

SMOS: A MEMORY-RESIDENT OBJECT STORE

BY

YONG YUAN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

1997

 ii

ABSTRACT

In a complex real-time environment, there is often a large amount of temporal data that

needs to be promptly collected and made available for processing. To support time

constrained access to this data, real-time databases are needed in order to provide

predictable transaction time. However, the time constraints can be very tight, requiring a

very high database performance level that a conventional database system usually cannot

provide.

In this thesis, we present a solution for the need of high-performance databases through

the design of a memory-resident object repository called SMOS (Shared Memory Object

Store). SMOS features an unique client-only architecture in which the server processes

and their communications with the clients are eliminated through System V shared

memory support. By providing an object model that fully utilizes the type system of the

database application programming language, we alternatively unified multiple address

spaces into a single address space in SMOS and thus eliminated object moving and

format translations. Further performance gain in SMOS was achieved by relaxing some

of the transaction ACID properties that are unnecessary in a high speed real-time

environment.

SMOS has been implemented with Open OODB from Texas Instruments, Inc., it was

initially developed on an Intel x86-based platform running Solaris 2.5 and has been

ported to Sun SPARC running Solaris 2.5. The SMOS/Open OODB prototype has

demonstrated superior system performance through various timing experiments.

 iii

ACKNOWLEDGMENTS

It has been my good fortune to have Dr. Victor Fay Wolfe serve as my advisor while

working on my thesis. He provided me such a great opportunity to work on this

challenging thesis project. This thesis would not be possible without his vision, guidance,

encouragement, and support.

I would like to thank the other members of my thesis committee: Dr. Joan Peckham, Dr.

Yin Sun, and Dr. John W. King for their suggestions, time, and interest.

I am also grateful to Mike Squadrito, John Black, Dr. Lisa Cingiser, Dr. Janet Prichard,

and other members of the real-time research group at the University of Rhode Island;

discussing research ideas with them have enriched my knowledge.

Finally, I wish to thank my parents and my wife Jiongdong Pang for their support and

patience through this research.

 iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION..1

 1.1 MOTIVATION ...1
 1.2 BACKGROUND ...3

 1.2.1 Object-Oriented Databases ...3
 1.2.2 Memory-Resident Databases..4
 1.2.3 Real-Time Databases..5
 1.2.4 RTSORAC..5

 1.3 OBJECTIVES...6
 1.4 THESIS OUTLINE..6

CHAPTER 2 RELATED WORK ..7

 2.1 OBJECT MODEL ...7
 2.1.1 Language-Independent Object Models...8
 2.1.2 Language-Dependent Object Models ...8

 2.2 MAKING OBJECTS PERSISTENT..9
 2.2.1 Indirect Mapping ..9
 2.2.2 Direct Mapping..11

 2.3 PERSISTENCY IN THE MEMORY..12
 2.4 MEETING DEADLINES..12

CHAPTER 3 REQUIREMENTS, ANALYSIS AND DESIGN...14

 3.1 OVERVIEW...14
 3.2 THE REQUIREMENTS... .14

 3.2.1 The Functional Requirements..15
 3.2.2 The System Requirements ...17

 3.3 THE ANALYSIS ..18
 3.4 THE DESIGN ..19

 3.4.1 The Architecture Framework...20
 3.4.2 The Classes..21

CHAPTER 4 IMPLEMENTATION..24

 4.1 OPEN OODB ...24
 4.1.1 An Overview ...24
 4.1.2 Architecture ...25

 4.2 SMOS IMPLEMENTATION..27
 4.2.1 Persistent Object Addressing...28
 4.2.1.1 Indirect Addressing ..30
 4.2.1.2 Direct Addressing ...31
 4.2.2 Transaction Management ..32
 4.2.2.1 Preventing Priority Inversion..32
 4.2.2.2 Detecting Deadlock ..33
 4.2.3 Extended Persistency and Recovery..38
 4.2.4 A Process Diagram..39

