execution is called a task. In a real-time database,

2

time
S S+p S +2p S + (i-1)p S + (i)p

period frame i

execution execution execution

...

...

Figure 1: Periodic Execution

time-constrained transactions are considered tasks. Timing constraint expression can take

the form of start times, deadlines, and periods for tasks. Timing constraint enforcement

requires predictable bounds on task behavior. The handling of timing constraint violations

depends on the tasks requirements: whether they are hard, �rm or soft real-time. We now

examine each of these aspects of timing constraints.

Expressing Timing Constraints. Most real-time systems specify a subset of the follow-

ing constraints:

� An earliest start time constraint speci�es an absolute time before which the task may

not start. That is, the task must wait for the speci�ed time before it may start.

� A latest start time constraint speci�es an absolute time before which the task must

start. That is, if the task has not started by the speci�ed time, an error has occurred.

Latest start times are useful to detect potential violations of planned schedules or

eventual deadline violations before they actually occur.

� A deadline speci�es an absolute time before which the task must complete.

Frequently, timing constraints will appear as periodic execution constraints. A periodic

constraint speci�es earliest start times and deadlines at regular time intervals for repeated

instances of a task. Typically a period frame is established for each instance of the (repeated)

task. As shown in Figure 1, period frame i speci�es the default earliest start time and

deadline for the ith instance of the task. When periodic execution is originally started, the

�rst frame is established, at time s in Figure 1. For periodic execution with period p, the ith

frame starts at time s+ (i� 1)p and completes at time s+ (i)p. As this indicates, the end

of frame i is the beginning of frame i + 1. Each instance of a task may execute anywhere

within its period frame.

3

value

time

value

time

value

timeD D D

(A) (B) (C)

Figure 2: Modes of Real-Time

Modes of Real-time. Real-time constraints are classi�ed as hard, �rm, or soft, depending

on the consequences of the constraint being violated.

A task with a hard real-time constraint has disastrous consequences if its constraint is

violated. This characteristic is depicted in Figure 2A where the task causes a large negative

value to the system if its deadline is missed. Many constraints in life-critical systems, such

as nuclear reactor control and military vehicle control, are hard real-time constraints.

A task with a �rm real-time constraint has no value to the system if its constraint is

violated. This characteristic is depicted in Figure 2B where the task's value goes to zero

after its deadline. Many �nancial applications have �rm constraints with no value if a

deadline is missed.

A task with a soft real-time constraint has decreasing, but usually non-negative, value

to the system if its constraint is violated. This characteristic is depicted in Figure 2C where

the task's value decreases after its deadline. For most applications, most tasks have soft

real-time constraints. Graphic display updates are one of many examples of tasks with soft

real-time constraints.

In some systems the mode of real-time is captured in a task's importance level. In

systems such as Spring [2] task importance is categorized according to the mode of its

timing constraint (hard, �rm, soft). In other systems, importance is more general and tasks

can be assigned importance relative to each other over a wider granularity of levels. Note

that importance is not the same as priority. Priority, which is discussed in more detail in

Section 2.2, is a relative value used to make scheduling decisions. Often priority is a function

of importance, but also can depend on timing constraints, or some combination of these, or

other task traits.

4

Predictability. In order to predictably meet timing constraints, it must be possible to

accurately analyze timing behavior. To analyze timing behavior, the scheduling algorithm

for each resource and the amount of time that tasks use each resource must be known. To

fully guarantee this timing behavior, these resource utilizations should be worst case values;

although some soft real-time systems can tolerate average case values that o�er no strong

guarantee.

Determining the resource usage time of tasks is often di�cult. Results that can be

obtained are often pessimistic worst cases with very low probability of occurring. Consider

CPU utilization, which is one of the easier utilizations to determine. To establish a worst

case CPU utilization, all conditional branches in the task must be assumed to take their

worst path, and all loops and recursion must be assumed to have some bounded number

of instances. Also, other task behavior, such as whether the task can be preempted from

the CPU while waiting for other system resources, must be considered. For instance, if a

task requires dynamic memory allocation, is it swapped o� the CPU awaiting the memory

allocation? CPU utilization is only one factor in a task's resource requirements. A task also

needs resources such as main memory, disk accesses, network bu�ers, network bandwidth,

I/O devices, etc. Furthermore, the use of these resources is inter-related and thus can

not be computed in isolation. The problem worsens in database systems where \logical"

resources such as locks on data structures and database bu�ers are additional resources to

be considered. There has been work in determining worst case execution times [3], but in

general this work makes limiting assumptions and/or produces very pessimistic results. Still,

in order to guarantee, or at least analyze, the adherence to real-time constraints, resource

utilizations of tasks must be known, so these rough estimates are used.

Assuming that worst case resource utilizations are known, analyzing timing behavior

for predictability depends on the scheduling algorithms used. In the next subsection we

discuss several real-time scheduling techniques and the forms of analysis that these techniques

facilitate.

Imprecision. The introduction of timing constraints adds another dimension to real-time

computing: it may need to be imprecise. That is, due to time \running out", the results

produced by a task or set of tasks may not be exactly correct. In systems where timely but

less accurate results are better than late exact results, imprecision may be tolerated. For

instance, an air tra�c control system may need a quick approximate position of an incoming

aircraft rather than a late exact answer. Often the imprecision that is allowed must be within

5

a speci�ed bound. For instance, the position data might have to be accurate within a few

meters. More accurate data is desirable, but can be sacri�ced if timing constraints do not

permit it.

2.2 Scheduling

Real-time scheduling essentially maps to a bin-packing problem where tasks with known

resource utilizations are the boxes, and the timing constraints establish the size of the bin.

That is, each task can be considered a \box" whose size is its utilization of the resource

being scheduled. The start times and deadlines of the tasks establish the boundaries of a

\bin", or collection of bins, in which the boxes must be packed. The bin-packing problem

is NP-hard, so optimal real-time scheduling, in general, is an NP-hard problem. However,

hueristics have been developed that yield optimal schedules under some strong assumptions,

or near-optimal results under less-restrictive assumptions.

There are many scheduling algorithms. Typically, a scheduling algorithm assigns priori-

ties to tasks. The priority assignment establishes a partial ordering among tasks. Whenever

a scheduling decision is made, the scheduler selects the task(s) with highest priority to use

the resource. There are several characteristics that di�erentiate scheduling algorithms. They

are:

� Preemptive versus nonpreemptive. If the algorithm is preemptive, the task currently

using the resource can be replaced by another task (typically of higher priority).

� Hard versus soft real-time. To be useful in systems with hard real-time constraints,

the real-time scheduling technique should allow analysis of the hard timing constraints

to determine if the constraints will be predictably met. For �rm and soft real-time,

predictability is desirable, but often a scheduling technique that can demonstrate a

best-e�ort, near-optimal performance, is acceptable.

� Dynamic versus static. In static scheduling algorithms, all tasks and their character-

istics are known before scheduling decisions are made. Typically task priorities are

assigned before run-time and are not changed. Dynamic scheduling algorithms allow

tasks sets to change and usually allow for task priorities to change. Dynamic scheduling

decisions are made at run-time.

� Single versus multiple resources. Single resource scheduling manages one resource in

isolation. In many well-known scheduling algorithms, this resource is a single CPU.

6

Multiple resource scheduling algorithms recognize that most tasks need multiple re-

sources and schedule several resources. End-to-end schedulers schedule all resources

required by the tasks.

Rate Monotonic and Earliest-Deadline-First Scheduling. For a known set of in-

dependent, periodic tasks with known execution times, Liu and Layland proved that rate-

monotonic CPU scheduling is optimal [4]. Here optimal means that if any scheduling algo-

rithm can cause all of the tasks in a set to meet their deadlines, then rate-monotonic can too.

Rate-monotonic scheduling is preemptive, static, single resource scheduling that can be used

for hard real-time. Priority is assigned according to the rate at which a periodic task needs

to execute: The higher the rate, which also means the shorter the period, the higher the

priority. A supplemental result by Liu and Layland facilitates real-time analysis by proving

that if the CPU utilization is less than approximately 69%, then the task set will always

meet its deadlines [4]. For dynamic priority assignment that is also preemptive and single

resource, Liu and Layland showed that earliest-deadline-�rst scheduling is optimal and that

any task set using it with a utilization less than 100% will meet all deadlines.

Liu and Layland's elegant results come with strong assumptions. Among these assump-

tions is one which requires that tasks are independent. Subsequent work has relaxed many

of their assumptions. Rajkumar, Sha and others have shown that task sets where the tasks

can coordinate via mechanisms such as semaphores, can still be analyzed if they use priority

inheritance protocols [5, 6]. In these protocols, a lower-priority task that blocks a higher-

priority task (e.g. by holding a semaphore), inherits the priority of the higher-priority task

during the blocking. With priority inheritance techniques, priority inversion, which is the

time that a higher priority task is blocked by lower priority tasks, can be bounded and

factored into the worst case execution time of each task. Utilization analysis, such as Liu

and Layland's, can then be used to determine if timing constraints will be met [6]. Non-

periodic tasks can also be accommodated using a sporadic server which periodically handles

non-periodic tasks [7]. Real-Time Mach is a real-time operating system that employs many

of these techniques [8].

POSIX Scheduling. The POSIX real-time operating system standards o�er rudimentary

real-time scheduling support in Unix-like systems. The POSIX standard mandates that the

CPU scheduling be preemptive, priority-based, with a minimum of 32 priorities (see Figure

3). Individual implementations may o�er more priorities, but the minimum is 32. The

7

RR/FIFO/OtherPriority

1

2

3

.

.

.
32

Operating System Scheduling Queues

sched_setscheduler (3,FIFO)

POSIX Process

Figure 3: Real-Time Scheduling in POSIX Operating Systems

scheduling algorithm is simple: the highest priority ready task executes, possibly preempting

a lower priority task. Tasks may dynamically change their own priority level or, in some cases,

the priority level of other tasks. Within a priority level, tasks may be scheduled round-robin

(with a system determined time quantum), or �rst-in-�rst-out (which is essentially round-

robin with an in�nite time quantum). This intra-priority scheduling is an unfortunate choice

for real-time systems since it is not cognizant of timing constraints. Despite this limitation,

rate-monotonic [9] and earliest-deadline-�rst [10] real-time schedulers have been built on

real-time POSIX-compliant operating systems.

Resource Reservations. Zhao, Ramamritham, and Stankovic [11, 12] have developed

real-time scheduling techniques that can handle dynamically arriving tasks that may use

multiple resources. These techniques are based on resource reservations where each task

attempts to reserve a time slot for itself during which it is guaranteed use of all resources that

it requires. Tasks are allowed to make resource reservation requests based on a priority; the

highest priority makes the request �rst. Priority is a weighted function of the task's deadline,

execution time, and resource use. These techniques also allow for limited backtracking so

that if allowing a task to make reservations before another task would cause deadlines to be

missed, another pattern of reservations may be tried. They have demonstrated that their

techniques achieve near-optimal results. Note that although these reservation techniques are

not optimal, they have much less stringent assumptions than those of Liu and Layland. The

8

Spring kernel [2] is based on these scheduling techniques.

Scheduling Imprecise Computation. Liu, Lin et al [13] have proposed several algo-

rithms for scheduling tasks that allow imprecise computation. In these algorithms, tasks are

decomposed into a mandatory part and an optional part. The mandatory part is considered

hard, the optional part is considered soft. Their algorithms attempt to schedule all manda-

tory parts of tasks and to schedule optional parts to minimize some error metric. The error

metric indicates the consequences of not executing an optional part. [13] discusses several

error metrics, each with a di�erent scheduling algorithm that minimizes it. For instance,

in systems with task importance levels, error might be weighted by each task's importance.

The accompanying algorithm schedules optional parts of higher importance tasks whenever

possible. Although this work is a good �rst step towards managing the imprecision in real-

time systems, further work on guaranteeing that resulting imprecision is within system limits

is needed.

3 Real-time Database Requirements

Real-time databases have all of the requirements of traditional databases, such as managing

access to structured, shared, permanent data, but they can also require management of

time-constrained data and time-constrained transactions. Furthermore, to facilitate analysis

of timing behavior, certain real-time database functions may need to exhibit predictable

timing behavior.

3.1 Temporal Consistency

Many requirements in a traditional database come from the desire to preserve the logical

consistency of data and transactions. For instance, typical database management systems

strive to maintain logical consistency by enforcing serializability of transactions and of opera-

tions on each data value. A real-time database additionally requires enforcement of temporal

consistency constraints. That is, in a real-time database there are four forms of consistency

constraints (summarized in Table 1): Transaction logical consistency; data logical consis-

tency; transaction temporal consistency; and data temporal consistency.

