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Abstract
This paper presents a survey of results in developing Real-Time CORBA, a standard for real-time
management of distributed objects. The paper includes background on two areas that have been combined
to realize Real-Time CORBA: the CORBA standards that have been produced by the international Object
Management Group; and techniques for distributed real-time computing that have been produced in the
research community. The survey describes major RT CORBA research efforts, commercial development
efforts, and standardization efforts by the Object Management Group.

1 Introduction
Middleware is software that facilitates seamless client/server interaction in a distributed system. “Middle”

refers to its place in a software abstraction hierarchy above transport protocols, but below clients and

servers written in a high level programming language. Four prominent middleware interfaces are DCE by

the Open Software Foundation [1], DIS/HLA used by the US military for massive distributed simulations,

DCOM from Microsoft [2], and CORBA, a standard from the Object Management Group (OMG) [3]. With

over 800 organizations participating in its development, CORBA has emerged as the most prominent

among the middleware interfaces. The OMG has many Special Interest Groups (SIGS), Task Forces, and

working groups developing specific aspects of CORBA. These aspects range from CORBA’s interface to

the Internet, to specific CORBA interfaces for industrial domains such as finance and medicine, to

middleware protocols used in distributed systems.

In 1996 a SIG was formed within the OMG with the goal of developing support in the CORBA standard for

real-time applications – applications in which there are end-to-end timing constraints across a distributed

system. This interest in adding support for real-time applications into CORBA was the result of demand

from application domains such as telecommunications, military command and control, manufacturing, and

finance, all of which have timing constraints on client/server interaction in a distributed system.

Furthermore, the feasibility of development of a real-time CORBA (RT CORBA) standard was indicated

by several research efforts in RT CORBA that had been initiated in the early/mid 1990s. This paper

presents a survey of research and development towards RT CORBA from three areas: research from

academic and government groups, development from commercial CORBA vendors, and standardization

from the OMG RT SIG.
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This paper is structured as follows. Section 2 provides background on CORBA, its goals, architecture, and

standardization process. Section 2 also presents background on techniques to support real-time

requirements in distributed systems. Section 3 surveys academic and government RT CORBA research

efforts as well as commercial RT CORBA development. Section 4 describes the RT CORBA standard draft

that, at the time of this writing, is in the final stages of integration into the OMG’s CORBA standard.

Section 5 summarizes and outlines the likely future directions of RT CORBA.

2 Background
The study of RT CORBA combines two major areas of work:  (1) the OMG’s CORBA standard; and (2)

real-time systems.  In this section we present background on both of these areas.

2.1 CORBA

The CORBA standard specifies interfaces that allow seamless interoperability among clients and servers

under the object-oriented paradigm.  It is produced by the Object Management Group, which has been

meeting approximately every six to eight weeks since 1989. The CORBA specification process is

evolutionary. Features of the standard are proposed, bid upon, debated and adopted piecemeal according to

a roadmap established by the OMG.  CORBA version 1.1 was released in 1992, version 1.2 in 1993, and

version 2.0 in 1996. The V1.2 standard deals primarily with the basic framework for applications to access

objects in a distributed environment. This framework includes an object interface specification and the

enabling of remote method calls from a client to a server object. Object services for naming, events,

relationships, transactions, and concurrency control are addressed in Version 2.0 [4].  Also addressed in

CORBA 2.0 is interoperability of CORBA middleware implementations from different vendors through its

Internet Inter-ORB Protocol (IIOP). Services such as time synchronization and security are addressed in

later revisions of CORBA 2.0.  The OMG has been remarkably successful in agreeing upon increments to

the standard and vendors have quickly made products available that meet the evolving standard.

CORBA is designed to allow a programmer to construct object-oriented programs without regard to

traditional object boundaries such as address spaces or location of the object in a distributed system. That

is, a client program should be able to invoke a method on a server object whether the object is in the

client’s address space or located on a remote node in a distributed system.

The CORBA specification includes: an Interface Definition Language (IDL), that defines the object

interfaces within the CORBA environment; an Object Request Broker (ORB), which is the middleware that

enables the seamless interaction between distributed client objects and server objects; and Object Services,

which facilitate standard client/server interaction with capabilities such as naming, event-based

synchronization, and concurrency control.  A series of articles in [5] provides a technical overview of the

CORBA standard, we very briefly summarize the standard here.
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2.1.1 CORBA IDL

CORBA IDL is a declarative language that describes the interfaces to server object implementations,

including the signatures of all server object methods callable by clients.  The IDL grammar includes a

subset of ANSI C++, with additional constructs to support the method invocation mechanism.

Most common intrinsic C++ types are supported in CORBA IDL. The ORB handles differences in type

representations among architectures (e.g. Big Endian, Little Endian).  CORBA’s IDL also specifies C++-

like exceptions.  IDL does not provide syntax for implementing methods.  IDL bindings to various

languages including C, C++, Java, Smalltalk, and Ada have been specified for this purpose.

As an example, consider an object that acts as a shared table for sensor data (represented as long integer

values) for clients in a distributed system. A simple CORBA IDL for a sensor_table object is:

interface sensor_table
{

readonly attribute short max_length;
 short put(in short index, in long data);
long get(in short index);

 }

The IDL keyword interface indicates a CORBA object (similar to a C++ class declaration).  A

readonly attribute is a data value in the object that a client may read (the IDL compiler generates a

remote method for reading each attribute). The IDL example also specifies two methods: put which stores a

sensor value at a index into the table; and get which returns a sensor value given an index.

Client code in C++ to access a sensor_table object in a CORBA environment might look like the

following:

long retval;

sensor_table *p;

p = bind(“my_sensor_table”);

retval = p->get(500);

Here, the client declares what appears to be a pointer, p, to a sensor_table  object called

my_sensor_table .  The “pointer” is actually a CORBA type called an object reference, which provides

the local representation of the CORBA object to the client.  The client then makes a call to an ORB service

to locate and bind the pointer to a reference to a remote server containing the sensor_table object. To

retrieve a value from the sensor_table at index 500, the client issues the method invocation shown in
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the last line: p->get(500). This method invocation assumes that a sensor_table server was

previously implemented and registered with the CORBA ORB.

2.1.2 Implementing Clients and Servers

The process of implementing a client and server object in the C language is shown in Figure 1. The IDL

specification is processed by an IDL compiler, which generates a header file for the CORBA object, stub

code for linking into the client, and skeleton code for the server object.  The client stub contains code that

hides details of interaction with the server from the client code. Client stubs stand in for actual method calls

by transparently directing method requests into the ORB.  Server skeleton code is used by the ORB to

forward method invocation requests to the server, and to return results to the client.

Figure 1 - Process to Implement CORBA Clients and Servers

2.1.3 The ORB

An ORB provides for:

1. Locating a server object implementation for servicing a client’s request. The client makes a request by

invoking a method on an object reference as described in the example of  section 2.1.1. The client

obtains that object reference either by a call to the CORBA Naming Service, which returns an object

reference associated with a name; by a call to the CORBA Trader Service, which returns an object

reference associated with specified functionality and quality of service; or by obtaining a Interoperable

Object Reference using the IIOP protocol (the CORBA Naming and Trader Services are discussed in

Section 2.1.4,  IIOP is discussed in Section 2.1.5). Using the object reference, the ORB software

locates the appropriate end point in the distributed system to which to send a message to initiate the
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client’s request. In a TCP/IP-based CORBA environment, locating the server usually involves

identifying the server’s IP address and port.

2. Establishing a connection to the server. After locating the server for the client’s request, the ORB

software establishes a network connection from the client to the server. In a TCP/IP-based system, this

involves establishing a socket-based connection.

3. Communicating the data making up the request. The ORB software uses the connection to the server to

send parameters of the method invocation to the server. This procedure involves packaging parameters

so that they can be sent on the specific network connection. It also involves resolving differences in

data representation between the client and server. In addition to parameters, other data about the client

and its request is sent to the server.

4. Activating and deactivating objects and their implementations. Once the client’s request arrives at the

server, a part of the ORB called the Object Adapter accepts the incoming message and directs it to the

active processing entity that will service the request. If the object requested is inaccessible, the ORB

returns a CORBA exception to the client. The Object Adapter can also perform forms of concurrency

control; for instance by queuing requests for serial access to the server. For instance, the Object

Adapter in a TCP/IP-based ORB listens on the incoming port, accepts the client’s request message,

formats incoming parameters if necessary, and may direct an internal message to an operating system

process, which in turn creates a thread to handle the request. The Object Adapter also routes a response

message back to the client and deallocates appropriate resources when the service is complete.