CHAPTER 5 PERFORMANCE EVALUATION ..41

 5.1 OVERVIEW...41
 5.2 RAW PERFORMANCE TESTS...42

 5.2.1 Test Metrics...42
 5.2.2 Results ...42

 5.3 SCALABILITY TESTS ..44

 v

 5.3.1 Test Metrics...44
 5.3.2 Results ...45

CHAPTER 6 CONCLUSIONS ..47

 6.1 THESIS SUMMARY ...47
 6.1 RESEARCH CONTRIBUTION..49
 6.2 FUTURE WORK ..49

 LIST OF REFERENCES...51

 APPENDIX A ...52

 APPENDIX B..53

 BIBLIOGRAPHY...63

 vi

LIST OF TABLES

TABLE 3.1 SMOS FUNCTIONAL REQUIREMENTS ... 15

TABLE 3.2 SMOS SYSTEM REQUIREMENTS... 17

TABLE 3.3 SMOS DESIGN DECISIONS ... 20

TABLE 5.1 TEST PLATFORM HARDWARE CONFIGURATIONS .. 41

TABLE 5.2 COMPARISON OF CALCULATED TRANSACTION THROUGHPUT 43

 vii

LIST OF FIGURES

FIGURE 2.1 INDIRECT MAPPINGS BETWEEN TRANSIENT AND PERSISTENT OBJECTS 10

FIGURE 2.2 DIRECT MAPPINGS BETWEEN TRANSIENT AND PERSISTENT OBJECTS 12

FIGURE 3.1 A CONVENTIONAL MEMORY RESIDENT DATABASE .. 19

FIGURE 3.2 SMOS SYSTEM ARCHITECTURE FRAMEWORK.. 21

FIGURE 3.3 SMOS MAJOR CLASS DIAGRAM ... 22

FIGURE 4.1 OPEN OODB ARCHITECTURE ... 25

FIGURE 4.2 OPEN OODB ASM CLASS HIERARCHY .. 27

FIGURE 4.3 INDEX STRUCTURE (X’ AND X’’ INDICATES CHAINED ENTRY).......................... 29

FIGURE 4.4 A DEADLOCK TRANSACTION WAIT-FOR GRAPH... 34

FIGURE 4.5 IMPLEMENTATION OF TRANSACTION WAIT-FOR GRAPH.................................. 35

FIGURE 4.6 DEADLOCK CHECKING OPTIONS.. 37

FIGURE 4.7 SMOS PROCESS DIAGRAM.. 40

FIGURE 5.1 RAW PERFORMANCE TEST RESULTS.. 44

FIGURE 5.2 SCALABILITY TEST RESULTS ... 46

 1

Chapter 1

INTRODUCTION

 1.1 Motivation

Many real-world computing systems are associated with time constraints. These time

constraints require that the computations must complete before their deadlines, otherwise

various degrees of damage may occur. Such systems are called real-time systems. Typical

real-time systems are often seen in the military command and control, nuclear power

plants, automatic manufacturing factories, and air traffic control systems. In these

environments, real-time systems often have to deal with large volumes of temporal data

that can be better managed by database systems. This introduces the need for real-time

database systems (RTDB).

A real-time database system combines the features from both real-time systems and

database systems; it not only has to satisfy the time constraints required by a real-time

system but also has to maintain the data consistency required by a database system. These

requirements introduce the major difficulties in the design of a real-time database,

because the two fundamental requirements are not compatible: real-time requires the

transaction to be performed in a timely fashion with predictability; whereas a database

often has to suspend transactions to provide data consistency, making transaction time

unpredictable. In (Ramamritham, 1993) several other sources of unpredictability were

identified in a conventional database system, including transaction aborts and the

resulting rollbacks or restarts, data and resource conflicts, dynamic paging, and I/O.

In the past, research on real-time databases have always been focused on how to make the

transactions predictable, in particular it has focused on the concurrency control protocols

 2

that are suitable for real-time databases. On the other hand, the degree of the

predictability1 that a real-time database can provide is often ignored. As a result, the

system performance level, though fundamental to system predictability, is often not

considered as the most important issue, because it is usually assumed that the

performance level is sufficient without special treatment. However, in industries, military

and other practical environments, the transaction rates can be very high, the data volume

per transaction can be very large, and the time constraints associated with the data can be

very tight, a guaranteed high system performance level becomes essential for providing

high degrees of predictability.

One effective way to increase the system performance level is to keep the database in

memory. However, a conventionally designed memory-resident database (MMDB) is still

inadequate to satisfy those high demand environments, the best reported simple

transaction time we found was 69 milliseconds (Lehman, 1992). Instead of using

database systems, those environments are forced to rely on sophisticated ad hoc

techniques to manage data, and the resulting systems unavoidably have significant

drawbacks in system upgrade and maintenance compared with a software database

approach. The need for a high-performance real-time database system is clear.

Motivated by such need, in this thesis we explored possible ways to improve main

memory database performance level. We applied our ideas to the design and

implementation of a memory-resident object repository called SMOS (Shared Memory

Object Store), and integrated SMOS into Open OODB from Texas Instruments, Inc. for

various performance tests.

SMOS features an unique client-only architecture. Unlike the client-server architecture,

the server process is eliminated in SMOS. As a result the communications between the

server and the clients are also eliminated. SMOS also supports the notion of real-time

object and non-real-time object. For real-time objects, SMOS provides the highest

possible performance level by trading off some of the conventional database functionality

1 The value of the bounded worst-case transaction time

 3

and object features; when there are no real-time objects, the performance is not as good,

but more database and object features are preserved. In the timing tests of SMOS/Open

OODB, we observed2 a worst-case transaction time of 10 milliseconds for real-time

objects with size under 1Mb. For none real-time objects, the worst-case transaction time

increased to 17.8 milliseconds.

 1.2 Background

SMOS first is an object database; it provides persistent object storage for object-oriented

programming languages such as C++. Because SMOS keeps persistent objects in

memory, it is also a main memory database and thus can deliver very fast transactions. In

addition, our efforts intend to provide guarantees for the worst-case transaction time,

therefore SMOS is also oriented toward a real-time database. In the following sections we

briefly describe the characteristics of these databases as well as related research in the

University of Rhode Island.