Transaction Logical Consistency. Transaction logical consistency constrains the values

of results produced by transactions. It is supported in most traditional databases manage-

9

Temporal Consistency Logical Consistency

Transaction e.g. Start, Deadline, Period req e.g. Serializability
Data e.g. Absolute validity interval e.g. Serializable operations

Table 1: Forms of Consistency for Real-Time Database

ment systems. For instance, serializability is a traditional transaction logical consistency

correctness criteria. It requires that the results of transaction execution be equivalent to

the results of some serial execution of the transactions. Techniques such as two-phase lock-

ing are designed to preserve serializability and therefore transaction logical consistency. In

a real-time database, traditional transaction logical consistency may be \relaxed" to allow

bounded imprecision, as discussed later in Section 3.2.

Data Logical Consistency. Data logical consistency is supported by most traditional

database management systems. Range constraints, such as one constraining certain data

values to be non-negative, are examples of data logical consistency constraints. Some consis-

tency constraints are preserved by requiring that basic read and write operations on data be

serializable. This can be done by typical read/write locking, for instance. Like transaction

logical consistency, in a real-time database, data logical consistency may be \relaxed", as

discussed later.

Transaction Temporal Consistency. Transaction temporal consistency constraints re-

quire that transactions be treated as real-time tasks (see Section 2) with timing constraints

such as deadlines, start times, and periods. The constraints may be hard, �rm, or soft. Vio-

lations of the timing constraints should be treated as a consistency violation by the database

management system and appropriately recovered from.

Data Temporal Consistency. Data temporal consistency constrains how old a data item

may be and still be considered valid. These constraints come from the fact that data used

by time critical applications often must closely re
ect the current state of the application

environment. Data is collected at discreet intervals, and hence represents an approximation

of reality. As time passes, this approximation becomes less accurate, until it reaches a point

where the value is no longer re
ective of the state of the environment. It is at this point in

time that we say the data value is no longer temporally consistent. There are two forms of

data temporal consistency constraints:

10

� Absolute Temporal Consistency - where a data item's age must be within a certain

interval of the current time. For instance, a sensor value might have to have been

recorded within two seconds of the current time to be considered absolutely temporally

consistent.

� Relative Temporal Consistency - where several data values must have been recorded

with the same time interval. For instance, if a sensor data value representing the speed

of radar track and another representing the last measured position of the track are used

to derive the new position, they may have to have been recorded within one second

of each other for the derivation to be valid. This is a relative temporal consistency

constraint between the speed and the last measured position data items.

3.2 Bounded Imprecision

As discussed in Section 2, real-time constraints maymake precise computation impossible. In

a database, a value is imprecise if it di�ers from the corresponding value resulting from each

possible serializable schedule of the same transactions [14]. In many applications, some im-

precision is tolerated. For instance, it may be su�cient for the position of a radar track to be

within a few meters of its exact value. Although imprecision may be allowed, it must always

be bounded. Thus, database logical consistency constraints for many real-time applications

do not require the exact logical consistency that typical non-real-time databases do. Instead,

the real-time database logical consistency constraints can allow bounded imprecision.

Imprecision can result from data management itself due to inherent con
icts between

temporal and logical constraints. These con
icts make it di�cult for a database management

system to maintain all four forms of consistency constraints that are present in a real-time

database (see Table 1 of Section 3.1). For example, in order to maintain precise transaction

logical consistency (e.g. serializability), a transaction tupdate that updates a piece of data x

may be blocked by another transaction tread that is reading x. If x is getting \old" it would be

in the interest of its temporal consistency to allow tupdate to execute. However, this execution

could violate the precise data logical consistency of x or the precise transaction logical

consistency of tread. Thus, there is a trade-o� between maintaining temporal consistency and

maintaining logical consistency. If logical consistency is chosen, then there is the possibility

that a piece of data may become old, or that a transaction may violate a timing constraint.

If, on the other hand, temporal consistency is chosen, the consistency of the data or of the

transactions involved may be compromised.

11

Priority inversion, mentioned in Section 2, is another example of the con
ict between logi-

cal and temporal consistency. Priority inversion occurs because a lower-priority task/transaction

is not preempted from a resource when a higher-priority task/transaction needs the resource.

Liu and Layland's optimal scheduling results (which support temporal consistency) require

such a preemption. Thus, priority inversion is the result of choosing precise logical consis-

tency over a potential violation of temporal consistency.

A consequence of relaxing logical consistency, such as allowing non-serializable schedules

or sequences of data operations, is that logical imprecision may accumulate in the data in the

database and in the transactions' views of the data. Recall the example described earlier in

which an update transaction tupdate wishes to preempt a reading transaction tread, in order to

maintain the temporal consistency of the data. If this preemption is allowed, tread may get an

imprecise view of the data because it may read the value written by an uncommitted update

transaction. The imprecision of a data item may be local to the view of a single transaction,

such as when one transaction reads data written by another uncommitted transaction. A

data item may also be imprecise with respect to future transactions that access it, such as

when two transactions that write to the data item interleave.

Since imprecision may be inevitable in a real-time database, the database management

system is required to manage the imprecision and bound it.

3.3 Predictability

As discussed in Section 2, predictable execution may be important in certain real-time ap-

plications. As a component of such systems, the real-time database may need to exhibit

predictable behavior. This characteristic may generate several requirements for the database

mangement system:

� Bounded worst case execution times of all database primitive commands.

� Bounded sizes of tables and data structures.

� Bounded use of memory.

� Bounded waits for database bu�ers.

� Bounded waits for secondary storage retrievals.

� Bounded blocking due to concurrency control.

12

� Bounded numbers and lengths of transaction aborts.

� Bounded indexing for locating data items.

� Use of real-time transaction scheduling that facilitates predictability.

As in all real-time applications, achieving such predictability often requires either making

pessimistic worst case assumptions, using drastically simpli�ed subsystems, or both.

3.4 Transactions

There are three types of transactions in a real-time database: sensor transactions, update

transactions and read-only transactions [15]. All of these transactions can have temporal

consistency requirements. Sensor transactions are write-only transactions that obtain the

state of the environment and write the sensed data to the database. Sensor transactions are

typically periodic. Update transactions can both read from and write to the database either

periodically or aperiodically. Update transactions may be used to write values derived from

computations or user input. Read-only transactions, such as some user queries, read data

from the database and may also be either periodic or aperiodic.

Conventional transactions are structured to enforce the ACID properties [16]. These

properties di�erentiate transactions from other tasks by facilitating reasoning about the log-

ical consistency of transactions and data. However, the ACID properties ignore the temporal

consistency requirements found in real-time databases.

To better support real-time applications, real-time databases rede�ne the ACID require-

ments to allow better support for temporal consistency while maintaining support for logical

consistency. These de�nitions utilize semantic information to determine to what degree

the ACID properties must be enforced. The rede�nition of ACID properties for real-time

transactions includes the following:

� Atomic - An atomic transaction implies all-or-nothing execution of the transaction.

For real-time transactions, atomic execution is selectively applied to those pieces of

the transaction that have a critical need for totally consistent data; instead of the

transaction as a whole. Also, due to allowed logical imprecision, a \rollback" of a

transaction in the \nothing" alternative of all-or-nothing may not rollback to the orig-

inal state. Instead the transaction may be allowed to end in an inconsistent state as

long as the resulting imprecision is bounded.

13

� Consistent - As discussed earlier, the consistency that typical ACID transactions seek to

maintain is precise logical consistency. Real-time transactions must support a trade-

o� between temporal consistency and may logical consistency. This trade-o� may

introduce bounded temporal or logical imprecision.

� Isolated - Conventional transactions are required to have the property of appearing

to have isolated execution. This implies that there be no dependencies in execution

between transactions. In real-time databases, transactions may need to communicate

and synchronize with other transactions to perform control functions. Transactions

may need to synchronize on external time boundaries, system events, another trans-

action's results or end conditions, or they may need to perform some integrated set of

tasks for an application that requires sharing of system state knowledge.

� Durable - The durability property of transactions implies that the results of a trans-

action are persistent and permanent. In a real-time database system, data must still

be persistent, but not necessarily permanent. Temporal consistency constraints may

indicate that some data is invalid and thus no longer needed. Another example is a

circular queue data structure, which is commonly used in real-time databases to bound

memory usage. This structure requires deletion of the oldest item when the queue is

full and a new item is added. Durability of data must be speci�ed semantically by the

constraints and structure of the data, not by an implicit feature of a database or by a

transaction's execution.

3.5 Summary of Real-Time Database Requirements

Most of the requirements discussed in this section are also speci�ed in the Navy's Next

Generation Computer Resources Database Standards Requirements Document [17] and in

the speci�cation for Real-Time SQL (see [18] and Section 5.4). To summarize, we list the

requirements for real-time databases from [17] (which are assumed to be addition to the

requirements of non-real-time databases):

1. Modes of Real-Time { A real-time database management system may support hard

real-time, �rm real-time, soft real-time, and/or non-real-time modes of operation.

2. Real-time Transactions { A real-time database management system requires the abil-

ity to allow users to issue real-time transactions where selected ACID properties are

applied to parts of the transaction (note ACID properties are not required on an entire

14

transaction), and start events, deadlines, periods, and importance, of the real-time

transactions are enforced.

3. Data Temporal Consistency { A real-time database management system requires the

enforcement of absolute and relative data temporal consistency constraints.

4. Real-time Scheduling { A real-time database management system requires real-time

transaction and operation scheduling for all resources allocated in the database system.

The scheduling algorithm(s) should attempt to maximize meeting timing constraints

and criticality (or some synthesis of these two attributes) of transactions, as well as

attempting to maintain both logical and temporal consistency of data. Scheduling for

hard real-time requires support for analysis of predictable timing behavior.

5. Bounded Imprecision { A real-time database management system may allow logical

and temporal imprecision of data. It must provide the capability to constrain these

imprecisions.

6. Timing Constraint Violation Recovery { A real-time database management system

requires support for recovering from timing constraint violations of transactions and

violations of temporal consistency of data.

7. Predictability { A real-time database management system is required to specify the

probabilistic and worst case utilization amount and time for all resources (e.g. CPU

time, memory, devices, data objects) of every DBMS function that can be used in hard

real-time operation.

4 Real-Time Database Models

There have been several models developed to express the characteristics of real-time databases.

We review two general models and one object-oriented real-time database model in this sec-

tion.

4.1 Ramamritham Model

Ramamritham [15] presents a model of a real-time database in which both absolute and

relative timing constraints are expressed on data. Transactions are characterized by the

types and implications of their timing constraints.

15

Real-Time Data. A data object in the Ramamritham model is represented by

d:(value,avi,timestamp), where dvalue represents the real-world data value, davi is the absolute

validity interval of the data item and dtimestamp is the time at which davi begins. Absolute

temporal consistency of a data object d is maintained at a time t if jt� dtimestampj � davi.

A set of data objects used to derive another data object is stored in a relative consistency

set, R. Rrvi is the relative validity interval of the set. Relative temporal consistency is

maintained as long as the timestamps of each data object in R are within Ravi of each other.

In other words, 8d;d0
2Rjdtimestamp � d

0

timestampj � Rrvi. The timestamp of derived data is a

function of the timestamps of the data used to derive it.

Consider the following example: Let temperatureavi = 5, pressureavi = 10, R =

ftemperature; pressureg and Rrvi = 2. If current time = 100, then temperature =

(347; 5; 95) and pressure = (50; 10; 97) are temporally consistent. However, temperature =

(347; 5; 95) and pressure = (50; 10; 92) are not temporally consistent because even though

the absolute consistency requirements are met, R's relative consistency is violated.

Real-Time Transactions. Transactions in the Ramamritham model are characterized

along three dimensions: the way in which the data is used by a transaction, the nature of

the timing constraints, and the implication of a missed deadline.

Real-time transactions may use data in one of three ways. Write-only transactions write

to the database. Sensor transactions are generally write-only. Update transactions derive

data, by reading and performing calculations, and store it in the database. And read-only

transactions read data from the database.

Timing constraints on transactions come from temporal consistency requirements of the

data or from requirements imposed on system reaction time. For instance, an update trans-

action may be required to execute every 5 seconds because the data that it writes has an

absolute validity interval of 5 seconds. On the other hand, another transaction may need to

be performed within a certain amount of time to satisfy external requirements. For example,

the constraint:

If temperature > 1000;

then within 10 secs add coolant to reactor

requires that the transaction to add coolant be executed within 10 seconds. The e�ect of

missing a deadline is the third way of characterizing transactions. The model uses hard, �rm

and soft, as described last section, as values of this characteristic.

16

4.2 Kim/Son Model

In [19] Kim and Son present a model of real-time databases that draws some of its concepts

from the Ramamritham model of [15]. The model has been broadened to include non-real-

time data and to classify transactions based upon the type of application in which they may

be used.

Real-Time Data Objects. The Kim/Son model divides data objects into two types:

continuous and discrete. Continuous objects are objects whose value can become invalid

with time. Such objects can be obtained directly from a sensor (image object) or computed

from the values of other objects (derived object). Discrete data objects are non-real-time

objects in that their values do not become obsolete with time.