Figure 2 - CORBA System Components (from [21])
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A client and its stubs, a server and its skeleton, and the interaction through the ORB are shown in Figure 2.

The stubs and skeletons are part of the ORB and are produced by the IDL compiler as described in Section

2.1.2.  Typically stubs are linked into client code and skeletons into server code. They interact with the

ORB Core. The ORB Core is the message passing mechanism; in many current ORBS the ORB Core is a

TCP/IP sockets-based component.  As described above, the Object Adapter is the part of the ORB that

connects the client’s request to the stub code of the server object.  The Object Adapter accepts the message

from the ORB Core and initiates the processing of the service from the CORBA server object.  CORBA 2.2

refined the specification of the Object Adapter by specifying the interface to a Portable Object Adapter

(POA).  A POA is an object in the server that manages other CORBA objects in the server. The application

programmer writing the server can specify  POA policies, which are defined in the CORBA standard, to

control how the POA manages objects. For instance, whether the server handles client requests by separate

threads or a single thread that sequentially handles all client requests, can be specified as a POA policy.

Other parts of the ORB: the Dynamic Invocation Interface (DII), Interface Repository, Implementation

Repository, and Dynamic Skeleton Interface (DSI) are described in the CORBA specification, but are not

directly relevant to RT CORBA, so we do not discuss them here.

2.1.4 Object Services

CORBA 2.0 contains the specifications for CORBA’s Common Object Services.  A full description of all

of the services can be found in [4].  The following are some of the more widely used object services:

1. Naming – This service provides the ability to bind a name to an object relative to a naming context. It

guarantees unique names for objects.

2. Trader – This service provides the ability for a client to selectively bind to an object based on certain

criteria, such as quality of service provided by the object.

3. Event – This service provides basic capabilities for notification of named events. Suppliers can

generate events without knowing the IDs of consumers. Consumers can use events without knowing

the IDs of suppliers.

4. Life Cycle – This service allows for the creation and destruction of objects in the CORBA system.

5. Persistence – This service allows for making objects persistent on some storage medium.

6. Transactions – This service allows for construction of transactions, which are atomic collections of

client calls to server objects.

7. Concurrency Control – This service allows objects to be locked by clients. The locking scheme is a

version of database read/write locking.
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8. Externalization – This service allows objects to be passed in a CORBA environment and among

environments.

9. Relationship – This service allows the expression of semantic relationships among objects.

2.1.5 Internet Inter-ORB Protocol (IIOP)

CORBA 2.0 also provides capabilities for ORBs from different vendors to interact. The key component is

an application layer protocol called the General Inter-ORB Protocol (GIOP), and its implementation on

the TCP/IP transport layer protocol called the Internet Inter-ORB Protocol (IIOP). All CORBA 2.0

compliant ORBs must support their servers being accessed by clients using IIOP, even if the client is

residing on a node controlled by a different CORBA system.  A server that  will accept IIOP invocations

publishes its TCP/IP addresses as an Interoperable Object Reference (IOR).  The client must obtain the

IOR for the server some how, perhaps by using the CORBA Naming Service (similar to a browser needing

to obtain a URL for a Web page some how before it can request the page). Once the IOR is obtained, a

CORBA primitive translates the IOR into a CORBA object reference for use by the client.

2.1.6 CORBA’s Future

The OMG is still growing in participation and in the scope of CORBA’s capabilities. Vendors are

producing software that meets the standards very soon after each revision to the standard comes out.  New

extensions are coming out of every meeting and many more are on the OMG’s roadmap.

A  very active part of the CORBA effort is the development of the OMG’s Unified Modeling Language

(UML). UML is a graphical language that depicts classes, their components, and their relationships. It also

includes behavior diagrams to show how object-oriented programs execute. The UML working group

started addressing real-time extensions to UML in 1999. These extensions include the ability to express

timing constraints (see Section 2.2) on behavior diagrams.

CORBA 3.0, released in 1999,  includes a more detailed description of the POA  (see Section 2.1.3)

including support for persistent objects that exist after they are created or activated. Also included in the

POA specification in CORBA 3.0 is control of the threading policy used by the server.  Options such as

one-thread-per-request, one-thread-per-object, and thread-pools-per-object, are specified to indicate how

the server will handle client requests. The real-time CORBA extensions discussed in Section 4 rely on the

threading capability of CORBA 3.0 and extend this capability to address issues concerning the number of

threads allowed  and the priorities of the threads. CORBA 3.0 also contains support for asynchronous

messaging. The previous CORBA specifications were built on the synchronous communication notion of

remote procedure calls. The ability to asynchronously request services is essential, particularly for real-time

applications. The CORBA 3.0 specification will allow for synchronous, asynchronous, and deferred

synchronous (where the client can check for results of the request at any time after making the request.
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A complete list of OMG working groups, their whitepapers, current standards, and draft standards, can be

found on the OMG Web site at http://www.omg.org.  Included is the work of the Real-Time Special

Interest Group, which is producing the Real-Time CORBA standard described in Section 4.  An overview

of CORBA 3.0 and a discussion of CORBA’s future are provided in [5].

2.2 Real-Time Systems

In a real-time system there are timing constraints on execution. This requirement typically comes from the

system interacting with the physical environment. The environment produces stimuli, which must be

accepted by the real-time system within timing constraints. The environment further requires control

output, which must be produced within timing constraints.  Although speed/high-performance is often a

necessary component of a real-time system, it is often not sufficient. Instead predictably meeting timing

constraints is sufficient in real-time system design.

2.2.1 Expressing Timing Constraints

Most real-time systems specify a subset of the following constraints:

1. An earliest start time constraint specifies an absolute time before which the task may not start. That is,

the task must wait for the specified time before it may start.

2. A latest start time constraint specifies an absolute time before which the task must start. That is, if the

task has not started by the specified time, an error has occurred. Latest start times are useful to detect

potential violations of planned schedules or eventual deadline violations before they actually occur.

3. A deadline specifies an absolute time before which the task must complete.

Frequently, timing constraints will appear as periodic execution constraints. A periodic constraint specifies

earliest start times and deadlines at regular time intervals for repeated instances of a task. Typically a

period frame is established for each instance of the (repeated) task. As shown in Figure 3, period frame i

specifies the default earliest start time and deadline for the ith instance of the task. When periodic execution

is originally started, the first frame is established, at time s in Figure 3.  For periodic execution with period

p, the ith frame starts at time s + (i-1)p and completes at time s + (i)p. As this indicates, the end of frame i is

the beginning of frame i+1. Each instance of a task may execute anywhere within its period frame.
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period frame i

execution executionexecution
...
...S S+p S+2p S+(i-1)p S+(i)p

time

Figure 3 - Example of Periodic Execution

2.2.2 Modes of Real-time

Real-time constraints are classified as hard, firm, or soft, depending on the consequences of the constraint

being violated.  A task with a hard real-time constraint has disastrous consequences if its constraint is

violated. Many constraints in life-critical systems, such as nuclear reactor control and military vehicle

control, are hard real-time constraints.  A task with a firm real-time constraint has no value to the system if

its constraint is violated. Many financial applications have firm constraints with no value if a deadline is

missed.  A task with a soft real-time constraint has decreasing, but usually non-negative, value to the

system if its constraint is violated. Most real-time applications consist of predominantly soft real-time

constraints.  Graphic display updates are one of many examples of tasks with soft real-time constraints.

In some systems the mode of real-time is captured in a task’s importance level. In systems such as the

Spring  real-time operation system from the University of Massachusetts [6], task importance is categorized

according to the mode of its timing constraint (hard, firm, soft). In other systems, importance is more

general and tasks can be assigned importance relative to each other over a wider granularity of levels.  Note

that importance is not the same as priority. Priority is a relative value used to make scheduling decisions.

Often priority is a function of importance, but also can depend on timing constraints, or some combination

of these, or other task traits.

2.2.3 Predictability

In order to meet timing constraints predictably, it must be possible to accurately analyze timing behavior.

To analyze timing behavior, the scheduling algorithm for each resource and the amount of time that tasks

require on each resource must be known. To fully guarantee this timing behavior, these resource

utilizations should be worst case values, which tend to be pessimistic.  Some soft real-time systems can

tolerate average case values that offer no strong guarantee.