 1.2.1 Object-Oriented Databases

An Object-Oriented Database Management System (OODBMS) stores, shares, and

manages objects instead of tables of data as in Relational Database Management Systems

(RDBMS). Objects in an OODBMS reassemble real-world objects in many ways; they all

have states, behaviors, and identities, and the structure and behavior of similar objects

can be defined in common classes. An OODBMS maintains all the basic functionality of

a traditional database management system, such as persistency, concurrency, and

recoverability, by transparently integrating database capabilities with an object-oriented

programming language such as C++ or SmallTalk. Unlike a RDBMS which stores simple

and often fixed length data in tables and thus has difficulties in representing complex

relations, an OODBMS can easily support complex structures by naturally using objects,

2 The tests were performed on a Sun SPARC 10 workstation and its hardware configuration is listed in

Table Chapter 5 .1

 4

and thus can “maintain a direct correspondence between real-world and database objects

so that objects do not lose their integrity, and identity and can easily be identified and

operated upon” (Elmasri, 1994). In other words, if the real-world information can be

better represented by objects, it can often be easier and faster to store and manage this

information in the form of objects rather than translating between application objects and

tables of record. More importantly, in OODBMS the same object can be used

transparently in many aspects of the system, including analysis, design, implementation,

query, GUI, object store, etc. Therefore, developers who use object technologies desire

OODBMS, because the combination of object-oriented analysis (OOA) and design

(OOD), object-oriented programming language (OOP), and object-oriented database

(OODB) offers the benefits of a synergistic development environment (Loomis, 1995).

 1.2.2 Memory-Resident Databases

The cost for semiconductor memory chips, especially the Single Inline Memory Module

(SIMM3) has dropped dramatically in recent years. In the meantime, the memory density

has also increased significantly. Nowadays, a personal computer can hold as much as

several hundred megabytes of memory, whereas an industry customized computer can go

up to several gigabytes and more. These advances in memory technology make it

possible to keep the entire database in the main memory. However, a main memory

database (MMDB) is quite different from a traditional database that can cache all its data

in the memory. A database that caches all the data in main memory is not designed to

take advantage of the data memory-resident features, because its data access method is

still oriented toward disk-resident data. A study of index structures for main memory

database systems (Lehman, 1986) demonstrated that B/B+ trees do not have overall good

performance in MMDB when compared to their performance in disk-based databases,

because although B/B+ trees have the ability to minimize disk accesses and to use disk

space efficiently, they cannot use the CPU cycles and memory space as efficiently. On

the other hand, because of the low latencies between the CPU instructions and memory

3 An industry standard for placing a grouping of memory chips on a pluggable board

 5

accesses, MMDB is usually designed to take advantage of pointer following for its data

access and representation, efficiently using the CPU cycles. An excellent overview of

main memory databases can be found in (Garcia-Molina, 1992).

 1.2.3 Real-Time Databases

A computing system is considered real-time if the correctness of the computation

depends not only on the logical correctness of the results but also on the timing

correctness of the computations. A real-time database (RTDB) provides data

management services for applications that require logical consistency as well as temporal

consistency for the data. To maintain temporal consistency a transaction is required to be

completed by a certain deadline. Typical real-time database systems approach the

guaranteed transaction time with various time-driven scheduling and resource allocation

algorithms, they usually explicitly deal with time constraints by tailoring the traditional

concurrency control and transaction management techniques (Ramamritham, 1993).

However, these approaches do not always provide satisfactory solutions especially for

guaranteeing hard transaction deadlines. As we mentioned earlier, this difficulty comes

from the incompatibilities caused by maintaining both logical and temporal consistency,

as well as system resources and hardware limitations. As a result, most real-time database

systems only guarantee soft transaction deadlines.

A comprehensive overview of real-time databases can be found in (Ramamritham, 1993).

This paper describes the characteristics of data and transactions in real-time databases,

the issues that relate to the processing of time-constrained transactions, and the possible

approaches to resolving contention over data and processing resources.

 1.2.4 RTSORAC

 6

RTSORAC (Real-Time Semantic Objects Relationships And Constraints) is a database

model developed by the real-time research group at the University of Rhode Island

(Wolfe, 1993; Peckham, 1994 and Prichard, 1994). This model incorporates real-time

database concepts into an object-oriented database model, supporting time constrained

objects and transactions. Based on this RTSORAC model, a prototype of a real-time

object-oriented database system has been proposed (Wolfe, 1994). This thesis project is

part of the implementation efforts of this RTSORAC database prototype.

 1.3 Objectives

In this study, our primary research objective is to develop a persistent object storage

manager that is suitable for object-oriented real-time applications requiring an extremely

high-performance level. Our approach is step-wise and explores different balances

between the database features and the system performance levels. Therefore, another

important research objective is to investigate a flexible object management configuration

that can be easily tuned to satisfy different application requirements. Our final research

objective is to implement a prototype of our design and integrate it into an existing

OODBMS with various timing tests to evaluate the design decisions.

 1.4 Thesis Outline

Chapter 2 describes work that is related to SMOS, including making objects persistent,

persistence in main memory, and meeting transaction deadlines. Chapter 3 presents the

requirements, analysis, and design of SMOS. Chapter 4 describes the implementation and

integration of SMOS with Open OODB (the host OODBMS for SMOS). Chapter 5

demonstrates the performance evaluations of SMOS in Open OODB. Chapter 6

concludes the thesis with a summary and discussion of the contributions, limitations, and

future work.

 7

Chapter 2

RELATED WORK

In this chapter, we describe work that relates to the design and implementation of SMOS.

We will first introduce the object model, because its construction is the first step of

building an OODBMS. We will then describe how objects are mapped between transient

and persistent address space, as the mapping methods determine many aspects and

features of an object store. We will also describe how objects can become persistent in

main memory, because memory-residency is the key feature of SMOS. At the end of this

chapter, we will introduce deadlines that are associated with real-time transactions, as

SMOS intends to serve as a real-time database engine.