Each continuous data object has associated with it a timestamp which tells when the

current value of the data object was obtained. The absolute validity duration of a continuous

data object is the length of time during which the value of the object is considered valid.

A relative validity duration is associated with a set of data objects �y used to derive a new

data object y. A set �y is relatively temporally consistent if the temporal distance between

y and any data object in �y is not greater than the relative validity duration rvdy.

Real-Time Transactions. Real-time transactions in the Kim/Son model are character-

ized by: the implication of missing a deadline (hard, critical (�rm), soft real-time); arrival

pattern (periodic, sporadic or aperiodic); data access pattern (write-only, read-only, up-

date, or random); data requirement (known or unknown); run-time requirement (known or

unknown); and accessed data type (continuous, discrete or both).

Given the types of data objects described above and the characterization of real-time

transactions, there are hundreds of possible transaction classes. However, only some of

these classes are feasible in a real-time database. For instance, it does not make sense to

have a hard real-time transaction with random arrival pattern, random data access set, and

unknown execution time. The Kim/Son model classi�es transactions based upon how an

application may use them. Table 2 summarizes the transactions classes.

Class I transactions are hard real-time periodic transactions. Such transactions have all

data and run-time requirements available in advance. They represent the only writing source

for continuous data objects, and thus it is feasible to guarantee their hard timing constraints.

This class of transactions can be further broken down into subclasses.

Class IA transactions maintain the temporal consistency of continuous data objects.

17

They are write-only and since each such transaction is the only writer to a continuous data

object, there are no con
icts between class IA transactions. Transactions of class IB are

update transactions. They read some data objects, compute new values and write to derived

data objects. They do not con
ict with other class I transactions because each data object

has only one writer. Class IC transaction periodically retrieve data values from the database.

They are read-only transactions with hard deadlines.

Class II transactions are read-only transactions with some critical timing constraints.

These timing constraints come from system response time requirements and not data tem-

poral consistency requirements. Because class II transactions can access both discrete data

objects (which require serializable access) and continuous data objects, timing constraints

cannot always be met. However, since the only source of unpredictability in class II trans-

actions is the data requirement, the transaction execution time is a function of only one

variable.

All transactions not belonging to any of the other classes can be categorized as class III

transactions. They have either soft or �rm deadlines, their data and run-time requirements

are not always known, and they access both continuous and discrete data objects.

Most real-time applications have transactions in each of the above classes. Consider a

medical information system for example. Class IA transaction are those that update the

dynamic physical status of a critical patient from the sensor devices, such as blood pressure,

heart rate and body temperature. Transactions that write derived information from the raw

data are class IB transactions. Transactions monitoring the physical status of the patient

can be categorized as class IC transactions. A class II transaction in this example might be

a decision-making transaction during a critical operation on a patient. Such a transaction

may access not only the patient's current physical status, but also his or her medical history.

Class III transactions in this example include record-keeping transactions such as retrieving

weight or height.

4.3 RTSORAC Model

The RTSORAC model [20] incorporates features that support the requirements of a real-time

database into an extended object-oriented model. It has three components that model the

properties of a real-time object-oriented database: objects, relationships and transactions.

Objects. Objects represent database entities. Each object consists of �ve components,

hN;A;M;C;CF i, where N is a unique name or identi�er, A is a set of attributes, M is

18

Class I Class II Class III
Property A B C
Timing

constraints Hard Critical Soft or �rm
Arrival
pattern Periodic Sporadic Aperiodic

Data access
pattern Write-only Update Read-only Read-only No restriction
Data

requirement Known Unknown Unknown
Run-time
requirement Known Unknown Unknown
Update
data type Image Derived N/A N/A Discrete
Correctness
criteria Temporal consistency Both Logical consistency

Transaction
schedule Non-serializable Both Serializable

Performance Statistical No guarantee, but
goal 100% guarantee best-e�ort

Table 2: Classi�cation of Kim/Son Real-Time Transactions

19

a set of methods, C is a set of constraints, and CF is a compatibility function. Figure 4

illustrates an example of a Train object (adapted from [21]) for storing information about

a train control system in a database.

Each attribute of a RTSORAC object is characterized by hNa; V; T; Ii. Na is the name

of the attribute. The V �eld is used to store the value of the attribute, and may be of some

abstract data type. The T �eld is used to store the time at which the value was recorded.

The I �eld of an attribute is used to store the amount of imprecision associated with the

attribute, and is of the same type as the value �eld V .

Get_OilTemp()

M

C : Pred

N Train0294

CF

...

A

OilPressure

FuelQuantity

Name

...

OilPressure > 5

OilPressure.Time >
 Now-30*seconds

EngineRPM

ShowLog(LogName)

Get_OilPressure()

ThrottleSetting

Operator Put_OilPressure(OPreading)

Figure 4: Example of Train object

Each method of an object is of the form hNm; Arg;Exc;Op;OCi. Nm is the name of

the method. Arg is a set of arguments for the method, where each argument has the same

components as an attribute, and is used to pass information in and/or out of the method.

Exc is a set of exceptions that may be raised by the method to signal that the method has

terminated abnormally. Op is a set of operations that represent the actions of the method.

These operations include statements for conditional branching, looping, I/O, and reads and

writes to an attribute's value, time, and imprecision �elds.

The OC characteristic of a method is a set of operation constraints. An operation con-

straint is of the form hNoc; OpSet; P red;ERi where Noc is the name of the operation con-

straint, OpSet is a subset of the operations in Op, Pred is a predicate (Boolean expression),

and ER is an enforcement rule. The predicate is speci�ed over OpSet to express precedence

constraints, execution constraints, and timing constraints [22]. The enforcement rule is used

to express the action to take if the predicate evaluates to false. A more complete description

of an enforcement rule can be found in the paragraphs below describing constraints.

Here is an example of an operation constraint predicate in the Train object:

Pred : complete(Put OilPressure) < NOW + 5*seconds

A deadline of NOW + 5*seconds is speci�ed for the completion of the Put OilPressure

20

method.

The constraints of an object permit the speci�cation of correct object state. Each con-

straint is of the form hNc; AttrSet; P red;ERi. Nc is the name of the constraint. AttrSet

is a subset of attributes of the object. Pred is a predicate that is speci�ed using attributes

from the AttrSet. The predicate can be used to express the logical consistency requirements

by using value �elds of the attributes. It can express temporal consistency requirements by

using the time �elds of attributes. It can express imprecision limits by using the imprecision

�elds of attributes.

The enforcement rule (ER) is executed when the predicate evaluates to false, and is of

the form hExc;Op;OCi. Exc is a set of exceptions that the enforcement rule may signal,

Op is a set of operations that represent the actions of the enforcement rule, and OC is a set

of operation constraints on the execution of the enforcement rule.

As an example of a temporal consistency constraint, consider the following. As mentioned

earlier, the Train object has an oil pressure attribute that is updated with the latest sensor

reading every thirty seconds. To maintain the temporal consistency of this attribute, the

following constraint is de�ned:

N : OilPressure avi

AttrSet : fOilPressureg
Pred : OilPressure.time > Now - 30*seconds

ER : if Missed <= 2 then

OilPressure.time = Now

Missed = Missed + 1

signal OilPressure Warning

else signal OilPressure Alert

The enforcement rule speci�es that if only one or two of the readings have been missed, a

counter is incremented indicating that a reading has been missed and a warning is signaled

using the exception OilPressure Warning. If more than two readings have been missed,

then an exception OilPressure Alert is signaled, which might lead to a message being sent

to the train operator. The counter Missed is reset to zero whenever a new sensor reading is

written to the OilPressure attribute.

The compatibility function of an object expresses the semantics of allowable concurrent

execution of each ordered pair of methods in the object. For each ordered pair of meth-

ods, (mi;mj), a Boolean expression (BEi;j) is de�ned. BEi;j can be evaluated to determine

whether or not mi and mj can execute concurrently. Based on the semantics of the applica-

tion, the compatibility function may allow method interleavings that introduce imprecision

into the attributes and method arguments. Therefore, in addition to specifying compat-

21

Compatibility Imprecision Accumulation

A: CF (Put OilPressure(); Put OilT emp()) = No Imprecision
TRUE

B: CF (Get OilPressure(P1); Put OilPressure(P2)) = Increment P1:ImpAmt by
(OilPressure:time <= Now � 30 � seconds) AND jOilPressure:value � P2:valuej
(jOilPressure:value � P2:valuej <=
(P1:implimit � P1:ImpAmt)

Figure 5: Compatibility Function Examples

ibility between two method invocations, the compatibility function expresses information

about the potential imprecision that could be introduced by interleaving method invoca-

tions. There are three potential sources of imprecision when methods invocations mi and

mj are interleaved: imprecision in the value of an attribute that is written by both mi and

mj, imprecision in the value of the return arguments of mi when mi reads attributes written

by mj and imprecision in the value of the return arguments of mj when mj reads attributes

written by mi [14].

Figure 5 demonstrates several examples of the compatibility function and its associ-

ated imprecision accumulation for the Train object of Figure 4. In Example A of Figure

5, the compatibility function is used to specify that the methods Put OilPressure and

Put OilTemp can always run concurrently. This is appropriate because these two meth-

ods access di�erent attributes. No imprecision is introduced in this case. Example B

demonstrates trading o� logical consistency for temporal consistency. If the temporal con-

sistency constraint on the OilPressure attribute has been violated (OilPressure:time <=

Now � 30 � seconds), then the compatibility function speci�es that the Put OilPressure

method invocation can execute concurrently with an active Get OilPressure method, pre-

sumably to restore the temporal consistency of the OilPressure attribute. The CF re-

stricts this interleaving to occur only if the amount of imprecision in the argument P1 of

the Get OilPressure method invocation does not exceed the limit speci�ed by the invok-

ing transaction (P1:implimit). The amount of imprecision to add to P1 in this case is also

speci�ed by the compatibility function. Note that although we use only simple methods (es-

sentially reads and writes) in this example, the compatibility function can specify imprecision

accumulation for general object methods [23].

22

Note how the RTSORAC model supports the trade-o� of logical consistency for temporal

consistency found in real-time databases. Object designers can semantically express their

preferences toward logical or temporal consistency in certain situations by using the RTSO-

RAC compatibility functions. The imprecision �eld of each attribute allows accumulation

of the imprecision that could result from the trade-o�. The model can use constraints on

imprecision �elds to express limits on the allowed amount of imprecision.

Relationships. Each relationship in the RTSORAC model represents an aggregation of

two or more objects, and consists of hN;A;M;C;CF; P; ICi. The �rst �ve components of a

relationship are identical to the same components in the de�nition of an object. In addition,

objects that can participate in the relationship are speci�ed in the participant set P , and a

set of interobject constraints is speci�ed in IC.

Figure 6 illustrates an example of an Energy Management relationship for relating a

Train object with a Track object. The Track object stores information such as track pro�le

and grade, speed limits, maximum load, and power available. The Energy Management

relationship uses both train and track information to determine control algorithm parameters

such as fuel e�cient throttle and brake settings.

Each participant in a relationship is of the form hNp; OT;Cardi. Np is the name of

the participant. OT is the type of the object participating in the relationship. Card is

the cardinality of the participant, which is either single or multi [24]. Constraints can be

used to express cardinality requirements of the relationship, such as minimum and maxi-

mum cardinality of the participants. In Figure 6, Train and Track are single cardinality

participants.

The interobject constraints placed on objects in the participant set are of the form:

hNic; PartSet; P red;ERi. Nic, Pred, and ER are as in object constraints, and PartSet is

a subset of the relationship's participant set P . The predicate is expressed using objects

from the PartSet, allowing the constraint to be speci�ed over multiple objects participating

in the relationship. Enforcement rules are de�ned as before by hExc;Op;OCi, however the

operations in Op can now include invocations of methods of the objects participating in the

relationship.

As an example of an interobject constraint, consider the Energy Management rela-

tionship in Figure 6. A Train object will be on one speci�c segment of track, represented by

the Track object participating in the relationship. The train should obey the speed limits

set on the track segment, so the following interobject constraint predicate could be speci�ed:

23

N EnergyMgt34
M

CF

A

...

TrackTrain

Train.Get_Speed() <
 Track.Speed_Limit(Train.Get_Location())

IC : Pred

OptimalThrottleSetting
BestSpeed ...

C : Pred

BestSpeed < 200 Get_BestSpeed()

Get_OptimalThrottleSetting()

C A

M

...

CF

C A

M

...

CF

Track0527NN Train0294

Figure 6: Example of Energy Management relationship

Pred : Train.Get Speed() < Track.Speed Limit(Train.Get Location())

If the speed of the train exceeds the speed limit posted at the train's location on the track,

then the corresponding enforcement rule signals SpeedLimitExceeded.