Assuming that worst-case resource utilizations are known, analyzing timing behavior for predictability

depends on the scheduling algorithms used. In the next subsection we discuss several real-time scheduling

techniques and the forms of analysis that these techniques facilitate.
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2.2.4 Real-Time Scheduling and Resource Access Control

Real-time scheduling essentially maps to a bin-packing problem where tasks with known resource

utilizations are the boxes, and the timing constraints establish the size of the bin. That is, each task can be

considered a “box” whose size is its utilization of the resource being scheduled. The start times and

deadlines of the tasks establish the boundaries of a “bin”, or collection of bins, in which the boxes must be

packed. The bin-packing problem is NP-hard, so optimal real-time scheduling, in general, is an NP-hard

problem. However, heuristics have been developed that yield optimal schedules under some strong

assumptions, or near-optimal results under less-restrictive assumptions.

Typically, a scheduling algorithm assigns priorities to tasks. The priority assignment establishes a partial

ordering among tasks. Whenever a scheduling decision is to be made, the scheduler selects the task(s) with

highest priority to use the resource.  There are several characteristics that differentiate scheduling

algorithms. They are:

1. Preemptive versus nonpreemptive.  If the algorithm is preemptive, the task currently using the resource

can be replaced by another task (typically of higher priority).

2. Hard versus soft real-time.  To be useful in systems with hard real-time constraints, the real-time

scheduling technique should allow analysis of the hard timing constraints to determine if the

constraints will be met predictably. For firm and soft real-time, predictability is desirable, but often a

scheduling technique that can demonstrate best-effort or near-optimal performance is acceptable.

3. Dynamic versus static.  In static scheduling algorithms, all tasks and their characteristics are known

before scheduling decisions are made. Typically task priorities are assigned before run-time and are

not changed. Dynamic scheduling algorithms allow task sets to change and usually allow for task

priorities to change at run-time.

4. Single versus multiple resources.  Single resource scheduling manages one resource in isolation. In

many well-known scheduling algorithms, this resource is a single CPU. Multiple resource scheduling

algorithms recognize that most tasks need multiple resources and schedule several resources.   End-to-

end schedulers schedule all resources required by the tasks.

Real-Time Scheduling Algorithms.  For a known set of independent, periodic tasks with known execution

times, Liu and Layland proved that rate-monotonic CPU scheduling is optimal [7].  Here optimal means

that if any scheduling algorithm can cause all of the tasks in a set to meet their deadlines, then rate-

monotonic can as well.  Rate-monotonic scheduling is preemptive, static, single resource scheduling that

can be used for hard real-time.  Priority is assigned according to the rate at which a periodic task needs to

execute.  The higher the rate, which also means the shorter the period, the higher the priority. A

supplemental result by Liu and Layland facilitates real-time analysis by proving that if the CPU utilization

is less than approximately 69%, then the task set will always meet its deadlines [7].  Deadline monotonic
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[8] scheduling is a variation of rate-monotonic in which a task may have a deadline prior to the end of its

period.  In this algorithm, highest priority is assigned to the task with the shortest deadline.  The

schedulability analysis for deadline monotonic scheduling is similar to that for rate-monotonic scheduling.

For dynamic scheduling that is also preemptive and single resource, Liu and Layland showed that earliest-

deadline-first scheduling is optimal and that any task set using it with a utilization less than 100% will meet

all deadlines.

Real-Time Resource Access Control Algorithms.  Most real-time scheduling involves tasks that access

shared resources.  When a high priority task is forced to wait for a lower priority task to finish using a

shared resource, a property known as priority inversion occurs.  Real-time resource access control

algorithms must account for this kind of blocking, and in some cases bound it.  Rajkumar, Sha and others

have shown that task sets where the tasks can coordinate via mechanisms such as semaphores, can be

analyzed if they use priority inheritance protocols [9].  In these protocols, a lower-priority task that blocks

a higher-priority task (e.g. by holding a semaphore), inherits the priority of the higher-priority task during

the blocking.  With priority inheritance techniques, priority inversion can be bounded and factored into the

worst case execution time of each task.

The priority ceiling protocol (PCP) is a priority inheritance protocol that bounds priority inversion and

prevents deadlock.  The priority ceiling of a semaphore, or any other resource, is the priority of the highest

priority task that will lock the semaphore.  These priority ceilings are computed a priori.  When a task

requests a lock on a semaphore, the lock is granted only if the task’s priority is strictly greater than the

priority ceilings of all semaphores locked by other tasks.

The distributed priority ceiling protocol (DPCP) [9] extends the PCP by taking into account accesses to

remote resources in a distributed system.  In the DPCP, a resource that is accessed by tasks allocated to

different processors than its own is called a global resource.  All other resources (those only accessed by

local tasks) are local resources.  A critical section on a global resource is referred to as a global critical

section (GCS).  A local critical section (LCS) refers to a critical section on a local resource.  The base

priority (BP) of a system of tasks is a fixed priority, strictly higher than the priority of the highest priority

task in the system.  The DPCP assumes that higher numbers correspond to higher priorities.  As in the

single-node PCP, the priority ceiling of a local resource is the priority of the highest priority task that will

ever access it.  The priority ceiling of a global resource is the sum of the BP and the priority of the highest

priority task that will ever access it.  When a task executes a GCS, the task suspends itself on its local

processor, and the GCS executes at a priority equal to the sum of the BP and the priority of the calling task

on the host processor of the resource.  Each processor in the system runs the PCP given the priorities and

priority ceilings as described above.

The schedulability analysis of the DPCP is an extension of the schedulability analysis of the PCP.  The

main difference is that there are more forms of blocking due to access of remote resources.  For instance,
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the DPCP analysis must take into account blocking that occurs when a task requests a global resource on

another node, but must wait for a lower priority task that currently holds the resource.  An important

difference between PCP and DPCP is that DPCP is usually harder to implement in actual systems because

DPCP requires a common notion of priority across the distributed system.  Also, analysis of DPCP requires

knowledge of execution on all nodes in the system.

3 Research and Development in RT CORBA

In this section we present current work that has been done in the development of RT CORBA systems.  We

first describe in some depth three major RT CORBA research efforts that have been ongoing at: MITRE

Corporation in Bedford, Massachusetts [11,12]; at the University of Rhode Island in conjunction with the

US Navy SPAWAR Systems Center  (SPAWARSYSCEN) in San Diego California and with Tri-Pacific

Software Inc of Alameda, CA [14,15,16];  and Washington University in St. Louis[18,19,20,21].  We then

discuss several other research projects that address certain specific features of RT CORBA systems.  We

end this section by describing several commercial ORBs that currently provide varying levels of real-time

support.  Most of the groups involved in the work described in this section have been part of the process of

developing the RT CORBA 1.0 draft specification [10] described in Section 4.  It is important to note that

RT CORBA prototypes and products are increasing at a rapid rate.  Discussing all of them is not possible.

Therefore we discuss in this section some of the prevalent prototypes and products that exist at the time of

this publication.

3.1 MITRE Corporation

One of the first projects to incorporate expression and enforcement of end-to-end timing constraints into a

CORBA system was designed by John Maurer and Bhavani Thuraisingham’s group at MITRE in Bedford,

MA [11].  This work identified requirements for the use of RT CORBA in command and control systems

and prototyped the approach by porting the ILU ORB from Xerox to the Lynx real-time operating system.

They then provided a distributed scheduling service supporting rate-monotonic and deadline-monotonic

techniques.  The resulting infrastructure, depicted in Figure 4, combines a POSIX-compliant real-time

operating system, a real-time ORB, and an ODMG-compliant real-time ODBMS [12].  The MITRE system

is an infrastructure for expressing and enforcing timing constraints in a CORBA system.  It does not

address real-time schedulability analysis.  The MITRE prototype was designed for the US Airforce

AWACS program, which in turn transferred it to Lockheed/Martin Corporation as an early basis for their

HARDPACK commercial Real-Time CORBA system  (see Section 3.5).  MITRE has recently developed a

mechanism for dynamic binding of clients to servers through a real-time version of the CORBA Trader

Service [13].
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Figure 4: MITRE’s RT CORBA System

3.2 University of Rhode Island & SPAWAR Systems Center & Tri-Pacific Software
RT CORBA Research

RT CORBA research at the University of Rhode Island and the  SPAWAR Systems Center

(SPAWARSYSCEN) includes both dynamic and static scheduling approaches.  The dynamic RT CORBA

research focuses on expression of many of the timing constraints discussed in Section 2.2.1 including

deadlines, periods, and importance levels. It also focuses on best-effort enforcement of timing constraints in

a RT CORBA system.  URI & SPAWARSYSCEN’s Real-Time CORBA research for static Real-time

Systems  has been developed by Tri-Pacific Software [14] of Alameda, CA into a product called

RapidSched. This development is the basis of the current static scheduling service interface to the RT

CORBA 1.0 draft specification [10].  RapidSched provides off-line schedulability analysis and efficient

execution of the chosen scheduling policies.  In this section we describe both of these research efforts.