 2.1 Object Model

The object model of a OODBMS specifies the semantics that can be explicitly defined for

the system. It determines the characteristics of objects, how objects can be related to each

other, and how objects can be named and identified (Cattell, 1996). Recall that an

OODBMS is closely coupled with one or more object-oriented programming languages,

thus we can classify OODBMS object models into language-independent and language-

dependent models, according to their relationships with the coupled languages. In this

section, we will compare these two categories of object models; this comparison provides

the background of the object model independency requirement that will be described in

Chapter 3.

 8

 2.1.1 Language-Independent Object Models

Language-independent models have the advantages of being able to specify a wide range

of semantics. When targeting different applications, these models can have very different

emphasis. For example, the RTSORAC Object Model specifically incorporates real-time

constraints to support real-time persistent objects (Prichard, 1994). The ODMG-93

Object Model is another example in which a set of object constructs are established as

standard requirements for a ODMG-93 compliant OODBMS. Though the language-

independent object models have the advantage of flexibility, e.g., they can be very simple

or very complex depending on the specific application requirements, they need to be

bound with the coupled programming language. Sometimes, the bindings of certain

semantics can be a challenge to system design and implementation. For example, to

provide object relationship integrity, the coupled programming language needs to bind

inverse object attributes; however, to provide support for such binding in the OODBMS

is not trivial, because the system has to transparently maintain the references between the

relationships in synchronization with the transactions that manipulate them.

 2.1.2 Language-Dependent Object Models

Any object-oriented programming language (OOPL) has an implied object model that

supports the concept of objects, operations, interfaces, types, subtyping, inheritance, etc.

When an OODBMS chooses an OOPL with which to couple, it can also decide to use the

language object model with or without modification for its database object model. Such a

language-dependent object model approach makes it possible to provide only one

execution environment, programming language, and type system through out the database

system, eliminating impedance mismatch4 between the programming language and the

database. In addition, because the database and the language use the same object model,

there is no need to map the database object model into the language, eliminating

4 Impedance mismatch arises when the application programming language and the database language have

very different object models; it refers to the problems related to translating objects in these two language
environments.

 9

language binding that is required by a language-dependent object model. Although the

semantics of such a language-dependent object model may not be as rich as a language-

independent object model that is specifically designed for an OODBMS (e.g. ODMG-

93), the computationally complete programming language that is closely coupled with the

system, such as C++, can usually overcome the resulting shortcomings (Cattell, 1994).

 2.2 Making Objects Persistent

A persistent object is one that continues to exist after the process in which it is created

has terminated. Because an object can have pointers or references to other objects,

making objects persistent as well as retrieving persistent objects are rather complex

procedures and require close attention from the object store. Depending on how

mappings between transient objects and persistent objects are performed, there are

basically two different ways to make objects persistent in a database. In the following

sections, we take a closer look of these two mapping approaches.

 2.2.1 Indirect Mapping

In this approach, the mappings between transient and persistent objects are indirect

(Figure Chapter 2 .1). A transient object in the local heap of an application process must

be first transformed into a format that is suitable to store in the persistent addressing

space (PAS), it is then moved into the PAS where it becomes persistent. Though the

actual format varies with different implementations, the object is simply a segment of

some storage units (such as bytes, blocks, pages) with a length that is determined by the

size of the object.

 10

transient format persistent format

transformation
procedure

Figure Chapter 2 .1 Indirect Mappings between transient and persistent objects

If objects of any type are allowed to become persistent, the transformations between an

object’s transient and persistent representations can be very complicated. Because an

object can have references/pointers to other objects, the memory addresses contained in

the references/pointers are most likely invalid when the objects are fetched back from the

persistent store to the memory; therefore, the transformation has to find a way to

represent references/pointers without using memory addresses. In such an indirect

mapping approach, an object identifier (OID) is typically used to represent a

reference/pointer in a persistent object; and when dereferencing the pointer, the

OODBMS performs a table lookup to find the persistent address of the target object using

its OID.

As the object transformation has to traverse references in the object, indirect mapping can

be time-consuming when the object contains many references or pointers. However,

indirect mapping also has its important advantages. Firstly, if the OODBMS needs to

support cross-platform transfer of objects over networks, or support multiple application

programming languages, a general object format is needed other than the in-memory

transient representation. This general object format is often best represented using a

persistent object format which utilizes fixed length contiguous storage units. Secondly,

from the architecture point of view, the object store should serve as a module in the

OODBMS if extensibility is a key requirement. Under object oriented design (OOD)

principles, such object store modules should be coupled with the OODBMS only through

an interface and should not care about the actual structure or layout within each

individual object. This can be done by providing a persistent object format that is known

 11

to the object store only as a sequence of uninterpreted storage units. Such a design has

great flexibility; for example, it can easily adapt a new object store for a different system

functionality emphasis. Because of this, we used the indirect mapping approach in

SMOS.

The idea of indirect mapping has been successfully applied in several OODBMS,

including research prototypes such as E/Exodus (Carey, 1986), Open OODB (Well,

1992), YOODA (Abecassis, 1994) etc., as well as commercial products such as

MediaDB, O2 (Deux, 1991), etc. Further, the OO7 OODBMS benchmark has

demonstrated that E/Exodus has a very competitive performance when compared with

several commercial OODBMS products that are based on direct mapping technology

(Carey, 1993).