Transactions. A RTSORAC transaction has six components,

hNt; O;OC;PreCond; PostCond;Resulti, where Nt is a unique name or identi�er, O is a set

of operations, OC is a set of operation constraints, PreCond is a precondition, PostCond

is a postcondition, and Result is the result of the transaction. Each of these components is

brie
y described below.

The operations in O represent the actions of the transaction. They include statements

of the language in which the transaction is written, and method invocations on database

objects (MI). Method invocations (MI) are of the form hMN;ArgInfoi, where MN is the

method name (prepended with the appropriate object identi�er) and ArgInfo is a set of tu-

ples containing argument information. Each argument tuple is of the form haa;maximp; tcri

where aa is the actual argument to the method, maximp is the maximum allowable impreci-

sion of the argument, and tcr is the temporal consistency requirement of the argument. The

�elds maximp and tcr are speci�ed only for arguments that are used to return information

to the transaction. These �elds allow the transaction to specify requirements that di�er from

those de�ned on the data in the objects. For example, the transaction might be willing to

accept a value whose temporal consistency requirements have been violated so as to meet

other timing constraints. The data may still be useful to the transaction because of other

available information (for example, it may be able to do some extrapolation). A transaction

24

may also specify that data returned by a method invocation must be precise (maximp is

zero).

OC is a set of constraints on operations of the transaction. These constraints are of the

same form as the operation constraints speci�ed for methods, hNc; OpSet; P red;ERi. They

can be used to express precedence constraints, execution constraints, and timing constraints.

For example, a transaction may require that a sensor reading be returned within two seconds.

PreCond represents preconditions that must be satis�ed before a transaction is made

ready for execution. For example, it may be appropriate for a transaction to execute only

if some speci�ed event has occurred. The event may be the successful termination of an-

other transaction, or a given clock time. PostCond represents postconditions that must

be satis�ed upon completion of the operations of the transaction. The postconditions can

be used to specify the semantics of what constitutes a commit of a transaction containing

subtransactions. Result represents information that is returned by the transaction. This

may include values read from objects as well as values computed by the transaction.

5 Real-Time Database Systems and Standards

This section reviews several real-time database development e�orts. It �rst examines the only

two commercial products to advertise themselves as \real-time databases": Zip RTDBMS

for DBx, and EagleSpeed RTDBMS from Martin Marietta. It also presents an academic pro-

totype real-time oject-oriented database based on Texas Instrument's Open Object-Oriented

Database system. Finally, it reviews the proposed Real-Time SQL standard. These reviews

are done using the requirements for real-time databases that were presented in Section 3.

5.1 The Zip Real-time Database System

ZIP RTDBMS from DBx, Inc. is proclaimed to be a memory-resident, high-speed, real-time

database management system. Version 1.2 currently runs on LynxOS 2.2 operating system,

which is consistent with the POSIX 1003.4 real-time operating systems standards. Imple-

mentations of Zip for other platforms are also under development. Zip provides bounded

response time, static de�nition and evaluation of schemata and data access behavior, and a

priori query optimization before run-time. It features preallocation of system resources at

database creation time as well as �xed-time attribute and index resolution at run-time.

The bounded response time is designed for atomic operations such as insertion, deletion,

etc., performed directly on the data. Some response times collected from Zip average-case

25

Function Timing

createDB 1 sec
connectDB 90 ms
insertDB 520 us
deleteDB 820 us
destroyDB 40 ms

disconnectDB 50 ms

Table 3: Zip RTDBMS Average-Case Timing under LynxOS 2.2 i486/50

timing sweep are shown in the Table 3.

In Zip, all tables and queries are de�ned statically in a user-created data de�nition

language (DDL) �le. The DDL has some similarities to standard language such as SQL, but

it is Zip-speci�c. The DDL �le is parsed by a Zip utility and converted into a schema binary

�le, used by both the client and the database server. The schema �le contains database

speci�cations, table, and index de�nitions. An example of a data de�nition �le, simpli�ed

for demonstration is presented in Figure 7.

In the example, the database speci�cations are de�ned in lines 1-5, along with one table

in lines 6-13, and an index at 15-18. The table contains a sequence of variables (columns)

of various data types. Zip supports a total of 12 types plus the string data type. One

distinguished variable in the table is timestamp, which is not implemented, but proposed for

the next release of Zip. The timestamp supports the determination of temporal consistency

of data.

After a table has been declared in Zip's DDL, it must now be set to a particular type

and size. In the example of Figure 7 the table type is STATIC and its size is 10000. Three

types of data relation (table types) are supported by Zip. STATIC relations deal with records

of �xed size and a relatively stable content. Only SELECT and IPDATE operations can be

used with these tables. BOUNDED relations are of �xed maximum size, but with time-varying

content. All operations are allowed on these tables. ROLLING relations resemble a �xed size

queue where the new insertions force the old data down the queue until eventually there

is no more \room" for it and it is lost, hence simulating \aging" of data. The last type is

important in many real-time environments where the value of the data changes with time

and �xed-sized resources are necessary.

The last statement in the example DDL �le is a declaration of the table index. It identi�es

the key variable, the load factor, which is the percent of free spaces, and the number of distinct

keys which are used to compute optimal hashing methods for the table. Although though

26

1: define database db_name ("sampleZipDB");

2: define database db_dir_path ("/local/db");

3: define database db_phys_addr (0x0);

4: define database db_size (393216);

5: define database db_grants (0777);

6: create table calibrate_parameters (

7: unit_id byte2 not null, unique

8: cal_value byte8f not null,

9: tolerance byte8f,

10: descript string[4],

11: cal_cycle byte2,

12: cal_date date not null,

13: timestamp tstamp);

14: define table calibrate_parameters (STATIC, 10000);

15: define index unit_id_idx on calibrate_parameters (unit_id)

16: ideal,

17: load (100%),

18: distinct (10000);

Figure 7: Example Zip DDL

27

1: declareDBrelation(DBhandle, "stock")

2: bindDBvariable(DBhandle, id_name, &id, &id_type)

3: bindDBvariable(DBhandle, price_name,&price,&price_type)

4: tids = selectDB(DBhanle,DEFAULT_FUNC)

Figure 8: Example of Zip Query
).

any query could be generated, only the queries created with the indices in mind are e�cient.

Since the schema �le is available before the creation of the database, most of the system

allocation is done during the creation. Once running, the server can be accessed by multiple

clients via a multitude of connections, each according to the speci�cations de�ned in the

schema �le. It is worth noting that the version of Zip we review here does not have any user-

friendly interface for generation of the DDL �les, but DBx claims plans for SQL compatibility

in the future versions. Along with all other components of the DDL, �le queries must be

created by hand in the client program itself (see Figure 8).

The example of Figure 8 shows a simple query that selects all tuples from a table called

stock, containing two columns: id and price. The table is assumed to have been

declared earlier. The bindDBvariable function speci�es to the database what columns to

work with while processing a query. The function's parameters contain a database handle,

column name and type information. In the example query the columns in lines 2 and 3

are bound and then a selection is performed in line 4 with the selectDB function. This

function accepts the database handle and error-function as parameters. The return value

tids is a pointer to an array of tuples that was selected. Once selected, these tuples can

be traversed with the nextDBtuple function (not shown) and accessed individually.

The Zip RTDBMS claims quick execution times because the system is relieved of much

of the traditional database functionality, such as query parsing, relation and attribute res-

olution, and index selection. In addition, the whole database resides in a shared memory

special �le with every access calculated as a base plus an o�set pair. The implementation is

multi-threaded and optimized for the underlying real-time operating system environments.

Though features described above pertain in part to those found in a real-time database,

Zip RTDBMS clearly lacks some of the major components. This is because Zip was designed

for hard real-time, which requires the elimination of many features in order to preserve pre-

dictability. Most of the characteristics of real-time transactions mentioned in Section 3 are

28

not supported, nor is dynamic real-time scheduling. Data temporal consistency, both abso-

lute and relative are not supported, however functions such as get_earliest_timestamp,

get latest timestamp and testDBtimestamp are proposed and thus would be available for

client applications to implement. Zip does not perform any logical or temporal imprecision

data management, hence bounded imprecision support cannot be claimed. Time constraint

violation recovery is non-existent, since neither transactions nor data temporal consistency

violations can be detected. Concurrency control for clashing requests is not real-time, in-

stead Zip chooses standard locking in all cases. Predictability is one issue that Zip supports

well by providing bounded response time on all database calls, though at the sacri�ce of

unlimited storage capability. Overall, Zip RTDBMS is perhaps better considered a real-time

data store, rather than a real-time database. It claims only one of the real-time database

features of Section 3.

5.2 The EagleSpeed Real-Time Database System

The EagleSpeed real-time database management system is the commercial release of a

database designed for a submarine command system. It is based on the ANSI CODASYL

(network) data model. It is designed to support hard real-time applications. The stated

goals of EagleSpeed are:

� To synchronizing with environmental processes that must be controlled.

� To support a priori determination of system schedulability.

� To provide predictability and punctuality of transaction access.

� To provide speed, determinism, and minimalism.

It has achieved the predictable execution time required by hard real-time in several

ways. First, EagleSpeed implements only a subset of database management functionality.

The removal of database system functionality places more burden on the application writer.

It only provides a subset of the CODASYL verbs; requiring the applications writer to de�ne

other functionality. Second, by utilizing the network data model's ability to �x logical data

structures in advance, it �xes access time to the data. Third, it uses one single-layer schema,

which mimizes overhead due to mapping levels and due to maintaining metadata. Fourth,

the physical location of data objects can be �xed to facilitate retrieval.

Transactions are Ada programs with ACID properties. They are invoked via messages

sent to their site of storage. In addition, the system allows direct access to the transaction

29

manager and the operating system to facilitate real-time performance. Timing constraints

on transactions are not supported since it assumed that a priori analysis will determine if

all transactions meet timing constraints. Transactions are given priorities and scheduled by

the underlying operating system. Concurrency control is handled by strict two-phase locking

with no imprecision allowed. Like Zip, EagleSpeed is a fast, predictable real-time data store,

but lacks some features of a full real-time database.

5.3 Real-TimeExtensions to the Open Object-OrientedDatabase
System

A prototype object-oriented real-time database system has been designed at the University

of Rhode Island [25]. It implements the RTSORAC model described in Section 4.3, by ex-

tending the Open Object-Oriented Database System (Open OODB) [26]. The Open OODB

system was initiated by the U.S. Advanced Research Projects Agency (ARPA). The original

goal of Open OODB is to establish a common, modular, modi�able, object-oriented database

system suitable to be used by a wide range of researchers and developers [26]. Open OODB

is designed so that features such as transaction management, query interface, persistence,

etc. are modules that can be individually \unplugged" and replaced by other modules.

The basic conceptual system architecture of Open OODB is shown in Figure 9 (along with

the real-time extensions). The support managers are modules that are currently implemented

as library routines that get linked into the user's C++ program to (transparently) provide the

extended database capabilities. Policy managers (PMs) provide extenders to the behavior

of programs by coordinating the support managers. For instance, the Persistence Policy

Manager provides applications with an interface through which they can create, access, and

manipulate persistent objects in various address spaces. The Transaction Policy Manager

enables concurrent access to persistent and transient data; its implementation in the current

alpha release is a trivial mapping to Exodus write locks on all objects. Other policy managers

include those for distribution, change management, indexing, and query processing. The

query interface is in two forms: an extended version of C++ and an SQL-like language

called OQL, which must be embedded in C++ code [26].

Real-time Extensions. The RTSORAC extensions to the Open OODB architecture are

designed within Open OODB's original framework, as shown in Figure 9.

There are two changes to the system's underlying architecture: implementation of ex-

tensions using a real-time POSIX operating system [27]; and incorporation of a real-time

30

Application

OQL RTSQL

key:

Existing Open OODB

Real-Time Extensions

Persistence
PM

Distribution
PM

Object
PM

RT Trans.
PM

...

Meta Architecture Support (Policy Managers)

Support Modules (Managers)

Address
Space Communication Translation

Data
Dictionary

Thread-Based Real-Time POSIX-Compliant
Operating System

Real-Time
Persistent

Store

im
pl

ic
it

in
te

rf
ac

e

Query
PM

Network

C++ API

Exodus

Figure 9: Open OODB Architecture With Real-Time Extensions

31

persistent storage subsystem, which is the Zip RTDBMS described in Section 5.1. Addition-

ally, two policy managers have been added: one for real-time transaction management, and

one for real-time object management.

The interface to the real-time Open OODB prototype is and extension to OQL, based

on the real-time SQL language, which is described in Section 5.4. The prototype real-time

extensions provide the capability to create arbitrary real-time attribute classes by using the

type of the value �eld as an argument to a C++ template that provides time and imprecision

capabilities.

Transactions in the real-time Open OODB are C++ programs that include the schema

�le of object type declarations. Each transaction is a Real-Time SQL program (see Section

5.4) that is compiled into a POSIX process. Each process maps all database objects, which

reside in shared memory into its own address space. The process uses calls to the semantic

concurrency control mechanism (Section 6.2.3) to lock objects while using them. These calls

are provided by the Open OODB policy manager code. Once an object is locked, the trans-

action calls the object's methods as if the object were in the transaction's own address space.