3.2.1 Dynamic RT CORBA

URI & SPAWARSYSCEN’s dynamic RT CORBA system [15] provides expression and best-effort end-to-

end enforcement of soft real-time client method requests.  The prototype implementation of this system

extends Iona’s Orbix ORB with real-time features.

The expression of timing constraints is made through Timed Distributed Method Invocations (TDMIs) that

include timing information such as deadline, and priority.  These timing parameters are packed into a

RT_Env (“Real-Time Environment”)  structure that is passed along with every client request so that the

ORB and object services can enforce the timing constraints.
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The best-effort enforcement of timing constraints is provided through the extension of, or addition to

several CORBA 2.0 Common Object Services.  When a client makes a TDMI on a server, the Global

Priority Service provides a uniform global priority based on the constraints specified in the TDMI.  It then

translates the global priority to a priority that the server’s local operating system can handle.  For instance,

on a node controlled by the VXWorks  real-time  operating system with 256 local priorities, the Priority

Service translates the wide range of global priorities that CORBA entities on the node have, to the 256 local

priorities.  The local real-time operating system then enforces real-time priority-based scheduling. The

current system uses a variation of Earliest Deadline First (EDF) scheduling, but can easily be changed to

support other priority assignment schemes.

IDL
Stub

ORB
Interface

IDL
Skeleton

Object
Adapter

Realtime ObjectsClient

+ time 
constraints

 Extended Services: Scheduling service, Global time service, 
Realtime Event service, Realtime Concurrency Control service.

time constraints

Object Services: naming, events, life cycle, persistence, transactions,  concurrency,
relationships, externalization, object licensing, properties, object query.

ORB

Figure 5: URI & SPAWARSYSCEN RT CORBA

The CORBA 2.0 Event Service has been extended for prioritizing delivery of real-time events.   The real-

time Event Service provides priority-based queues for its event channels. It also delivers the time that a

particular event occurred so that a consumer can use the event to set relative timing constraints.  Event

priorities are based on the global priorities of the event’s producer.

URI & SPAWARSYSCEN’s dynamic RT CORBA system extends the CORBA 2.0 Concurrency Control

Service to provide priority inheritance for requests that are queued on a server.  When a TDMI requests a

lock on a server’s resource, the TDMI’s execution priority is compared to those of all TDMI’s holding

conflicting locks on the resource.  Conflicting TDMI’s with lower priorities are raised to the requesting

TDMI’s priority, and the requesting TDMI is suspended.

The URI/SPAWARSYSCEN/TriPacific research group is currently developing a response to the Dynamic

Scheduling RFP.  The work described in this section will form the basis for the response.
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3.2.2 Static RT CORBA

The work in RT CORBA static scheduling at URI & SPAWARSYSCEN & Tri-Pacific has produced four

major results:  (1) a graphic user interface for off-line analysis of RT CORBA systems; (2) a technique for

mapping global priorities to local, system-specific priorities; (3) a scheduling service interface that has been

adopted by the OMG for its RT CORBA 1.0 draft specification [10]; and (4) an implementation of the

scheduling service interface. This product brings together all of the components discussed above to provide

a Scheduling Service add-on for any commercial RT CORBA 1.0 compliant ORB.

PERTS Front-End.  The RT CORBA research and development group at URI & SPAWARSYSCEN &

Tri-Pacific has developed an extended version of the PERTS [144] real-time analysis tool that determines

the schedulability of a RT CORBA system [16]. PERTS provides a graphical interface to allow users to

enter real-time task information, such as deadline, execution time, and resource requirements.  PERTS then

computes a schedulability analysis on the given system using well-known techniques, such as rate-

monotonic analysis [7].  PERTS was originally developed at the University of Illinois, Urbana-Champaign,

and commercialized by Tri-Pacific Software.  The group at URI & SPAWARSYSCEN & Tri-Pacific has

developed a mapping from RT CORBA clients and servers to PERTS primitives – tasks and resources.  A

periodic client with m intermediate deadlines is mapped to m dependent tasks, each with the same period,

and with deadlines corresponding to the intermediate deadlines of the client.  Each server in the RT

CORBA system is mapped to a PERTS resource.  Network delay is treated as a single worst case

parameter. This model of network delay allows for analysis, but is often quite pessimistic – Tri-Pacific is

currently working on improved models of network delay. This allows users to enter RT CORBA constructs,

and have PERTS automatically translate them into primitives that it can analyze.  The extended PERTS

analyzes the RT CORBA system using deadline monotonic scheduling and distributed priority ceiling

protocol [9] for concurrency control.  Given the real-time requirements of each client and server in the

system,  PERTS performs a multi-node scheduling analysis that takes into account execution time of clients

and servers on all nodes, blocking times, network delay, and dependencies. If the system is found to be

schedulable, the extended PERTS system produces priorities for each client task, and priority ceilings for

each server resource in the system.  If the system is found to be non-schedulable, PERTS produces graphs

and other information for each client task to indicate what caused the system to be non-schedulable.

Priority Mapping.  The output of the PERTS schedulability analyzer is a unique priority for each task in

the system.  It assumes an unlimited number of priorities.  Unfortunately, in an actual distributed

application, most operating systems do not have unlimited priorities.  For instance, VXWorks [17] provides

only 256 local priorities.  The URI & SPAWARSYSCEN & Tri-Pacific research group has developed a

technique for mapping the unlimited priorities produced by PERTS to the number of local priorities

available on the systems involved.  The algorithm, called the Lowest Overlap First Priority Mapping

Algorithm [16], assigns multiple tasks to the same local priority, while ensuring the schedulability of the

tasks in the system.  The algorithm starts with a schedulable assignment of CORBA priorities in which a
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certain number of  CORBA priorities on one node must be mapped to the same local priority (due to more

unique CORBA priorities required on the node than there are local priorities available). The algorithm tries

combinations of overlapping CORBA priorities to the same local priority that would cause the system to

remain schedulable. It accounts for the fact that mapping two CORBA priorities to the same local priority,

which on most real-time operating systems are then scheduled first-come-first-serve, is a source of priority

inversion. That is, a higher CORBA priority task may be forced to wait for a lower CORBA priority task

due them both being mapped to the same local priority and the lower CORBA priority task arriving first.

The algorithm attempts to overlap lower priority tasks on a node first.  After each attempted overlap, the

algorithm uses the PERTS schedulability analysis, enhanced with the ability to account for the additional

priority inversion, to determine if the  system with the overlap is schedulable. If it is not schedulable, the

algorithm tries other overlap possibilities in increasing priority order. The Lowest Overlap First algorithm

has been proven to be optimal under certain circumstances [16].   The extended PERTS system developed

by the URI & SPAWARSYSCEN & Tri-Pacific research team has been augmented to implement this

mapping algorithm, as well as several priority mapping heuristics [16] that are near-optimal and are

computationally more tractable than the Lowest Overlap First algorithm.  This enhanced version of PERTS

now produces a specification of the local priorities at which each task will execute on its specific node.

Scheduling Service.  The RT CORBA Scheduling service interface described later in Section 4.1.5 was

developed by researchers at URI & SPAWARSYSCEN & Tri-Pacific and commercialized in Tri-Pacific’s

RapidSched product.  RapidSched  works with the extended PERTS system described above.

Recall that the extended PERTS produces a mapping of global priorities to local system priorities.  PERTS

also produces a second mapping of unique task names to global priorities and a third mapping of priority

ceilings associated with unique names for each server in the system.  These mappings are generated by

PERTS as a set of configuration files that are read in  by RapidSched  when it is instantiated at system

startup.