 2.2.2 Direct Mapping

In the direct mapping approach for making object persistent, the mappings between

transient and persistent objects are direct (Figure Chapter 2 .2). No transformations are

needed. Objects are stored in their native language format such as C++ format. The only

difference between transient and persistent objects is their pointer values. Instead of

containing a memory address when it is in a transient object, the pointer will have a

persist storage address when the transient object is mapped into the persist object store.

Therefore, the direct mapping procedure simply converts a pointer’s addresses between

the two address space before moving objects across the boundary, this procedure is also

called pointer swizzling. An in-depth description of various pointer swizzling techniques

can be found in (Moss, 1992). reminder

pointer swizzling/
unswizzling

transient format persistent format

 12

Figure Chapter 2 .2 Direct Mappings between transient and persistent objects
Although the direct mapping approach seems more efficient at run-time, it complicates

the system design and implementation and has limited extensibility compared with

indirect mapping, because the storage manager has to be closely tied to many components

of the OODBMS and can no longer exist as a standalone system module.

 2.3 Persistency in the Memory

Unlike secondary storage, main memory is usually volatile. As a result, to maintain data

persistence in memory requires a running process that is capable of dynamic memory

allocation. This process needs to control a pool of memory space, allocating and

deallocating blocks of memory space upon request. Data stored in the allocated memory

space becomes persistent as long as this process is running. Similarly, a database can

achieve data persistency in memory with a client/server architecture in which the server

process allocates memory space to store data for the clients. A client-only architecture

can also be used for data persistence in memory. Such architecture requires shared

memory support from the operating systems, a standard feature5 in System V UNIX.

Typically, shared memory is used for interprocess communications; data stored in shared

memory is accessible by different processes and is persistent until the segment containing

this data is explicitly deleted or the kernel stops running. Such a feature can be directly

used for sharing persistent data in main memory without introducing a server process,

and is fundamental to this thesis project.

 2.4 Meeting Deadlines

As we mentioned in Chapter 1, a database maybe required to manage time-constrained

data. As a result, the transactions using this data have to meet certain deadlines, otherwise

5 Though shared memory is not standard in BSD UNIX, it is supported in many extended BSD UNIX

systems.

 13

this data is no longer considered consistent. A database that is capable of dealing with

transaction deadlines is qualified as a real-time database (RTDB).

We mentioned earlier that it is very difficult for a database to provide an absolute

guarantee on meeting transaction deadlines because of the incompatibilities between

logical and temporal consistency, as well as limitations in system resources. Most

research in the real-time database community has focused on finding solutions for the

incompatibilities between logical and temporal consistency (Abbott, 1988; Abbott, 1990;

Buchmann, 1989; Chen, 1990; Huang, 1990; Huang, 1991; DiPippo, 1995; Sha,1991;

etc.). These approaches usually first construct a real-time transaction model, and then

devote most of their efforts to establishing suitable transaction scheduling and

concurrency control protocols around the transaction model. A typical transaction model

may include the following attributes: deadlines, value function, resource requirements,

execution time, semantic information, etc. These attributes are used for transaction

scheduling of the CPU, I/O, memory, and other resources. This scheduling typically

involves priority assignment to the transactions. In addition, concurrency control is also

considered differently, because traditional lock-based protocols are no longer acceptable

due to possible priority inversion and deadlock. Strategies, such as Wait Promote (Sha,

1990), High Priority (Abbott, 1988), Conditional Restart (Abbott, 1988), are proposed to

prevent priority inversion for lock-based concurrency control protocols; and strategies,

such as aborting a transaction that has already missed its deadline, has the longest

deadline, or is least valuable (based on value function), are proposed to break deadlock.

 14

Chapter 3

THE REQUIREMENTS, ANALYSIS AND DESIGN

 3.1 Overview

The goal of this thesis research is to develop a persistent object store that is suitable for

the demands of real-time database applications. Our focus on SMOS is performance.

Typically, the performance of a particular software application is determined by three

factors; the features required, the design, and the implementation. The inclusion of more

features, especially advanced features, often requires more run-time overheads as well as

more efforts in the design and implementation. Given the same required features, the

design can choose different system architectures with different emphasis, and these

design decisions can have great impact on the performance; in addition, because design

also determines system portability and expandability, it can affect future system

performance. Implementation, on the other hand, affects performance through the kind of

data structures and algorithms it uses, and unlike the design it is much easier to correct or

improve. In this chapter, we first describe the requirements of SMOS, and then present

the design based on the requirements.

 3.2 The Requirements

Like any software system, SMOS has a set of functional requirements that describe the

functional capabilities or features it has to provide (Table Chapter 3 .1). In addition,

SMOS also has a set of system requirements that describe the system capabilities it must

 15

have when satisfying the functional requirements (Table Chapter 3 .2). There

requirements directly affect the design of SMOS.

 3.2.1 The Functional Requirements

Object Model Independence

Multi-Level Object Persistence

Guaranteed Persistent Object Access Time

Adjustable System Performance

Concurrent Persistent Object Access

Table Chapter 3 .1 SMOS Functional Requirements

Object Model Independency

As we mentioned in Chapter 2, an OODBMS can choose an object model that is either

dependent or independent upon its binding language object model. To serve as an

independent object storage manager, SMOS does not make any assumptions about the

object model of the OODBMS. This gives SMOS the potential to provide persistent

object storage service for a wide range of OODBMS.