A transaction process uses calls to the underlying operating system to set its priority and

to set alarms for start times and deadlines. The real-time transaction scheduling performed

by the Transaction Policy Manager is essentially a mapping of timing constraints expressed

in RTSORAC transactions into real-time POSIX priorities for transaction processes. This

mapping is designed so that the transaction process priorities realize Earliest-Deadline-First

(EDF) scheduling.

Although the Real-time extensions to Open OODB is an academic prototype, it does

address many of the requirements of a full real-time database. The use of the RTSORAC

model is instrumental in the real-time extensions' support of the requirements of Section 3.

The RTSORAC model expresses logical consistency, temporal consistency, and imprecision

constraints as well as their trade-o�s for both data objects and transactions. It also supports

expression of complex data types and associations among data items. The prototype uses

main-memory objects with semantic real-time concurrency control to achieve fast access that

observes the semantics of the logical, temporal, and imprecision constraints.

5.4 Real-Time SQL

For the past three years organizations including: the University of Rhode Island, the Univer-

sity of Massachusetts - Dartmouth, the U.S Department of Defense's Next Generation Com-

puter Resources (NGCR) Database Interface Standard Working Group (DISWG), and the

32

American National Standards Institute's (ANSI) Predictable Real-time Information Man-

agement Task Group (PRIS-TG), have been working to de�ne real-time database extensions

to SQL. These extensions involve timing constraints or data (in SQL data de�nition), timing

constraints on SQL data manipulation, recovery from timing constraint violations, support

for predictability, and
exible transaction structure.

Currently, SQL (called SQL2) supports the de�nition, manipulation, and control of data

in a relational database system. However, the current SQL standard (SQL2) [28] has no

provisions for real-time database support. The standard does have mechanisms for constraint

expression, support for expression of time, and rudimentary transaction structure { all of

which provide a basis for developing real-time database extensions.

5.4.1 SQL2 Time Speci�cation.

SQL2 provides su�cient syntax and semantics for speci�cation of timing expressions. There

are three datetime data types: DATE, TIME, and TIMESTAMP. These data types can be used

to express absolute time, such as 9am. There is also an interval data type called INTERVAL,

that can be used to express a period of time, such as 5 minutes. SQL also supports three

datetime valued functions: CURRENT DATE returns the current date, CURRENT TIME returns

the current time, and CURRENT TIMESTAMP returns the current date concatenated with the

current time. The arithmetic operators +, -, *, and /, and the usual comparison operators

(=, <>, <, <=, >, >=) have been de�ned over datetime data types and interval data types.

Temporal SQL2 [29] has proposed a precise de�nition for representation of time within the

database. This de�nition includes the concept that time has a discrete representation, and

that the smallest unit of time is called a chronon.

5.4.2 Data Temporal Consistency

Constraints in SQL2 are mechanisms for specifying the logical consistency requirements of

data. They can be speci�ed on columns, tables, and as stand alone entities (called assertions)

within the database. For example, a constraint can be used to specify a range of values for

a data item, or to make sure that a foreign key in one table corresponds to a primary key in

another.

Speci�cation of Data Temporal Consistency Constraints. In RTSQL, data con-

straint de�nitions are extended to allow for speci�cation of temporal consistency require-

ments of the data. These requirements are usually expressed by indicating the maximum

33

acceptable age for a data item. Computation of the age of a data item requires that the

system record the time that the data value was determined (perhaps it is the time the value

was generated by a sensor, or the time that the value was written). Since it would not be

necessary to determine the age of every data item in the database, the following RTSQL

clause can be speci�ed during de�nition of a data item to specify that a timestamp will be

required:

<data timestamp clause> ::=

[WITH TIMESTAMP <datetime type>]

Note that <datetime type> is a type provided by SQL2. Access to this timestamp

value is through a function on the data item called TIMESTAMP. For example, the timestamp

value on the data item temp readingwould be accessed as TIMESTAMP(temp reading). Also

note that SQL2 provides a function that returns the current time called CURRENT TIMESTAMP.

SQL2 provides syntax for constraint speci�cation that can be used to specify temporal consis-

tency requirements when used in conjunction with CURRENT TIMESTAMP and the TIMESTAMP

function. For example, the following constraint, temp reading avi, speci�es that for the

data item temp reading to be absolutely temporally consistent, it must be less than ten

seconds old:

CONSTRAINT temp_reading_avi

CHECK (CURRENT_TIMESTAMP - TIMESTAMP(temp_reading)) DAY to SECOND

< INTERVAL '10' SECOND

Here, the SQL2 CHECK clause contains a boolean expression which computes the age

of temp reading and determines whether it is less than 10 seconds old. SQL2 does not

allow constraint speci�cations to include references to any of the functions that return dates

and times (such as CURRENT TIMESTAMP). From the example shown, it is obvious that this

restriction must be relaxed in RTSQL.

Relative temporal consistency among data items can be expressed by comparing their

timestamps. For example, the following constraint speed bearing rvi speci�es the relative

temporal consistency requirements of speed and bearing:

CONSTRAINT speed_bearing_rvi

CHECK TIMESTAMP(speed) BETWEEN

TIMESTAMP(bearing) - INTERVAL '2' SECOND

AND TIMESTAMP(bearing) + INTERVAL '2' SECOND

34

Here, the speed timestamp is checked to see if it is within two seconds of the bearing

timestamp.

Constraints themselves may be valid only for a given period of time. The following

RTSQL clauses can be speci�ed as part of a constraint speci�cation to indicate when a

constraint is active:

<constraint validity interval clause> ::=

[AFTER <datetime value expression>]

[BEFORE <datetime value expression>]

For example, the previous speed bearing rvi constraint is speci�ed to be active only after

CONTACT MADE, where CONTACT MADE is of a datetime data type:

CONSTRAINT speed_bearing_rvi

CHECK TIMESTAMP(speed) BETWEEN

TIMESTAMP(bearing) - INTERVAL '2' SECOND

AND TIMESTAMP(bearing) + INTERVAL '2' SECOND

AFTER CONTACT_MADE

Note that the <constraint validity interval clause>may be applied to any constraint

speci�cation.

Data Temporal Consistency Violations. One of the SQL working groups, SQL2/PSM,

is developing support for condition handling. Condition handling allows a more active re-

sponse to the completion of an SQL statement. When a statement is executed, it will either

raise an exception condition or a completion condition. Data temporal consistency constraint

violations in RTSQL are detected when a data value is read. This means that the exception

will be raised by a statement that may have a corresponding exception handler available.

Such a constraint violation could occur if the sensor supplying the data malfunctions, or

the transaction responsible for the update misses its deadline. An exception handler could

attempt to update the data value or it may simply signal the user that a sensor check should

be performed.

5.4.3 Timing Constraints on Execution

SQL2 does not provide any mechanisms for placing timing constraints on statements or

transactions. RTSQL speci�es time constrained execution by placing timing constraints on

individual data manipulation statements or, as appears in SQL2/PSM, a block of statements.

35

Speci�cation of Execution Timing Constraints. Speci�cation of execution timing

constraints uses the following clauses:

<timing constraint clause> ::=

[START BEFORE <datetime value expression>]

[START AFTER <datetime value expression>]

[COMPLETE BEFORE <datetime value expression>]

[COMPLETE AFTER <datetime value expression>]

[PERIOD <interval value expression>

[START AT <time expression>]

[UNTIL <boolean expression>]]

<datetime value function> ::=

CURRENT_DATE | CURRENT_TIME[<time precision>] |

CURRENT_TIMESTAMP[<timestamp precision>]

The START BEFORE and COMPLETE BEFORE clauses are used to express the latest start time

and latest �nish time for the execution of the statement. The START AFTER and COMPLETE

AFTER clauses are used to express the earliest start time and earliest �nish time for the

execution of the statement. The PERIOD clause allows for the establishment of a periodic

execution of a statement. The START AT portion of the PERIOD clause establishes the period

frame. The UNTIL portion of the clause allows for the speci�cation of the conditions that

must be met before periodic execution may terminate.

Recall that in SQL2, datetime valued expressions have been de�ned, and can include

references to datetime value functions. In RTSQL, if such functions are included in an

expression, they are all evaluated before the statement begins execution. Further, all of

the occurrences of the datetime value functions in a statement will appear to have been

evaluated at the same instance of time. This holds true for nested statements, where a

compound statement may contain statements or other compound statements.

For example, suppose we have the following:

X:BEGIN

SELECT price FROM stocks WHERE name="Acme"

COMPLETE BEFORE CURRENT_TIMESTAMP + INTERVAL '30' SECOND;

-- other computations

END X COMPLETE BEFORE CURRENT_TIMESTAMP + INTERVAL '1' MINUTE;

The execution timing constraint on the SELECT statement speci�es that it must complete

execution within 30 seconds. The timing constraint on the compound statement speci�es that

36

it must complete execution within 1 minute. Note that the value of CURRENT TIMESTAMPwill

be the same for both timing constraints (since they appear in the same compound statement).

Detecting an execution timing constraint violation can be done through the use of timers.

When a statement is encountered, the timing constraints are evaluated, and timers are set

for the various types of timing constraints.

5.4.4 Predictability Support

In order to support the predictability requirement of real-time databases, RTSQL introduces

a concept called a directive. Directives provide information to the database system to fa-

cilitate maintenance of the constraints and predictability. Directives di�er from constraints

in that constraints address the logical and temporal consistency requirements for data and

operations. The applications that utilize the database system determine these consistency

requirements, which in turn are mapped to constraints. Directives provide additional infor-

mation to the database system to facilitate maintenance of the constraints and predictable

access time to data. As such, directives may involve hardware characteristics. Real-time

SQL supports the following directives:

� Data Storage Location { The RTSQL storage directives are used to allow programmers

the ability to specify where and how a data item or table is to be stored. The following

clause, part of a table de�nition, is used to specify storage requirements:

<storage clause> ::=

[STORE IN <storage type> [AT <location>]]

where the domains of <storage type> and <location> are architecture-dependent.

For example: STORE IN main memory could be used in a SQL table de�nition to

specify that the table be stored only in main memory. The AT <location> clause

could be used to store the table at a particular location in main memory. Fixing the

location of the data item can facilitate ensuring predictable access time to it.

� Data Storage Size { To allow determination of an upper bound on the time it takes

to access a table, the following RTSQL directive clause can be speci�ed during the

de�nition of a table:

<table size clause> ::=

[SIZE UPPER LIMIT <integer>]

37

indicating that this is the maximum number of data items that can be in this table.

� Relative Importance Level { This directive allows for the speci�cation of the relative

importance of an action. A scheduling algorithm may use relative importance of tasks

as a parameter in determining scheduling priority of the tasks. Not all systems will

utilize this directive, and as such, would be free to ignore this directive upon noti�ca-

tion. Also, the semantics of the various levels may vary in di�erent systems, hence the

portability of this directive is limited. The importance directive clause is as follows:

<importance clause> ::=

IMPORTANCE LEVEL <importance level>

� Asynchronous Execution { In real-time applications, it may be useful to notify the

system that some actions can be done asynchronously. Speci�cation of asynchronous

execution of a statement in SQL3 is done using the following clause:

[ASYNC (<async statement identifier>)]

If left unspeci�ed, the default is synchronous. SQL3 also provides a statement for

testing the completion of an asynchronous statement:

<test completion statement> ::=

{ TEST | WAIT }

{ ALL | ANY | <async statement identifier list> } COMPLETION

The TEST alternative is used to check to see if asynchronous statements have completed

execution. If they have not, an exception condition is raised. The WAIT alternative

is used to wait for the asynchronous statements to complete execution. If the asyn-

chronous statements have already completed execution when the WAIT statement is

executed, an exception condition will be raised.

� Worst Case Execution Time { This directive speci�es the worst case execution time

(wcet) of a statement. This value is made available to the system by the user, who has

determined this value through analysis[3].

38

6 Real-Time Database Research

The vast majority of research in the �eld of real-time databases has focused on concur-

rency control and transaction scheduling. Scheduling transactions in a real-time database

involves determining which transactions execute when. Similar to tasks in other real-time

systems, real-time transactions have priority and must be scheduled accordingly in order to

meet speci�ed timing constraints. However, unlike most other real-time processes, real-time

transactions access shared data. Therefore, real-time transaction scheduling must take into

account the logical consistency of the data and transactions as well as temporal consistency.

That is, concurrency control must be considered when scheduling real-time transactions.

According to Abbott and Garcia-Molina [30], a real-time transaction scheduling algo-

rithm has two components: a policy for assigning priorities and a concurrency control mech-

anism. This section is broken down to describe recent research in real-time database priority

assignment policies and in real-time database concurrency control.