RapidSched currently implements deadline monotonic scheduling with DPCP for control of shared

resources. All priorities and priority ceilings are computed a priori through PERTS, as described above.

RapidSched uses interceptors to implement the PCP on each node.  An interceptor is an ORB feature that

provides an interface to allow application code to be executed in the internals of the ORB.  RapidSched

installs an interceptor that catches all calls to the object’s methods.  Before the method is executed and a

result is passed back to the calling client, the interceptor executes the priority ceiling check; i.e. the priority

of the client task is strictly higher than the highest priority ceiling of servers on the node that are locked by

other tasks.

The objects of RapidSched are implemented as shared library code and are co-located with their respective

clients and servers.  Thus, there is no network delay for scheduling service calls, and inter-process

communication on the same node is minimized.  The scheduling objects communicate via shared memory,
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mutexes, and condition variables to implement the concurrency control mechanism.  Information about

priority mapping is also stored in shared memory for fast run-time access.

The RapidSched techniques described here are useful for CORBA applications that have known execution

characteristics and need a priori schedulability analysis, such as military command and control subsystems,

and automated manufacturing control subsystems. Actual applications of this technology are described on

Tri-Pacific’s Web site [14].

3.3 Washington University – TAO

Researchers at Washington University in St. Louis, have developed TAO (The ACE ORB) [18].  TAO is a

high-performance, RT CORBA 2.0-compliant ORB that runs on a variety of operating system platforms

with real-time features, such as VxWorks, Chorus, and Solaris.  TAO’s objective is to provide end-to-end

Quality-of-Service (QoS) guarantees at multiple levels in the distributed system.  The system consists of

four major parts that carry out this objective:  (1) the ORB; (2) the Scheduling Service; (3) the Event

Service; and (4) the Real-Time I/O (RIO) subsystem.

3.3.1 TAO’s ORB

TAO’s ORB supports real-time by minimizing the necessary features required, and by optimizing features

such as memory management, network protocols, and code generation.  TAO’s ORB Core is based on the

ACE framework [18], which is a portable object-oriented middleware framework also developed at the

Washington University.  TAO uses ACE components to provide an efficient ORB Core that can be

extended to adapt to new system environments and application requirements.

TAO’s ORB Core supports a range of transport protocols, including a Real-Time Inter-ORB Protocol

(RIOP) [18], that extends GIOP/IIOP with QoS attributes.  RIOP is a mapping of GIOP that allows

applications to transfer their QoS parameters end-to-end from clients to servants.  Such attributes include

priority, execution period, and communication class.  For optimality, TAO’s mapping can selectively omit

transport layer functionality and run directly on top of ATM virtual circuits.
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Figure 6: The TAO System (from [21])

TAO provides a Real-time Object Adapter (ROA) that can be configured to implement custom mechanisms

that dispatch client requests according to application-specific real-time scheduling policies [18].  For

instance, one of the strategies provided by the ROA is a variant of rate monotonic scheduling with real-time

threads.  TAO’s ROA contains an object reference to the run-time scheduler, which dispatches client

requests in accordance with a system-wide real-time scheduling policy.  The run-time scheduler maps client

requests to real-time thread priorities.

One of the key features of TAO’s ORB is performance optimization.  TAO optimizes the marshalling and

demarshalling of operation parameters through Flick, an optimized IDL compiler [18].  TAO uses Flick to

generate optimized client-side stubs and server-side skeletons from the IDL.  Another optimization that

TAO provides is memory management.  Because dynamic memory management can be problematic for

deterministic real-time systems, TAO is designed to minimize and eliminate data copying at multiple layers

of the system.

3.3.2 TAO’s Scheduling Service

TAO provides a Scheduling Service that guarantees the hard real-time QoS specifications of client requests

[19].  The Scheduling Service supports both static scheduling, through off-line schedulability analysis, and

dynamic scheduling,  through policies such as admission control.  There are two main components of the

scheduling service:  (1) the off-line schedulability analyzer; and (2) the run-time scheduler, which

dispatches client requests through the ROA.
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A TAO client expresses real-time attributes through an RT_Info structure for each of its schedulable

operations and submits them to the scheduling service.  The scheduling service examines the attributes of

all registered operations, and performs schedulability analysis.  If the system is found to be schedulable, the

scheduling service assigns static priorities to the operations.  If a dynamic scheduling policy is being used,

static priority may be assigned initially according to an attribute such as operation criticality.

Once the priorities are assigned, the scheduling service determines the number and types of required

dispatching queues, based on the number of required static priorities and the chosen scheduling strategy.

At run-time, the ORB uses the run-time scheduler to retrieve the thread priority at which each queue

dispatches operations, and the type of dispatching prioritization used by each queue.  Each queue is

associated with a static priority.  When an operation request arrives from a client, the scheduling service

dispatches it to the appropriate queue.  If a dynamic scheduling policy is used, the scheduling service also

determines the dynamic sub-priority at which the operation will run, within the already established static

priority.  TAO’s scheduling service supports a variety of scheduling policies, including rate monotonic, and

maximum urgency first [19].

3.3.3 TAO’s Event Service

TAO’s Event Service extends the Common Object  Event Service specification to satisfy the QoS need of

real-time applications [20].  Specifically, the event service uses real-time scheduling of CORBA events,

instead of typical First-Come-First-Served scheduling to further support best-effort real-time scheduling.

Consumers and suppliers specify their execution requirements and characteristics using QoS parameters.

These parameters are integrated with the system-wide scheduling policy to determine priorities and

preemption strategies.

TAO’s event service provides filtering and correlation mechanisms that allow consumers to be more

selective about which events they receive.  Consumers are allowed to subscribe for a particular subset of

events.  The event service uses these subscriptions to filter supplier events, only forwarding them to

interested consumers.  Consumers can also specify AND and OR dependencies among the events that it

will receive.  For instance, a consumer can specify that it be notified only when all of the specified events

have occurred.  The event service also allows consumers to specify event dependency timeouts.  A

consumer can request to receive a timeout event if its dependencies are not met within some time period.

When a set of federated event channels are used in a system instead of a central event channel, TAO’s

event service provides a gateway servant to connect them.  The gateway on a particular node subscribes to

all of the events (and only the events) that are of interest to its consuming event channel.
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3.3.4 TAO’s Real-Time I/O Subsystem

TAO’s real-time I/O subsystem (RIO) runs in the OS kernel.  At the Core of the RIO subsystem is a “daisy-

chained” network interface consisting of one or more ATM Port Interconnect Controller (APIC) chips. This

is effective at optimizing it for ATM systems, but is limiting in its applicability to other systems. The RIO

subsystem uses a thread pool to send and receive requests to and from clients across high-speed networks

or I/O backplanes [21].  The RIO is built as an extension of the STREAMS communication I/O subsystem

on Solaris.  It focuses on alleviating key sources of priority inversion that are present in Solaris’ I/O

subsystem.  For instance, in Solaris, thread-based priority inversion can occur when real-time threads

depend on kernel processing that is performed a lower priority levels.

The RIO subsystem exploits the early demultiplexing feature of ATM to help alleviate packet-based

priority inversion.  It uses a packet classifier to place packets into priority-based queues.  The RIO

subsystem reduces thread-based priority inversion by vertically integrating packets received at the network

interface with the corresponding thread priorities in the ORB Core.  TAO schedules all protocol processing

through kernel threads that are scheduled at the appropriate real-time priorities.  Rather than

asynchronously processing packets without regard to priority, the RIO subsystem provides a dedicated

stream connection path that allocates buffers in the ATM driver and associates kernel threads with real-time

priorities for protocol processing.

The TAO project represents a major effort towards meeting the requirements of the RT CORBA

specification.  The high-performance ORB and I/O subsystem provide for fast, efficient processing of client

requests.  The scheduling service provides a mechanism for expressing and enforcing QoS requirements of

clients, in both static and dynamic scheduling environments.  The event service provides mechanisms to

streamline the delivery of events to interested consumers, and to allow consumers to specify and enforce

timing requirements

3.4 Other Academic Work

Several other ongoing research projects address selected features of RT CORBA systems.  The Realize

project at University of California, Santa Barbara [22] is a middleware system for use in standard operating

systems, that can be used in conjunction with a CORBA ORB.  Client requests are intercepted by Realize,

encapsulated in multicast messages, and communicated to other processors.  Realize is responsible for real-

time scheduling, synchronization, distribution and replication of information, consistency of replicated

information and fault recovery.  An aim of Realize is to reduce the difficulty of developing real-time

systems, and to allow the programming of distributed real-time programs as simple as single-node real-time

programs.