Multi-Level Object Persistence

An object is persistent if its lifetime is extended beyond the execution of the creating

program. To provide performance advantages, we put the main store of SMOS in main

memory. However, main memory is normally volatile, the lifetime of a main memory

persistent object is therefore limited by the up time of the OS kernel. To provide recovery

from kernel crash or power failure, SMOS must be able to coordinate nonvolatile media

 16

persistent object storage and retrieval, such as asynchronically mirroring main memory

persistent objects on disk following certain policies.

Guaranteed Persistent Object Access Time

One of the major unpredictabilities of a disk-based database is data access time. This

unpredictability is caused by blocking time uncertainties associated with disk I/O

(Singhal, 1988). Because SMOS is supposed to provide object storage service for real-

time databases, it must be able to guarantee the access time of persistent objects.

Adjustable System Performance

As we mentioned earlier, the system performance is determined partially by the features

or function requirements. We can often improve performance by leaving out some of the

functionalities. On the other hand, the same functionalities maybe mandatory in a

different application or even the same application but different stages. SMOS should be

able to adjust its performance and functionality balances according the application

requirements.

Concurrent Persistent Object Access

Persistent objects are a shared resource. If this shared resource can be accessed

concurrently, performance can be greatly improved. For this reason, SMOS must provide

persistent object sharing among multiple transactions, users and applications. In order to

ensure data integrity, SMOS must only allow controlled concurrent access to persistent

objects. However, as we discussed in Chapter 2, concurrency control undermines

performance; therefore SMOS should be able to provide flexible concurrency control to

balance performance and data integrity according to the application requirements.

 17

 3.2.2 The System Requirements

Performance
Portability
Reusability
Extendibility
Flexibility

Table Chapter 3 .2 SMOS System Requirements

Performance

Because the goal of SMOS is to provide persistent object storage for demanding real-time

applications, performance is the most important system requirement for SMOS. As a

persistent object store, the performance of SMOS is measured on persistent object access

time. Given the functional requirements in last section, persistent object access time in

SMOS should approach transient object access time which is the speed of main memory.

Such performance level is fundamental to satisfy real-time transactions with very tight

deadlines (e.g. in several milliseconds range). Essentially, the performance of SMOS

should be guaranteed at a extremely high level in order to provide persistent object

storage service for demanding real-time database management systems..

Portability, Reusability, Extendibility, and Flexibility

Portability is very important when cross-platform is to be supported. SMOS is required to

support various UNIX platforms, therefore, it should avoid using platform dependent

function calls. SMOS should also have high reusability in order to make its service

available for a wide range of OODBMS, this requires SMOS to be a well designed

 18

module with interfaces can be easily adapted to various systems. Extendibility is another

important system requirement, because an OODBMS may have specific storage

requirement which SMOS does not initially have. Finally, SMOS should be able to easily

turn on and off some of its features; such flexibility is essential to satisfy different

performance and functionality requirements between different applications.

 3.3 The Analysis

Although the requirements described in last section all have influences on our design of

the persistent object store, among them guaranteed high-performance has the greatest

challenge and plays the most important role in our design decisions.

To satisfy the performance requirement, we must keep the object store in main memory.

Such approach not only improves performance but also eliminates disk I/O which in turn

eliminates blocking time uncertainties. Conventionally, a memory-resident store is either

encapsulated within the private address space of a server process or allocated to the

memory shared by one or more server processes (Figure Chapter 3 .1); the server process

then communicates with application processes using IPC, RPC or other networking

methods. Though these approaches have many advantages provided by the much matured

client/server architecture, such as clearly defined functionalities and boundaries for easy

maintenance and high reliability, the overhead imposed by the communications between

the clients and the servers undermine the performance. Clearly, we can further improve

performance if we are able to eliminate this communication overhead; and the only way

to achieve this is to remove the server process. However, without any process with which

to attach, the store must find a way to become persistent in memory and to be sharable by

all the application processes. The System V or POSIX.1b Shared Memory facility

actually makes this possible. The original purpose of shared memory is to provide fast

interprocess communications; once created, a shared memory segment can be attached to

one or more processes for their addressing; any changes made to the shared memory by a

process become immediately available to others. Most importantly to us, the shared

 19

memory is protected by the kernel; the content of a shared memory segment is preserved

until it is explicitly deleted or the kernel is stopped. Therefore, if we can make the object

store appear as one or more shared memory segments, the basic database framework is

established.

client

client

servermemory
segment

Figure Chapter 3 .1 A Conventional Memory Resident Database

Another source of overhead commonly found in a conventional main memory database is

the object format translation and object moving and copying. The translation is needed if

a general object format is introduced in order to support networking, cross-platform, and

multi-languages; whereas object moving and copying is for supporting multiple address

space and recovery. Though these are important features to many applications, we realize

that they are not necessary to some applications. For example, in a real-time environment,

conventional recovery becomes useless if the recovered data is outdated due to the

temporal constraints. For this reason, if we can turn off these features when possible, we

will gain further performance improvement.

 3.4 The Design

Based on the analysis in last section, we can make three major design decisions to

improve the performance of the persistent object store (Table Chapter 3 .3). In the

following sections, we first present our high level system architecture which reflects our

major design decisions, and then describe our detailed object-oriented design using

Booch notation.