6.1 Priority Assignment Policies

There has been much research towards applying real-time scheduling policies to real-time

database transaction scheduling. In [30] a performance evaluation of several scheduling poli-

cies is presented. The work presented by Huang, et. al. in [31] points out two factors that are

used in scheduling real-time transactions: criticality and deadline. They present a scheduling

policy in which each transaction is assigned a priority at the time of arrival based on the fac-

tor relative deadline divided by criticalness, where relative deadline is the di�erence between

the transaction deadline and its arrival time. The work presents a performance evaluation

comparing the combined scheduling protocol with two others that use only deadline (Earliest

Deadline First) or only criticality (Most Critical First) for assigning priority. The results of

these tests indicate that transactions that are scheduled using both deadline and criticality

miss fewer deadlines and abort fewer transactions than those scheduled using only one of

the two factors.

Haritsa, et. al. [32] present two real-time transaction scheduling protocols that are based

on the Earliest Deadline First priority assignment policy. The Adaptive Earliest Deadline

(AED) protocol is based on the fact that EDF works best when all or most of the transactions

can be scheduled. In the AED protocol, transactions are divided into two groups, HIT and

MISS. The size of the HIT group is determined by a dynamic control variable called

HITcapacity. When a transaction arrives in the system, it is assigned a random key value.

39

It is then inserted into a key-ordered list of the transactions currently in the system. If

the transaction's position in the list is less than or equal to HITcapacity, it is assigned

to the HIT group, otherwise it is assigned to the MISS group. Within the HIT group,

the priority ordering is by Earliest Deadline. The priority ordering in the MISS group is

random.

The goal of the AED algorithm is to collect the largest set of transactions that can be

completed before their deadlines in the HIT group. And then the transactions in the HIT

group can be optimally scheduled using the Earliest Deadline priority assignment. In order

to reach this goal, the HITcapacity control variable must accurately predict the size of the

HIT group. The value of HITcapacity is dynamically updated through a feedback process

that examines the hit ratio of the transactions in the HIT group versus the hit ratio of all

of the transactions.

A second protocol described by Haritsa, et. al. further enhances the AED protocol to

allow a transaction's value to be taken into account. The goal is to maximize the sum of

the values of those transactions that commit by their deadlines. The new protocol, called

Hierarchical Earliest Deadline (HED), groups transactions, based on their values, into a

hierarchy of prioritized buckets. It then uses a protocol similar to AED within each bucket

to determine the relative priority of the transactions in the bucket. The transactions within

a bucket are ordered based on transaction value. As in AED, the priority ordering within

the HIT group in each bucket is Earliest Deadline, but unlike AED the priority ordering

within the MISS group is Highest Value rather than random.

6.2 Concurrency Control Mechanisms

Most concurrency control mechanisms for real-time databases adapt non-real-time techniques

to take time into account. Both pessimistic (lock-based) and optimistic real-time concurrency

control techniques have been proposed. In these techniques, serializability is the chosen cor-

rectness criterion. Other researchers have recognized that relaxing the serializability require-

ment can bene�t real-time. By using application speci�c knowledge, semantic concurrency

control techniques can provide increased concurrency. Some of the semantic concurrency

control techniques described below bene�t real-time implicitly with the added concurrency

that is available. Others explicitly take temporal consistency into account to further enhance

the bene�t of using semantics.

40

6.2.1 Lock-Based Concurrency Control.

Many of the lock-based real-time concurrency control techniques are based on the traditional

two-phase locking technique [16]. The techniques, described in [33] and [5], combine two-

phase locking with the priority ceiling real-time scheduling algorithm to handle the priority

inversion problem. The technique presented in [33] assumes that all transactions are periodic.

The scheduling algorithm assigns higher priority to transactions with shorter periods. In this

version of the protocol, all locks are exclusive. The priority ceiling of a data object is the

priority of the highest priority transaction that may lock the object. When a transaction T

requests a lock on object O, if the priority of T is not higher than the priority of the data

object with the highest priority ceiling of all data objects currently locked by transactions

other than T , then the lock is denied. Otherwise the lock is granted. If a transaction blocks

a higher priority transaction, it inherits the higher priority while the blocking occurs. When

this protocol is combined with a two-phase locking scheme, the resulting concurrency control

mechanism bounds blocking to at most one lower priority transaction.

In [5], the protocol of [33] is modi�ed to produce theRead/Write Priority Ceiling Protocol.

The new protocol allows read/write locking and de�nes three parameters for each data object

in the database. The write priority ceiling of a data object is the priority of the highest

priority task that may write to the object. The absolute priority ceiling of a data object is

the priority of the highest priority task that may read or write the data object. The r/w

priority ceiling of a data object is set dynamically. A task cannot read/write-lock a data

object unless its priority is higher than the highest r/w priority ceiling of data objects locked

by tasks other than itself. Since the highest r/w priority ceiling of the locked data objects

represents the highest priority level at which the currently active transactions can execute,

the protocol ensures that a transaction executes at a priority level higher than all preempted

transactions.

In [34] Huang, et. al. point out that the priority ceiling protocol [5] requires prior knowl-

edge about the data objects to be accessed by each transaction. They �nd this requirement

too restrictive and present a new protocol that uses priority inheritance combined with

priority abort for transaction scheduling. In the new protocol, called Conditional Priority

Inheritance, when a priority inversion is detected, if the lower priority transaction is near

completion, it inherits the priority of the high priority transaction. This avoids wasting the

resources that would result in aborting the nearly complete transaction. If the low priority

transaction is not near completion, it is aborted, avoiding the long blocking time for the high

priority transaction.

41

The key to the Conditional Priority Inheritance algorithm is determining when a trans-

action is nearly complete. A threshold value h is derived so that if the amount of work left

to be done by a transaction is less than h, priority inheritance is applied, otherwise priority

abort is applied. The sensitivity of h on performance was studied through experiments and

the results indicate that with respect to deadline miss ratio, the algorithm performs best for

1 < h < 3.

Abbott and Garcia-Molina present the 2PL-HP (two-phase locking with high priority)

protocol in [30]. In this protocol, con
icts are resolved by aborting lower priority transac-

tions. If a transaction requesting access to shared data has a higher priority than all other

transactions holding locks on the data, the lock holders abort and the requester gets the

lock. Otherwise the requester waits for the holder to release the lock.

Another variation of the priority abort idea, called H2PL (Hybrid Two-Phase Locking), is

presented by Hung and Lam in [35]. In this technique certain conditions, such as transaction

workload, are checked to avoid unnecessary aborts. Also, whenever a lower priority transac-

tion that is blocking a higher priority transaction aborts and therefore has to be restarted,

its priority is raised to that of the higher transaction to prevent priority inversion (priority

inheritance). In H2PL, when a transaction requests a lock and a con
ict is detected, if the

two transactions have the same priority, the requesting transaction is aborted and restarted.

In the case where the requesting transaction has higher priority than the transaction holding

the con
icting lock, if either the waiting requester or a restart of the holder would miss its

deadline, then one of themmust be aborted. If the holder is being blocked, it will be aborted,

otherwise, the transaction that is further from completion is selected for abortion. Whenever

a lower priority transaction is restarted, its priority is raised to that of the higher priority

requesting transaction in order to avoid priority inversion. If the requesting transaction has

lower priority than the holding transaction, the transaction that is further from completion

is aborted and restarted.

The results of performance tests indicate that H2PL performs well for di�erent types of

transactions because it is capable of giving preference to higher priority transactions while

minimizing the impact on lower priority transactions.

In [36] Lin and Son recognize that the serialization order produced by a concurrency con-

trol algorithm should re
ect the priority of the transactions. They present a protocol in which

the serialization order of active transactions is adjusted dynamically, making it possible for

transactions with higher priority to be executed �rst. Thus higher priority transactions are

never blocked by uncommitted lower priority transactions, while lower priority transactions

42

lock
requested

lock held

read

read

write

write

lock requester has lower priority

lock granted

lock requester blocked

lock requester aborted

lock holder aborted

lock
requested

lock held

read

read

write

write

lock requester has higher priority

Figure 10: Lin/Son Lock Compatibility Table

may not have to be aborted due to con
icts.

Each transaction is assigned a priority based on its deadline and its start timestamp. The

execution of each transaction is divided into three phases: the read phase, the wait phase

and the write phase. In the read phase, the transaction acquires read locks on data items

and performs pre-writes in its own local workspace. The locking protocol is based on the

principle that higher priority transactions should complete before lower priority transactions.

Figure 10 shows the lock compatibility tables for this protocol. The compatibility depends

on the priority of the transactions in question, as well as the types of locks. The wait phase

of a transaction allows it to wait until it is allowed to commit. A transaction can commit

only if all transactions with higher priority that must precede it in the serialization order are

either committed or aborted. A transaction in the wait phase is aborted if it con
icts with

a lock request by a higher priority transaction, or if a higher priority transaction that must

precede it in the serialization order has already committed. At the end of the wait phase, if

the transaction has not aborted, it is assigned a �nal timestamp and it is committed. In the

write phase, a transaction writes all of its changes permanently to the database. The data

manager receives write requests for each data object in ascending timestamp order.

43

6.2.2 Optimistic Concurrency Control

A study of real-time concurrency control techniques in [37] indicates that in systems in

which late transactions are discarded, a real-time optimistic concurrency control mechanism

outperforms the pessimistic technique of [30]. In [38], a real-time optimistic concurrency

protocol called WAIT-50 is presented. In this protocol, a lower priority transaction waits

at validation time for any con
icting higher priority transactions to give the higher priority

transactions a chance to meet their deadlines �rst. A wait control mechanismmonitors trans-

action con
ict states and dynamically decides when and how long a low priority transaction

should wait for its con
icting higher priority transactions.

A real-time optimistic concurrency control technique called OCC-TI [39] uses timestamp

intervals to detect con
icts. Every transaction is assigned an initial timestamp interval

of [0;1). The interval is adjusted to represent serialization order dependencies. A �nal

timestamp is assigned from the interval at the end of the validation phase. The validation

of a transaction consists of adjusting timestamp intervals of concurrent transactions and

restarting con
icting transactions whose intervals cannot be adjusted. This technique uses

the concept of dynamic adjustment of serialization order presented in [36].

6.2.3 Semantic Concurrency Control

A semantic concurrency control mechanism utilizes application speci�c knowledge to increase

concurrency, sometimes de�ning less restrictive correctness criteria than serializability. In

some cases, these correctness criteria are somewhat ad hoc, in that they are based completely

on the speci�c semantics of the application. When serializability is relaxed, imprecision can

result in the data and in the transactions. Several correctness criteria have been proposed

that formalize how to use application semantics and how to manage the resulting imprecision.

Most work in semantic concurrency control can be divided into two categories: transaction-

based semantic concurrency control and object-based semantic concurrency control. Transaction-

based semantic concurrency control capitalizes on the semantics of the known transactions in

the system to allow interleavings that might not be allowed in a traditional scheme. Object-

based semantic concurrency control manages access to each object in the system based on the

semantics of the operations de�ned on the object. Some of the semantic concurrency control

techniques described below bene�t real-time databases through the added concurrency they

provide. Others take a more active role in real-time by using the temporal requirements of

the data and transactions as part of the application semantics.

44

Correctness Criteria. Agrawal, et. al. [40], generalize transaction based semantic con-

currency control with a formal method for determining correct schedules. An atomic unit

of a transaction Ti relative to another transaction Tj is de�ned to be a sequence of consec-

utive operations of Ti such that no operations of Tj are allowed to be executed within this

sequence. Atomicity(Ti; Tj) refers to the ordered sequence of atomic units of Ti relative to

Tj. A schedule of transactions is a relatively atomic schedule if for all transactions Ti and

Tj, no operation of Ti is interleaved with an atomic unit of Tj relative to Ti.

The authors of [40] recognize that in general, relative atomicity speci�cations tend to be

conservative because not all potential con
icts occur. They expand the class of relatively

atomic schedules to include interleavings of operations that do not have any dependencies

between them. An operation o2 directly depends on an operation o1 if o1 precedes o2 and

either both operations are in the same transaction or o1 con
icts with o2. A relatively serial

schedule is de�ned to be analogous to the notion of serial schedules in the serializability

theory. A schedule is relatively serial if for all transactions Ti and Tj, if an operation o

of Ti is interleaved with an atomic unit U of Tj relative to Ti, then o does not depend on

any operation p in U , and any other operation q in U does not depend on o. A schedule

is relatively serializable if it is con
ict equivalent to some relatively serial schedule. This

de�nition provides a formal correctness criterion for transaction based concurrency control.

Further, the authors present a method for determining if a given schedule is relatively serial

by testing for acyclicity of a directed graph.

In [41] the use of imprecision in databases and in real-time systems is synthesized and

formalized through the concept of similarity. The authors de�ne new correctness criteria,

less restrictive than serializability, based on the idea that data values that are su�ciently

close may be interchanged as input to a transaction without undue adverse e�ects.