At the University of Illinois, Urbana-Champaign, a project has been initiated that extends the scheduling

service of TAO to allow for dynamic schedulability analysis through admission control [23].  For each
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server in the system, a scheduling broker is instantiated.  When a dynamically created client makes a

request on the server, the scheduling broker performs schedulability analysis to ensure that admission of

this request will not adversely affect the schedulability of any admitted requests.  If the schedulability test

fails, the client’s request is rejected.

3.5 Commercial ORBS

Several commercial CORBA implementations provide features that make them suitable for use in real-time

applications.  They include ChorusORB [24] from Sun Microsystems, ORBexpress [25] from OIS, and

HARDPACK [26] from Lockheed Martin.  Other CORBA products have been ported to real-time operating

systems, although the ORB's themselves are not specifically engineered for real-time.  They include Orbix

from Iona Technologies [27] and Visibroker from Inprise [28].

ChorusORB.  ChorusORB has many features that make it appropriate for real-time systems.  It runs on

Chorus/ClassiX, Sun's embedded real-time operating system, which provides deterministic scheduling and

efficient inter-process communication. ChorusORB supports both IIOP and a fast, lightweight, proprietary

protocol for use between ChorusORB clients and servers.  ChorusORB daemon consumes only about

140Kb of memory, achieves very low message latencies, and is highly optimized; for example, it

automatically maintains thread pools for every server in order to make dispatch more efficient.  It also

provides a set of "Interceptor" API's that allow programmers to install routines that are called at certain

stages of every invocation.  This enables, for instance, the implementation of a transparent scheduling and

concurrency-control policy, which is easily maintained and kept consistent throughout the system.  In

addition to Chorus/ClassiX, ChorusORB runs on a number of POSIX-compliant operating systems and on a

wide range of hardware.  It has language bindings to C++ and Java and is used primarily in applications

related to telecommunications.

ORBExpress.  Objective Interface Systems (OIS) produces a CORBA implementation called ORBexpress

Real-Time that offers many promising features.  It runs on WindRiver's VxWorks, one of the most widely

used embedded real-time operating systems.  ORBexpress Real-Time provides a distributed priority

inheritance mechanism based on the priority ceiling protocol, which bounds priority inversion and

eliminates deadlock.  It also comes with a memory allocation mechanism optimized for real-time, which

OIS claims runs four to six times as fast as conventional memory managers.  One major problem that

ORBexpress addresses is the unpredictability of transport protocols such as TCP/IP; its "pluggable

protocol" interface allows other vendors and application programmers to install their own communications

protocols, which may be based on shared memory, ATM networks, VME buses, or other deterministic

transports. ORBexpress has language bindings to Ada-95 and C++ and is used in a variety of applications,

including vehicle navigation and Command and Control systems.
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HARDPACK.  Lockheed Martin’s HARDPACK has been designed to run in hard real-time defense-related

applications.  It provides priority-based scheduling and concurrency control with priority inheritance.  It

offers an interface to set periods and deadlines for tasks, including a notification mechanism for overruns.

It uses the notion of a "priority transform" to allow a global ordering of tasks that maintains consistency

across nodes in spite of limited-priority networks and operating system schedulers.  It also has a "flexible

bind" interface, which allows applications to specify when and how connections are made and broken.

Like ORBexpress, it allows various communication protocols to be employed through a common interface.

HARDPACK has language bindings to C, C++, Ada-95, and Ada-83. HARDPACK is being used in the US

Air Force and NATO-AWACS platforms. It is being transitioned to a separate company for commercial

release.

Other ORBS.  In addition to the CORBA products that are specifically engineered for use in real-time

systems, several other ORB’s have been ported to run on real-time operating systems.  For example,

Highlander Communications has ported Inprise’s Visibroker to both VxWorks and Integrated Systems’

pSOSystem.  Visibroker is a popular, general-purpose CORBA product that has been implemented with

some efficiency considerations, such as multi-threading and support for load-balanced binding.  Iona’s has

also ported its Orbix ORB to real-time operating systems, most notably VxWorks.  Like Visibroker, Orbix

is a general-purpose CORBA implementation that is used in a number of commercial applications.  Orbix

also has multi-threading support and a "Filter" interface similar to ChorusORB’s "Interceptor" mechanism.

By running on efficient real-time operating systems like VxWorks, these ORB’s can reduce memory

consumption, message latencies, and priority inversion, which makes them more useful in time-critical

applications.

Clearly, there are a significant number of commercial CORBA products that are suitable to some degree for

use in real-time systems.  While some are more appropriate solutions than others, none offers an overall

end-to-end guarantee of performance.  Furthermore, until a real-time CORBA specification is adopted, any

real-time features will be non-standard, non-portable, and hence not truly in the spirit of CORBA.

4 Real-Time CORBA Standard
The research and development described in Section 3 indicated that there was sufficient interest and results

in RT CORBA to incorporate real-time support into the CORBA standard. The OMG Real-time SIG was

formed in 1996.  It is comprised of a diverse group from CORBA vendors, end users, government research

labs and academia. It has forged close working relationships with other groups in the OMG including the

Telecommunication Domain Task Force, the Command and Control working group, and the Security SIG.

The RT SIG first produced a whitepaper [29] in 1996 outlining the concepts behind RT CORBA.  Based on
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these concepts, the RT SIG produced a series of Requests For Proposals (RFPs) in three areas of RT

CORBA:

1. Minimal CORBA – this RFP requested the specification of a minimal set of CORBA features to allow

ORBs that are efficient in execution time and in resource requirements. The RFP was issued in 1996

and responses to the RFP were received in 1997 [30].

2. Fixed Priority Scheduling – this RFP requested the specification of the main RT CORBA functionality

under the assumption that priorities in the system are fixed.  The RFP was issued in late 1997 and the

responses were received in 1998, and synthesized into a standard in 1999 [10].

3. Dynamic Scheduling – this RFP requests the specification of RT CORBA that can be integrated with

the Fixed Priority RT CORBA while including support for dynamic distributed real-time scheduling.

The RFP was issued in February 1999, and responses are due in October 1999.

The SIG has issued, or plans to issue, RFPs in other areas such as fault-tolerance and high-performance

CORBA as well.

In this section we review the draft RT CORBA standard for Fixed Priority Scheduling in detail since it is

the basis for the major parts of the RT CORBA standard. We also describe the requirements for the

extension to Dynamic Scheduling in RT CORBA.  It is important to note that the standards are evolving.

In this section we describe the standard as it exists at the time of this writing.

4.1 Fixed Priority RT CORBA

The RT CORBA RFP for Fixed Priority RT CORBA required that vendors submit proposals that included

extensions to the CORBA standard in at least the following areas:

1. Priority – define what priority means in a RT CORBA system and define an interface that allows these

priorities to be expressed and enforced.

2. Bounding Priority Inversion – define interfaces that support mechanisms that bound priority inversion

in a CORBA environment.

3. Protocol Selection – define interfaces that allow the selection of protocols and protocol properties for

client/server communication.

The vendors were to demonstrate that these interfaces supported Fixed Priority Scheduling for enforcement

of end-to-end timing constraints in a RT CORBA system. They were also to describe the assumptions and

dependencies on the underlying distributed system, such as operating systems and networks.  The

commercial efforts described in Section 3.5 were among the major respondents to the RFP in January 1998.

In the remainder of 1998 these companies, and others including  Tri-Pacific Software,  the University of



24

Rhode Island  and Washington University academic groups,  SPAWAR Systems Center and MITRE

research labs, collaborated to create a single RT CORBA Fixed Priority Scheduling draft standard, which

we describe here.

4.1.1 Fixed Priority RT CORBA Model

The RT CORBA model considers five components:

1. The Real-Time Operating System, which is assumed to use priority-based scheduling, such as that

specified in the POSIX real-time operating system standard.

2. The Real-Time ORB, which provides real-time primitives for client/server interaction.

3. An optional Scheduling Service, which uses the primitives of the RT ORB to achieve a uniform

scheduling policy in the CORBA system.