 20

Design Decisions Impacts

Memory-Resident Improves access time, eliminates blocking uncertainty

Client-Only/Serverless Eliminates communication overhead

Address Space Unification Eliminates object format translation and object moving

Table Chapter 3 .3 SMOS Design Decisions

 3.4.1 The Architecture Framework

As shown in Figure Chapter 3 .2, the main store of SMOS resides in shared memory. As

the content of the store is naturally persistent with the protection from the kennel, no

hosting process is needed in order to prevent this memory area being reused by other

processes. By utilizing shared memory facilities provided by the operating system, client

processes can also gain direct access to the store concurrently without communicating

with each other (we will describe how concurrency control is established without a server

process in section 3.3.2). Based on the above features provided by shared memory, we

eliminated the server process in the design which is otherwise essential in a database.

Because the maximum lifetime of regular6 main memory content is limited to the kernel

up time, we have a daemon (Figure Chapter 3 .2) that provides asynchronous backup

services for the main object store. Following certain policies, this daemon extends object

lifetime by copying whole or part of the main store to a backing store on disk, whereas

the policy can be configured so that it balances the extent of recovery and the system

performance according to application requirement.

6 There are special memory chips/boards that have battery backup to against power failure.

 21

Backing
Store

client

client

Main
Store

Log
Daemon

shared memoryfixed disk

Figure Chapter 3 .2 SMOS System Architecture Framework

Conventionally, for safety and recovery, a client is not allowed to directly address the

persistent address space; in other words, the persistent and transient address spaces are

separate. In our design, after a client attaches the persistent address space to its local

transient address space, it can optionally unify the two address space when addressing

time critical objects. Because the client directly operates on the persistent object without

copying the object out from and back to the store, the access time of any persistent object

is bounded regardless the size of the object. However, we must realize that use of such

operations should be restricted because it can put the object in a inconsistent state if

failure should happen during the transaction.

 3.4.2 The Classes

In this section, we will have a closer look at our design. In particular, we will decompose

the system and use Booch OOD notation (Appendix I) to represent our detailed design

decisions.

The class diagram in Figure Chapter 3 .3 demonstrates most of the SMOS system

components. At the top level is the class AddressSpaceManager; it is a system interface

class that serves as an entry to SMOS. The attribute shmASM/SharedMemoryManager7 in

class AddressSpaceManager leads to SMOS low level. High level persistent object

operations, such as createObject, modifyObject, getObject, writeObject, and deleteObject,

7 This notation represents that the attribute shmASM is an instance of class SharedMemoryManager or is a

pointer to an instance of class SharedMemoryManager.

 22

eventually use the interface functions in class SharedMemoryManager to get to the objects

in shared memory.

AddressSpaceManager
shmManager
metaDataList

oidList

MetaData
currentTransactionID

currentLockType
currentAccessPriority

objectType

List

NodeType

PersistentObject
header

objectData

SharedMemoryManager
shmMainSegment

shmSchemaSegment
shmNameSegment
shmUtilitySegment

SharedHeap
objectLocationIndex

freeSpace
addressedSpace

ObjectID

ObjectHeader
metaData

oid
objectSize

PersistentObject
header

objectData

F

Figure Chapter 3 .3 SMOS Major Class Diagram

In class SharedMemoryManager, the attribute shmMainSegment/SharedHeap contains the

actual shared memory segment that is used for persistent object storage as well as a

memory allocator for object storage allocation/deallocation within this segment, the

attribute shmSchemaSegment8 stores database schema such as persistent object type

information, the attribute shmNameSegment mapps each user defined object name to the

object’s unique identifier (OID), and the attribute shmUtilitySegment is used for supporting

various storage and transaction management.

The class PersistentObject is very special. Its attribute objectData stores the user object, and

because it is a region of storage that occupies some contiguous bytes, it is independent of

 23

the object model being used by the OODBMS. Although the class PersistentObject is not

itself a system component class, the data carried in its attribute header/ObjectHeader

provides important supports for storage and transaction management (detailed in Chapter

4).

8 A single attribute alone indicates that the attribute is of primitive type or is a pointer to a primitive type.

 24

Chapter 4

THE IMPLEMENTATION

In this chapter we will describe the implementation of SMOS based on the design

presented in Chapter 3. However, to make SMOS fully functional, we need to integrate

SMOS into an existing OODBMS. In the following sections, we first introduce Open

OODB, the hosting OODBMS for SMOS, and then describe the implementation of

SMOS in Open OODB.

 4.1 Open OODB

 4.1.1 An Overview

The Texas Instruments Open OODB Project was sponsored by the Advanced Research

Projects Agency (ARPA) and was managed by the US Army Communications-

Electronics Command (CECOM). It was an effort to develop an architecture framework

(Figure Chapter 4 .1) in which database functionalities can be easily tailored to meet

application requirements. The fundamental characteristics of the Open OODB

architecture is its high degree of modularity; important database functionalities, such as

persistent storage management, transaction management, and query processing, are

designed and implemented as independent system modules. In addition, the interfaces of

these modules are also made available to the users, making it possible for application

developers to add or remove modules for different applications. Because of such

 25

openness, modularity and availability9, we have chosen Open OODB to serve as the

testbed for SMOS in this thesis research.

 4.1.2 Architecture

Because extensibility is the focus of the Open OODB Project; it requires that database

functionalities can be tailored easily for different applications. Such requirement led to

the Open OODB modular architecture (Figure Chapter 4 .1).