Similarity of a data object is de�ned by the user based on the semantics of the data. Two

views of a transaction are similar if and only if every read event in both views uses similar

values with respect to the transaction. Two database states are similar if the corresponding

values of every data object in the two states are similar. These de�nitions are used to extend

the traditional correctness criteria, �nal-state serializability, view serializability and con
ict

serializability to new criteria based on similarity.

Epsilon serializability (ESR) [14, 42] is a correctness criterion that generalizes serializabil-

ity by allowing bounded imprecision in transaction processing. ESR assumes that serializable

schedules of transactions using precise data always result in precise data in the database and

in precise return values from transactions.

45

A transaction t speci�es limits on the amount of imprecision that it can import (import limitt;x)

and export (export limitt;x) with respect to a particular data item, x. For every data item

x in the database, a data �-speci�cation (data �x) expresses a limit on the amount of impre-

cision that can be written to x [42].

The amount of imprecision imported and exported by a transaction t with respect to

data item x, as well as the imprecision written to x, is accumulated during the transaction's

execution through import imprecisiont;x, export imprecisiont;x and data imprecisionx re-

spectively.

ESR de�nes Safety as a set of conditions that speci�es boundaries for the amount of

imprecision permitted in transactions and data. Safety is divided into two parts: transaction

safety and data safety. Safety for transaction t with respect to data item x is de�ned in [14]

as follows:

TR-Safetyt;x �

(
import imprecisiont;x � import limitt;x
export imprecisiont;x � export limitt;x

Data safety is described informally in [42]. It can be formalized for data item x as follows:

Data-Safetyx � data imprecisionx � data �x

Therefore, ESR is guaranteed if and only if TR-Safetyt;x and Data-Safetyx are invariant

for every transaction t and every data item x.

OESR (Object-Oriented Epsilon Serializability) [43] takes the general ESR correctness

criterion and specializes it for the RTSORAC real-time object-oriented database model.

Data in the RTSORAC model is represented by objects. Safety for an object o is de�ned

as follows:

Object-Safetyo � 8a2oA(a:ImpAmt� data �a)

where oA is the set of attributes of o. That is, if every attribute in an object meets its

speci�ed imprecision constraints, then the object is safe.

Transactions in the RTSORAC model operate on objects through the methods of the ob-

ject. Data values are obtained through the return arguments of the methods and are passed

to the objects through the input arguments of methods. Let tMI be the set of method in-

vocations in a transaction t and let oM be the set of methods in an object o. The method

invocations on o invoked by t are denoted as tMI u oM . Safety of a transaction (OT) t with

respect to an object o is de�ned as follows:

OT -Safetyt;o �

(
8m2(tMIuoM)8r2ReturnArgs(m)(r:ImpAmt� import limitr)
8m2(tMIuoM)8i2InputArgs(m)(i:ImpAmt� export limiti)

46

That is, as long as the arguments of the method invocations on object o invoked by OT t

are within their imprecision limits, then t is safe with respect to o.

Thus, Object Epsilon Serializability (OESR) is guaranteed if and only if OT -Safetyt;o

and Object-Safetyo are invariant for every object transaction t and every object o.

Transaction-Based Semantic Concurrency Control. In [44], Garcia-Molina de�nes

a semantically consistent schedule to be a schedule that transforms the database into a

consistent state. Transactions are classi�ed into semantic types based on what they do in

the database. For each type, a compatibility set is de�ned to identify which other types are

compatible with, i.e., may interleave with, the given type. The user divides a transaction type

into atomic steps where a step represents some indivisible, real-world action. Any interleaving

that is allowed is between these user-de�ned steps. When a transaction requires access to a

data object, it requests a lock. If no other locks are held on the object, the request is granted

and the object keeps track of the compatibility set of the type of transaction holding the

lock. If another transaction attempts to lock the same object, the transaction processing

mechanism checks to see if the type of the requesting transaction is in the compatibility set

of the transaction already holding the lock. If so, the lock is granted, if not, the transaction

must wait to gain access to the object. In this technique, serializability is replaced as a

correctness criterion by semantic consistency.

In [45], Lynch presents an approach similar to Garcia-Molina's [44]. Each transaction has

a di�erent set of breakpoints with respect to each di�erent transaction type. This approach

allows varying levels of concurrency among di�erent types of transactions. Transactions

are grouped into nested classes. As the classes become more re�ned, the level of atomicity

becomes �ner. For each class, breakpoints inserted in a transaction de�ne where other trans-

actions of the same class may interleave. The breakpoints of higher level classes are carried

down to the lower level classes. Therefore, for each transaction t, the set of breakpoints

where another transaction t0 can interrupt is determined by the lowest class containing both

t and t0. The levels of atomicity produced by this technique form a hierarchy of allowable

interleavings among transactions.

Another transaction-based semantic concurrency control mechanism is described by Far-

rag and Ozsu in [46]. This work extends the work of Garcia-Molina [44] and Lynch [45]

by creating fewer restrictions on allowable interleavings. Nested classes are not used, and

therefore the interleavings are not required to be hierarchical as in [45]. Transactions are

classi�ed by types and are divided by placing breakpoints between operations where certain

47

Lock Lock Held
Requested S E RS RE

S YES NO YES COND
E NO NO COND COND

Table 4: Lock Compatibility Table

interleavings are allowed. Each breakpoint has associated with it a set, called the interleaving

set, containing the types of transactions that are permitted to interrupt at that point. Four

kinds of locks are used in the concurrency control technique described: shared, exclusive,

relatively shared and relatively exclusive. A shared lock or exclusive lock is granted in the

traditional way for read access or write access respectively. Relatively shared and relatively

exclusive locks are used to produce non-serializable interleavings. At a breakpoint, the lock

can change depending on the actions taken before that point. A shared lock becomes a

relatively shared lock at a breakpoint if there is no update before it, otherwise it becomes an

exclusive lock. An exclusive lock always becomes a relatively exclusive lock at a breakpoint.

A compatibility table, as seen in Table 4, is given for these four locks and while some of the

entries are simply YES or NO, others, labeled COND, depend on whether or not the type

of the transaction requesting the lock is in the interleaving set of the type of the transaction

holding the lock. Locks are released after termination of the transaction.

The Similarity Stack Protocol (SSP) described in [47] de�nes similarity of data based on

the time at which the data is written. Two data items are considered to be similar if their

timestamps are within a speci�ed bound. Transactions are placed on a scheduling stack

according to their priorities. Read/write events of di�erent transactions may swap positions

on the stack as long as they are similar.

Several concurrency control techniques have been designed to maintain Epsilon Serial-

izability [14]. Wu et. al. [48] describe several concurrency control techniques in which

read-only transaction need not be serializable with other update transactions, but update

transactions must be serializable among themselves. The techniques are variations of two-

phase locking, timestamp ordering and optimistic concurrency control. The concurrency

control protocols presented by Pu et. al. in [49] extend the notion of epsilon serializability

to distributed databases. They allow divergence from consistency among database sites as

long as their di�erences remain within speci�ed limits.

48

Object-Based Semantic Concurrency Control The techniques described in this sec-

tion take advantage, to varying degrees, of the opportunity for increased concurrency pro-

vided by the object-oriented paradigm.

Badrinath and Ramamritham [50] present an object-based semantic concurrency control

technique that is used in a system which allows nested data objects, i.e., objects containing

other objects. A hierarchical structure, called a granularity graph, is used to represent the

nesting. The outermost object is represented at the root of the graph and the children of

the root represent the objects nested inside. For each operation de�ned on the object, an

a�ected set is computed, containing all nodes in the graph that are a�ected by the operation.

Concurrency is controlled by avoiding con
icts among the operations on the object. A con
ict

occurs between two operations if they do not commute, that is, if the order in which they

are performed a�ects the results returned by the operations or the resulting state of the

object. The approach to determining compatibilities between operations is divided into two

steps. First, the semantics of the operations are analyzed to determine if they are always

compatible, never compatible or conditionally compatible. The second step is performed

dynamically when the operations are requested, to determine the value of a conditional

compatibility. This value is determined by computing the intersection of the a�ected sets of

the two operations in question. If this intersection is empty, then the operations commute

and therefore are compatible.

Weihl [51] describes another object-based mechanism that uses commutativity as the

de�nition of compatibility. Two slightly di�erent versions of commutativity are de�ned,

forward commutativity and backward commutativity. The di�erence between these criteria

is subtle and the author asserts that they are both necessary because each one is used with

di�erent recovery mechanisms. Forward commutativity is designed to work with intentions

lists, while backward commutativity works with recovery using undo logs. One of the major

results of this work is that concurrency control and recovery are closely linked and must be

considered together. When compatibility between operations is in question, commutativity

is computed dynamically, as in [50].

Badrinath and Ramamritham [52] present another technique very similar to their earlier

work [50]. In the more recent technique, compatibility between operations is based on

recoverability and not on commutativity. An operation, o1 is recoverable relative to another

operation, o2, if the outcome of performing o2 is the same whether or not o1 executed

immediately before o2. Recoverable operations are allowed to execute concurrently but must

commit in the order in which they were invoked.

49

The three object-based semantic concurrency control techniques described above add

concurrency to a database by exploiting the semantics of the object's operations, but each

ultimately requires serializability as a correctness criterion. Other researchers have increased

concurrency even further by relaxing the serializability constraint. In both [22] and [53] the

database designer de�nes the compatibility between operations on an object. This user-

de�ned compatibility may or may not preserve serializability. Consistency constraints are

determined by the designer and implemented through the compatibility relations.

In [22], Wolfe, et. al. present RTC, a language to control real-time concurrency. Ob-

jects called resources have actions de�ned on them. The compatibility relation Cr is a non-

symmetric relation on these action that determines if two actions are compatible. That is,

if the actions can be overlapped to result in a consistent state of the resource. The designer

of the system must ensure the correctness of the compatibility relation with respect to the

semantics of the resource being de�ned.

In the work of Schwartz and Spector [53] as well, the user is responsible for de�ning

compatibilities, but the authors present some guidelines for doing so. The user de�nes

all possible dependencies among the operations of an object, possibly involving values of

parameters. Some of these dependencies are characterized as insigni�cant in that cycles

formed by them do not a�ect data consistency. Rather than using serializability as the

correctness criterion, a schedule is considered correct if it is orderable with respect to a

relation formed by combining all of the signi�cant dependencies in the objects involved.

Schwartz and Spector also present the concept of a type-speci�c locking protocol. The

locks that a transaction requests should be held only as long as the semantics of the ap-

plication suggest. Therefore, each application will use a type-speci�c locking protocol to

determine when locks should be released.

In [54], Wong and Agarwal present another concurrency control protocol that allows

bounded inconsistency. The protocol works on an object-based model. In this model, a

transaction invokes an operation on an object and the object has a set of possible actions,

called the resolution set, from which to execute the operation. The state of an object is

de�ned by the sequence of resolutions that have been performed in response to invoked

operations. Two resolution sequences are considered equivalent if the resulting object states

are the same.

The object designer determines compatibility of object operations based on the notion

of commutativity with bounded inconsistency. For every resolution sequence op:oq of the

operation sequence p:q, the designer de�nes a forward resolution set dilating function (fpq)

50

and a backward resolution set dilating function (bpq). These functions are de�ned such that

for every state s, if there is a resolution sequence op:oq of the operation sequence p:q with op

in the resolution set of p (rs(p)) and oq in the resolution set of q (rs(q)), then there exists

a resolution sequence o0q:o
0

p that is equivalent to op:oq for the operation sequence q:p with o0p

in fpq(rs(p)) and o0q in bpq(rs(q)).

The resolution set dilating functions are placed in a compatibility table. When a trans-

action invokes an operation on an object, the concurrency control mechanism looks in the

table and evaluates the resolution set dilating functions to determine if the invoked opera-

tion is compatible with all concurrent operations in the object. If the operations are found

to be compatible, the resolution sets of the corresponding operations are updated to take

into account any inconsistency that may have been allowed by the interleaving of operations.

The object designer speci�es inconsistency limits for each operation and the protocol ensures

that the limits are not violated.

The concurrency control technique presented by DiPippo and Wolfe in [23, 55] is based

on the RTSORAC model (described in Section 4.3). It uses semantic locks to determine

which transactions may invoke methods on an object. The semantic locking mechanism uses

a set of preconditions and the object's compatibility function to determine if a requested

semantic lock should be granted.

The compatibility function is a run-time function that evaluates a Boolean expression

and is de�ned on every ordered pair of methods of the object. The Boolean expression is

used to determine if the pair of methods involved may execute concurrently. It may contain

predicates involving characteristics of the object or of the system in general, such as a�ected

sets of methods, temporal consistency and/or imprecision of the data involved, and values

of method arguments.