4. The network.

5. The application clients and servers.

The RT CORBA standard specifies real-time support only in the ORB and Scheduling Service parts of the

model, with appropriate interfaces provided to the application code. The RT CORBA standard assumes

priority-based scheduling capabilities in the operating systems on nodes in the system and does not assume

any real-time capabilities in the network. That is, the RT CORBA specification only addresses real-time

issues in the scope of the CORBA software. While support in the CORBA software is necessary for a

complete distributed real-time solution, it is not sufficient because all parts of the system must be designed

for real-time to get sufficient real-time support.

RT CORBA defines a thread as its schedulable entity. The RT CORBA notion of thread is consistent with

the POSIX definition of threads [31]. At an instant of time, a thread has two priorities associated with it: a

CORBA Priority and a Native Priority, similar to the notion of global and local priorities described in the

University of Rhode Island & SPAWARSYSCEN work described in Section 3.2.

The CORBA Priority of a thread comes from a universal node-independent priority ordering of threads

used throughout the CORBA system. This is done so that CORBA Priority is a meaningful priority order

that spans nodes in the system. All priorities expressed in client and server application code, including

those specified in RT CORBA Scheduling Service calls, are CORBA Priorities.

The Native Priority of a thread is the priority used by the underlying system (operating systems and

network). For instance, a CORBA thread with a CORBA Priority 300 that needs to execute on a node

managed by the VXWorks [17] real-time operating system must be assigned one of the operating system’s

256 native priorities.  RT CORBA uses the notion of a Priority Mapping to map the CORBA Priority of



25

thread to the Native Priority it needs to execute on the underlying system. RT ORBs come with a default

priority mapping algorithm, but RT CORBA also specifies a install_priority_mapping method

to allow application code, or the Scheduling Service (see Section 4.1.5), to install its own mapping. The

ability to install a known priority mapping is important since the mapping of several CORBA Priorities to

the same Native Priority is a source of priority inversion that often must be accounted for in real-time

analysis.  See Section 3.2.2 and [16] for a discussion of an optimal priority mapping algorithm, its resulting

priority inversion, and its affect on schedulability analysis.

4.1.2 RT CORBA in Clients

Clients express CORBA priority in their threads by creating a local object called a CORBA::Current.

When created using the RT CORBA interface, the Current object contains, in addition to other attributes, a

Priority attribute, which will hold the CORBA Priority of the thread that created the Current object. A

thread sets its CORBA Priority by writing the Priority attribute of its Current object. The RT ORB will

map this CORBA Priority to the Native Priority on the local real-time operating system to execute the

thread. The RT ORB also has access to the CORBA Priority in the Current object so that it can do things

such as propagate the CORBA Priority to any CORBA servers that the thread calls.

RT CORBA also specifies a mechanism for clients to do explicit binding to servers. Binding refers to the

client obtaining a reference to a CORBA object (similar to a pointer to a local object), with which it can

invoke methods on the CORBA object.  CORBA has several interfaces to allow clients to bind to CORBA

servers. RT CORBA adds the explicit bind mechanism to allow the clients to specify the network protocols

they wish to use, most importantly to allow the use of real-time protocols.  Currently no real-time protocols

are available in the RT CORBA standard, but protocols such as TAO’s RIOP [18] are expected to be

included in later drafts.  The explicit bind capability in RT CORBA also allows clients to establish a

dedicated connection to the server to alleviate blocking at the connection point. Explicit binding can also

establish priority bands for shared connections to the server. Priority bands come from the TAO work

described in Section 3.3.  They are used to reduce the priority inversion due to non-priority respecting

protocols.  Essentially, priority bands allows the client to establish multiple connections to a server each

with different CORBA priorities.

4.1.3 RT CORBA Mutexes

RT CORBA provides a Mutex as a means to coordinate access to resources in the CORBA system. The

Mutex  interface looks much like an operating system Mutex from the POSIX standard [31]. There are

methods to create_mutex, lock, unlock, and try_lock. The try_lock method includes a

parameter to indicate a maximum wait time. A thread calling lock on an unlocked Mutex will obtain the

lock. All subsequent threads that request the locked Mutex will be blocked by queuing them in CORBA

Priority order. When the thread holding the lock calls unlock, the highest priority blocked thread
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obtains the lock. Note that Mutexes are CORBA-wide entities allowing threads on different nodes to

coordinate access to system resources.

The RT CORBA Mutex requires priority inheritance behavior (see Section 2.2.4). Exactly what form of

priority inheritance is used is implementation-dependent, but the application can be assured that at least

basic priority inheritance of CORBA priority will take place among block threads. Other forms of priority

inheritance protocols, like a form of Priority Ceiling Protocol require interfaces that are specific to the RT

CORBA implementation.

4.1.4 RT CORBA For Servers

CORBA is designed to allow servers to be written independently of the clients that will access them. A

CORBA server can be thought of as a process in which reside the CORBA objects that clients use. That is,

a CORBA object provides methods that perform the service for the client; the server is the process that

contains the CORBA objects and assigns threads to invoke the methods of the CORBA objects on the

client’s behalf.  Although not mandated in the standard, most real-time CORBA implementations will keep

persistent servers so that servers are always active. Otherwise, having to activate a server could adversely

affect timing constraint enforcement. When the server creates/assigns a thread to invoke a method on a

CORBA server on the client’s behalf, the server is said to dispatch a thread.  RT CORBA provides

primitives to control the dispatching of server threads; it does not provide primitives to use in the

application code of CORBA objects themselves.

A CORBA server process uses one or more objects called Portable Object Adapters (POAs) to manage the

creation/deletion of CORBA objects and the dispatch of threads. When a request comes to a CORBA server

process, the server uses information in the request to find the appropriate POA to dispatch the servant to

handle the request.  A CORBA POA object is constructed with a set of policies specified in the CORBA

standard. These policies specify how the POA creates/deletes objects and dispatches threads for the objects

that it manages. RT CORBA server primitives are written entirely in terms of additional POA policies for:

1. Thread configuration -  specifies the creation of thread pools from which to dispatch threads;

2. Server priority - specifies how to determine at what CORBA priority the server thread   should

execute;

3. Communication protocols  - used by the server to accept clients calls to the CORBA objects;

The POA policies are parameterized and also can make use of system information to allow the POA to

make specific dispatching decisions. For instance, POA objects have access to the priority of the client

when a method request arrives. This information can be used by the POA to establish priorities of the

servant threads and to make concurrency control decisions about when to dispatch a request.
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Thread Configuration RT CORBA POA Policy.  Recall that for each invocation of a CORBA object by

a client, a thread on the server is required to process the request on the client’s behalf. Non-threaded

CORBA systems typically have a single process (one thread) that handles invocation requests serially.

Serial handling of requests has obvious drawbacks for real-time due to lack of concurrency that causes

increased blocking. RT CORBA assumes a multi-threaded server. Each POA has a  thread pool associated

with it, similar to the Washington University TAO RT CORBA design [18]. The POA thread pool

characteristics are defined by a RT CORBA POA “Thread Configuration Policy”.  This policy specifies

that a thread pool consists of statically allocated threads, which are threads created when the POA is

instantiated at the time the server starts; and dynamically allocated threads, which are threads that are

created at the time the client’s request is received.  Note that in general, dynamically allocated threads can

cause unpredictable real-time performance. The thread pool POA policy specifies the number of static and

dynamic threads through two parameters to the policy: static_threads, which specify the number of

statically allocated threads, and max_threads, which specifies the maximum number of threads that can be

active in the POA (statically allocated threads plus dynamically allocated threads). If  the server sets

static_threads to be equal to max_threads in the Thread Configuration POA policy, then no threads will be

created dynamically. Note that the ability to limit the maximum number of threads created and to control

how many are pre-allocated are both important for bounding resource use, which is important for achieving

predictability in real-time systems.

A POA’s thread pool is created  in priority lanes.  Priority lanes are groups of threads within the POA’s

thread pool that are created at the same priority. Each priority lane has its own static_threads and

max_threads parameters to indicate how many threads of that priority a POA will have. This scheme allows

the original priority of threads within the server to be set.  The “Server Priority Model” POA policy,

described next, allows this original default priority of a thread to change to account for the priority of the

client on whose behalf it will execute and to account for priority inheritance.