In the semantic locking mechanism, there are two possible outcomes to a semantic lock

request: either 1) the semantic lock becomes active and the associated method invocation

is executed, or 2) the request is placed on a priority queue to be granted later. Figure 11

illustrates the steps of the semantic locking mechanism.

The �rst phase of the semantic locking mechanism computes the potential amount of im-

precision that the requested method will introduce into the attributes that it writes and into

its return arguments. The next phase of the semantic locking mechanism tests preconditions

that determine if granting the lock would violate temporal consistency or imprecision con-

straints. If any precondition fails, then the semantic locking mechanism places the request

on the priority queue to be retried when another lock is released. If the preconditions hold,

51

Method
Invocation

Check
Preconditions

Compatibilities

Add Lock
to

Active Locks Set

Enqueue
Request

Restore
ImpAmts

Done

YESNO

YESNO

Update
Imprecision

B

C

FE

G

D

Initial
Imprecision

A

Figure 11: Semantic Locking Mechanism

52

the semantic locking mechanism updates the imprecision amounts of the data that will be

a�ected by execution of the requested method. Upon successful passing of the preconditions,

the semantic locking mechanism checks the compatibility function to make sure that the re-

quested method is compatible with all of the currently active method invocations, as well

as all requested method invocations on the queue with higher priority. For each compat-

ibility function test that succeeds, the mechanism accumulates the imprecision that could

be introduced by the corresponding interleaving. If all tests succeed, the semantic locking

mechanism grants the semantic lock, places it in the active lock set, and makes the requested

method ready for execution. If any test fails, the mechanism restores the original values of

any changed imprecision amounts and places the request in the priority queue to be retried

when another lock is released.

This concurrency control technique allows for the expression of the trade-o� between

temporal and logical consistency, through the user-de�ned compatibility function. It has

been shown to maintain OESR under certain restrictions, and thus can bound imprecision

while making an active e�ort to meet data and transaction timing constraints.

7 Conclusion

The added dimension of temporal consistency requirements to the requirements of a tradi-

tional database complicates the design of real-time databases. Furthermore, the predictabil-

ity concern of hard real-time applications often requires simpli�cation of database techniques.

This paradox has caused real-time database development to lag behind that of non-real-time

databases. For this reason the only two commercial real-time databases that we know of, Zip

and EagleSpeed, are still far from meeting most real-time database requirements. Recent

research in modeling, scheduling, and concurrency control has started to pave the way for

better-suited real-time database systems. The potential market for real-time databases in

control applications is large. Standardization e�orts, like RTSQL, should help further the

development e�orts.

Despite the recent research and development e�orts, there remains a great deal of work

to be done to make real-time databases fully meet the requirements outlined in Section 3.

Some these questions include: What architecture and operating system support is necessary?

How is recovery performed? How can inconsistency be managed and used? How do these

requirements impact active database design e�orts? How does distribution a�ect real-time

requirements? Can such real-time database systems actually be built and used? Can their

53

interfaces be standardized? The next �ve years should be important ones in answering some

of these questions.

Acknolwedgements. We thank Janet Prichard and Paul Fortier for their e�orts in writing

the Real-Time SQL subsection, and Roman Ginis for his review of the Zip RTDBM system.

References

[1] J. Stankovic, \Misconceptions about real-time computing: A serious problem for next-

generation systems," IEEE Computer, vol. 21, Oct. 1988.

[2] J. Stankovic and K. Ramaritham, \The spring kernel: A new paradigm for real-time operating

systems," ACM Operating Systems Review, vol. 23, pp. 54{71, July 1989.

[3] W. Pugh and T. M. (Editors), Proceedings of the ACM SIGPLAN workshop on language,

compiler and tool support for real-time systems. ACM SIGPLAN, 1994.

[4] C. L. Liu and J. W. Layland, \Scheduling algorithms for multiprogramming in a hard-real-time

environment," Journal of the ACM, vol. 20, pp. 46{61, 1973.

[5] L. Sha, R. Rajkumar, S. Son, and C. Chang, \A real-time locking protocol," IEEE Transactions

on Computers, vol. 40, pp. 793{800, July 1991.

[6] R. Rajkumar, Task Synchronization in Real-Time systems. PhD thesis, Carnegie Mellon Uni-

versity, 1989.

[7] H. Tokuda and C. Mercer, \ARTS: A distributed real-time kernel," ACM Operating Systems

Review, vol. 23, pp. 29{53, July 1989.

[8] H. Tokuda, T. Nakajima, and P. Rao, \Real-time mach: Towards a predictable real-time

system," in the USENIX Mach Workshop, pp. 1{8, 1990.

[9] B. Gallmestier and C. Lanier, \Early experience with POSIX 1003.4 and POSIX 1003.4a," in

IEEE Real-Time Systems Symposium, Dec. 1991.

[10] J. Senerchia, \A dynamic real-time scheduler for posix 1003.4a compliant operating systems,"

1993. Master's Thesis. Dept. of Computer Science, The University of Rhode Island.

[11] W. Zhao, K. Ramamritham, and J. Stankovic, \Scheduling tasks with resource requirements in

hard real-time systems," IEEE Transactions on Software Engineering, vol. SE-13, pp. 564{577,

May 1987.

[12] W. Zhao, K. Ramamritham, and J. Stankovic, \Preemptive scheduling under time and resource

constraints," IEEE Transactions on Computers, vol. C-36, pp. 949{960, August 1987.

[13] J. Liu, K. Lin, W. Shih, A. Yu, J. Chung, and W. Zhao, \Algorithms for scheduling imprecise

computation," IEEE Computer, vol. 24, May 1991.

54

[14] K. Ramamritham and C. Pu, \A formal characterization of epsilon serializability,". to appear

in Transactions on Knowledge and Data Engineering.

[15] K. Ramamritham, \Real-time databases," International Journal of Distributed and Parallel

Databases, vol. 1, 1993.

[16] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in

Database Systems. New York: Addison Wesley, 1986.

[17] K. Gordon, DISWG Database Management Systems Requirements. Alexandria, Va.: NGCR

SPAWAR 331 2B2, 1993.

[18] P. Fortier, J. Prichard, and V. F. Wolfe, \Sql/rt: Real-time database extensions to the sql

standard," 1994. To appear in Standards and Interface Journal.

[19] S. H. Son, ed., Advances in Real-Time Systems, ch. Predictability and Consistency in Real-

Time Database Systems, pp. 509{531. Prentice Hall, 1995.

[20] J. Prichard, L. C. DiPippo, J. Peckham, and V. F. Wolfe, \Rtsorac: A real-time object-

oriented database model," in Proceedings of the International Conference on Database and

Expert Systems Applications, Sept 1994.

[21] G. Booch, Object-Oriented Design. Redwood City, CA: The Benjamin/Cummings Publishing

Company, 1991.

[22] V. Wolfe, S. Davidson, and I. Lee, \RTC: Language support for real-time concurrency," Real-

Time Systems, vol. 5, pp. 63{87, March 1993.

[23] L. B. C. DiPippo and V. F. Wolfe, \Object-based semantic real-time concurrency control," in

Proceedings of IEEE Real-Time Systems Symposium, December 1993.

[24] O. D. Garcia and P. M. D. Gray, IFIP TC2 Conference on Database Semantics: Object-

Oriented Databases, ch. Semantic-rich user-de�ned relationship as a main constructor in object-

oriented databases, pp. 144{154. North-Holland, 1990.

[25] V. F. Wolfe, L. C. DiPippo, J. P. JJ Prichard, and P. Fortier, \The design of real-time ex-

tensions to the open object-oriented database system," in IEEE Workshop on Object-Oriented

Dependable Systems, Oct. 1994.

[26] D. L. Wells, J. A. Blakely, and C. W. Thompson, \Architechture of an open object-oriented

database management system," IEEE Computer, vol. 25, pp. 74{82, October 1992.

[27] IEEE, Portable Operating System Interface (POSIX); Part 1: System API; Ammendment 1:

Real-time Extension. IEEE, 1994.

[28] J. Melton and A. Simon, Understanding the New SQL: A Complete Guide. Morgan Kau�man

Publishers, 1992.

55

[29] R. Snodgrass, \TSQL2 language speci�cation," ACM SIGMOD Record, vol. 23, pp. 65{86,

March 1994.

[30] R. Abbott and H. Garcia-Molina, \Scheduling real-time transactions: A performance evalua-

tion," in 14th VLDB Conference, Aug. 1988.

[31] J. Huang, J. Stankovic, D. Towsley, and K. Ramamritham, \Experimental evaluation of real-

time transaction processing," in IEEE Real-Time Systems Symposium, Dec. 1989.

[32] J. R. Haritsa, M. Livny, and M. J. Carey, \Earliest deadline scheduling for real-time database

systems," in IEEE Real-Time Systems Symposium, Dec. 1990.

[33] L. Sha, R. Rajkumar, and J. P. Lehoczky, \Concurrency control for distributed real-time

databases," SIGMOD Record, vol. 17, pp. 82{98, March 1988.

[34] J. Huang and J. Stankovic, \On using priority inheritance in real-time databases," in IEEE

Real-Time Systems Symposium, Dec. 1991.

[35] S. Hung and K. Lam, \Locking protocols for concurrency control in real-time database sys-

tems," SIGMOD Record, vol. 21, pp. 22{27, December 1992.

[36] Y. Lin and S. Son, \Concurrency control in real-time databases by dynamic adjustment of

serialization order," in IEEE Real-Time Systems Symposium, Dec. 1990.

[37] J. R. Haritsa, M. J. Carey, and M. Livny, \On being optimistic about real-time constraints,"

in ACM PODS Symposium, April 1990.

[38] M. J. C. Jayant R. Haritsa and M. Livny, \Dynamic optimistic concurrency control," in IEEE

Real-Time Systems Symposium, Dec. 1990.

[39] J. Lee and S. H. Son, \Using dynamic adjustment of serialization order for real-time database

systems," in Proceedings of IEEE Real-Time Systems Symposium, Dec. 1993.

[40] D. Agrawal, J. Bruno, A. E. Abbadi, and V. Krishnaswamy, \Relative serializability: An

approach for relaxing the atomicity of transactions," in Proceedings of the 13th Principles of

Database Systems, pp. 139{149, 1994.

[41] T.-W. Kuo and A. K. Mok, \Application semantics and concurrency control of real-time data-

intensive applications," in Real-Time Systems Symposium, Dec. 1992.

[42] P. Drew and C. Pu, \Asynchronous consistency restoration under epsilon serializability," Tech-

nical Report OGI-CSE-93-004, Department of Computer Science and Engineering, Oregon

Graduate Institute, 1993.

[43] L. C. DiPippo, Object-Based Semantic Real-Time Concurrency Control. PhD thesis, University

of Rhode Island, 1995.

[44] H. Garcia-Molina, \Using semantic knowledge for transaction processing in a distributed

database system," ACM Transactions on Database Systems, vol. 8, pp. 186{213, June 1983.

56

[45] N. A. Lynch, \Multilevel concurrency { a new correctness criterion for database concurrency

control," ACM Transactions on Database Systems, vol. 8, pp. 484{502, December 1983.

[46] A. A. Farrag and M. T. Ozsu, \Using semantic knowledge of transactions to increase concur-

rency," ACM Transactions on Database Systems, vol. 14, pp. 503{525, December 1989.

[47] T.-W. Kuo and A. K. Mok, \SSP: A semantics-based protocol for real-time data access," in

Proceedings of IEEE Real-Time Systems Symposium, December 1993.

[48] K.-L. Wu, P. S. Yu, and C. Pu, \Divergence control for epsilon-serializability," in Proceedings

of International Conference on Data Engineering, 1992.

[49] C. Pu, W. Hseush, G. E. Kaiser, K.-L. Wu, and P. S. Yu, \Distributed divergence control for

epsilon serializability," in Proceedings of 13th International Distributed Computing Conference,

June 1993.

[50] B. Badrinath and K. Ramamritham, \Synchronizing transactions on objects," IEEE Transac-

tions on Computers, vol. 37, pp. 541{547, May 1988.

[51] W. Weihl, \Commutativity-based concurrency control for abstract data types," IEEE Trans-

actions on Computers, vol. 37, pp. 1488{1505, Dec. 1988.

[52] B. Badrinath and K. Ramamritham, \Semantics-based concurrency control: Beyond commu-

tativity," ACM Transaction on Database Systems, vol. 17, pp. 163{199, March 1992.

[53] P. M. Schwartz and A. Z. Spector, \Synchronizing shared abstract types," ACM Transactions

on Computer Systems, vol. 2, pp. 223{250, 1984.

[54] M. Wong and D. Agrawal, \Tolerating bounded inconsistency for increasing concurrency in

database systems," in Proceedings of the 11th Principles of Database Systems, pp. 236{245,

1992.

[55] L. C. DiPippo and V. F. Wolfe, \Object-based semantic real-time concurrency control with

bounded imprecision,". To appear IEEE Transactions on Knowledge and Data Engineering.

57