Server Priority RT CORBA POA Policy.  The thread pool priority lanes establish the original priority of

threads before they are dispatched to service a client’s request. The Server Priority POA policy specifies

what priority the thread will execute at after it has been dispatched. There are two models currently

specified in RT CORBA: “Client Priority Propagation”, where the server thread executes at the CORBA

priority of the client that requested it;  and “Server-Set Priority”, where the server thread executes at a

priority set as a parameter to the policy.

Communication Protocols RT CORBA POA Policy.  The POA policy for communication protocols

allows the server to specify a prioritized list of protocols it wishes to use to communicate with clients.  This

list is placed in the object reference that is returned to a client when the client binds to a server.  The

client’s configurable protocol capability, described in Section 4.1.2, can then use this list to choose a

protocol with which to communicate with the server. The RT CORBA standard specifies the definition of

TCP as a protocol selection by providing an interface for the server to set TCP’s configurable properties
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such as the send buffer size and receive buffer size. Currently, TCP is the only property specified.

However, the POA policy for protocol selection was put into RT CORBA so that real-time protocols, that

for instance support priority, can be configured and used once standard ones become available.

RT CORBA 1.0 also provides a RT POA policy for Priority Banded Connections. This policy allows

multiple clients to have multiple connections at different priorities to the same server. A server’s POA

establishes ranges of priorities, each range called a band. A client is connects to the server in the band in

which the client’s CORBA priority falls. If the client’s CORBA priority is not in a band specified by the

POA, the client’s connection is refused by the server.  Priority banding is provided to reduce priority

inversion that occurs in non-real-time ORBs where all clients connect at the same priority allowing higher

priority clients to be queued behind lower priority clients waiting on the single connection point (such as a

TCP/IP socket).

4.1.5 Fixed Priority Scheduling Service

RT CORBA also specifies a Scheduling Service that uses the RT CORBA primitives to facilitate enforcing

various fixed-priority real-time scheduling policies across the RT CORBA system.  The Scheduling Service

abstracts away from the application some of the complication of using low-level RT CORBA constructs,

such as the POA policies. For applications to ensure that their execution is scheduled according to a

uniform policy, such as global Rate Monotonic Scheduling, RT ORB primitives must be used properly and

their parameters must be set properly in all parts of the RT CORBA system. A Scheduling Service

implementation will choose CORBA Priorities, POA policies, and priority mappings in such a way as to

realize a uniform real-time scheduling policy. Different implementations of the Scheduling Service can

provide different real-time scheduling policies.

The Scheduling Service uses “names” (strings) to provide abstraction of scheduling parameters (such as

CORBA Priorities).  The application code uses these names to specify CORBA Activities and CORBA

objects. The Scheduling Service internally associates these names with actual scheduling parameters and

policies. This abstraction improves portability with regard to real-time features, eases use of the real-time

features, and reduces the chance for errors.

The Scheduling Service provides a schedule_activity method that accepts a name and then

internally looks up a pre-configured CORBA priority for that name. The Scheduling Service also provides

a create_POA method to create a POA and set the POA’s RT CORBA thread pool, server priority, and

communication policies to support the uniform scheduling policy that the Scheduling Service is enforcing.

For instance, if the Scheduling Service were enforcing a scheduling policy with priority ceiling semantics,

it might create thread pools with priority lanes at the priority ceiling of the objects it manages to ensure that

threads start at a high enough priority before dispatch. The Scheduling Service provides a third method,
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0 install_priority_mapping(. . .);

Client
C1 sched = create scheduling service object;
C2 obj = bind to server object
C3 sched->schedule_activity ("activity1");
C4 obj->method1( params );   // invoke the object
C5 sched->schedule_activity ("activity2");
C6 obj->method2(params );

Server Main
S1 sched = create scheduling service object;
S3 poa1 = sched->create_POA(. . .);
S4 obj = poa1->creat_object ( params );   // create object
S5 sched->schedule_object(obj, "Object1" );

...

Figure 7: Example of RT CORBA Static Scheduling Service

called schedule_object, that accepts a name for the object and internally looks up scheduling

parameters for that object.  For instance, it could set its priority ceiling so that it can do a priority ceiling

check at dispatch time.

The example in Figure 8 illustrates how the Scheduling Service could be used and also illuminates some of

the issues in creating RT CORBA clients and servers.  Assume that a CORBA object has two methods:

method1 and method2.  A client wishes to call method1 under one deadline and method2 under a

different deadline.

In Step 0, the Scheduling Service installs a priority mapping that is consistent with the policy enforced by

the Scheduling Service implementation. For instance, a priority mapping for an analyzable Deadline

Monotonic policy might be different than the priority mapping for an analyzable Rate Monotonic policy.

The schedule_activity calls on lines C3 and C5 specify names for CORBA Activities.  The

Scheduling Service internally associates these names with their respective CORBA priorities. These

priorities are specified when the Scheduling Service is instantiated at system startup.  For instance, the URI

& SPAWARSYSCEN & Tri-Pacific RapidSched Scheduling Service implementation [16] specifies

deadline monotonic priorities through a configuration file.

The server in the example has two Scheduling Service calls. The call to create_POA allows the

application programmer to set the non-real-time policies, and internally sets the real-time policies to

enforce the scheduling algorithm of the Scheduling Service.  The resulting POA is used in line S4 to create

the object.  The second Scheduling Service call in the server is the schedule_object call in line S5.

This call allows the Scheduling Service to associate a name with the object.  Any RT scheduling



30

parameters for this object, such as the priority ceiling, are assumed to be internally associated with the

object’s name by the Scheduling Service implementation.

4.2 Dynamic RT CORBA

The current RT CORBA draft standard was designed for supporting fixed priority scheduling and some

general real-time features. It was not designed to support dynamic scheduling, where clients and servers

dynamically enter and exit the system and priorities may change over time.  The OMG RT SIG has issued a

request for proposals (RFP) in February 1999 to extend the RT CORBA standard to support dynamic

scheduling.  The RFP specifies requirements for what the eventual RT CORBA standard must contain to

support dynamic scheduling.

The Dynamic RT CORBA standard will support the specification of policy and parameters to be used to

schedule each task. That is, instead of each task carrying with it a CORBA Priority, as is required in the

current RT CORBA standard, tasks will carry a richer description that includes parameters, such as

deadline, “importance”, delay, and period. The task will also carry a policy, such as Earliest-Deadline-First

(EDF), or EDF weighted by importance, that is to be used to schedule it.  The exact policies supported in

the Dynamic RT CORBA standard will be determined from the policies suggested in responses from

CORBA vendors to the RFP. The Dynamic RT CORBA standard will also support handling occurrences

when the policy is violated (this is called “policy inversion”, which is similar to the fixed priority “priority

inversion” notion). Also, handling of violations of scheduling parameters, such as missing deadlines, will

be supported. Finally, the Dynamic RT CORBA standard will state its relation to the current RT CORBA

standard’s support for fixed priority scheduling. A draft Dynamic RT CORBA standard expected in early

2000.

Although the Fixed Priority Real-Time CORBA 1.0 and the Dynamic additions that will be in CORBA 2.0

will constitute the main part of what will be Real-Time CORBA, there are other extensions on the OMG

RT SIG roadmap. These include: relation to fault tolerance, real-time transactions, and high-performance

CORBA.

5 Conclusions
This paper has described  the early stages of research and development in Real-Time CORBA. The original

work done at MITRE,  the University of Rhode Island & SPAWAR Systems Center, and  Washington

University laid the groundwork to incorporate results from the real-time research community into the

CORBA standard. These results, along with parallel development efforts by companies such as Sun,

Lockheed/Martin, and Objective Interface Systems, demonstrated the feasibility of RT CORBA software.

This validation, along with significant demand from application domains such as military command and

control, telecommunications, manufacturing, and finance, caused the Object Management Group to initiate
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a standardization process in 1996. In 1998 the first draft RT CORBA standard was issued.  Vendors such as

Sun, Lockheed/Martin, Objective Interface Systems, Iona, and Visigenics have all committed to producing

middleware software that meets the RT CORBA standard.  Other vendors such as Tri-Pacific  Software Inc

have committed to making tools to support RT CORBA developers.  The flexibility and sound structure of

the CORBA standardization process, along with the willingness of the OMG’s RT SIG to incorporate

promising research results into the process have created an effective, useful combination of standard,

middleware implementations, techniques, and tools to address real-time distributed object computing in a

portable, commercially available way under the Real-Time CORBA name.
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