Support Modules

Address Space Communication Translation Data Dictionary

key:

Meta Architecture Modules

Extender Modules

Application

API

Persistence
 PM

Transaction
PM

Distribution
PM

Change
PM

Indexing
PM

Query
PM

Meta Architecture Support (Sentries)

Implicit Interface

Figure Chapter 4 .1 Open OODB Architecture

Among the modules in Open OODB, some are essential and some are optional to a

particular system configuration. The essential modules, called meta architecture support

9 The University of Rhode Island was one of the 20 test sites of Open OODB and has access to Open

OODB full source code.

 26

modules, provide common services needed by other modules and therefore must be

present if any of the supported modules is present; these modules include Address Space

Manager, Communication, Translation, and Data Dictionary. The optional modules,

called extender modules, provide services that may or may not be needed in a particular

application and therefore must be independent to each other; these modules include

Persistence, Transaction, Distribution, Change, Indexing, Query, etc. With such modular

partitioning of database functionalities, Open OODB can be configured in various ways

depending on the application requirements. On one extreme end, if none of the optional

functionalities are needed, both extender and support modules can be excluded, this

makes Open OODB simply a regular C++; on the other extreme end, if all of the optional

functionalities are needed, every module has to be included, this makes Open OODB a

full featured and thus heavy weight OODBMS. In between the two end, many

configurations are available.

Because Open OODB is closely coupled with C++, the extender modules are actually

language extensions. For example, the persistence module extends C++ to support

persistent objects. The detection of the need for extension is a service provided by the

meta architecture support modules. For each extender module, Open OODB provides a

sentry in the meta architecture support modules to detect the corresponding extension

event. Once detected, the event will be trapped and its handle will be passed to the

extender module by the sentry.

The above modular design of Open OODB makes it possible for SMOS to replace the

address space manager in Open OODB, a modified version of EXODUS. In the next

section, we will describe how SMOS is implemented and integrated into Open OODB.

 27

 4.2 SMOS Implementation

The major class hierarchy for Open OODB address space management (ASM) is shown

in Figure Chapter 4 .2. The class OODB is the database interface class, and exactly one

instance of this class can be instanciated in each application process10. Because instances

of module classes are members of class OODB, an application can seamlessly access a

database as soon as it instanciates the class OODB:

 class OODB {
 private:
 ASM_Client * asm_mgr;
 Trans_Mgr * trans_mgr;
 Transaction * current_trans;
 LASM * lasm_mgr;
 TYPE_MGR * type_mgr;
 NAME_MGR * name_mgr;
 PERSIST_MGR * persist_mgr;
 XTRANSLATE_MGR * xtranslate_mgr;
 ...
 }

OODB

ASM_Client

Exodus

Figure Chapter 4 .2 Open OODB ASM Class Hierarchy

10 We consider this as a limitation in Open OODB, because an instance of class OODB is initialized with

exactly one database, therefore it only allows an application to access one database at a time.

 28

To make Open OODB work with SMOS, we replaced class Exodus with our class

SharedMemoryManager (Figure Chapter 3 .3) and reimplemented class ASM_Client without

changing its interfaces (the new class ASM_Client is actually a form of our class

AddressSpaceManager). The four shared memory segments (shmMainSegment,

shmSchemaSegment, shmNameSegment, and shmUtilitySegment) in class

SharedMemoryManager are installed by a database management utility during database

initialization and are attached to the application processes after instanciating the class

OODB (remember that class SharedMemoryManager is now a member of class OODB). To

demonstrate the details of this integration, in the following sections we will have a closer

look of the implementation of persistent object addressing and transaction management

with respect to Open OODB.

 4.2.1 Persistent Object Addressing

The shared memory segment shmMainSegment/SharedHeap in class SharedMemoryManager

provides the persistent address space for SMOS. The underlying memory allocator is

based on a binary buddy system scheme (Kruth, 1973), and its implementation was

obtained from work done by John Black in the Real-Time Research Group at the

University of Rhode Island.

To access a persistent object, we first need to obtain its address in the main store using its

unique object identifier (OID); the mapping between an OID and address is kept in an

persistent index (objectLocationIndex/SharedHeap as shown in Figure Chapter 3 .3). The

well-known main memory database index study in (Lehman, 1986) demonstrates that

chained bucket hashing , though has relatively high storage costs, has the fastest

execution time compared with array, AVL tree, B tree, T tree, extendible hashing, and

linear hashing. In SMOS, because the size of the shared memory segment must be pre-

fixed11, this in turn requires a fixed size index table, therefore the high storage cost is

unavoidable independent of the kind of index being used. In addition, the execution time

11 There is no support for dynamically changing shared memory size in System V.

 29

(including insert, search, scan, and delete) of the hashing is constant independent of the

size of the index; this is particularly important for SMOS, because SMOS intends to

provide persistent object storage for real-time applications. Based on the above facts, we

decided to implement the index with a chained bucket hashing. However, as we do not

allow dynamic allocating space for collided entry, the regular chained bucket hashing is

modified so that free entries in the index are used for collisions (Figure Chapter 4 .3).

x

x’’

x’

collided insertion

collided insertion

Figure Chapter 4 .3 Index Structure (x’ and x’’ indicates chained entry)

Based on the analysis in Chapter 3, after we obtained the persistent object address, we

can provide two choices for addressing, they are indirect addressing and direct

addressing. The particular addressing method for an persistent object is determined by the

users through the way they create this object, and this information is kept in an one bit

field (addressingMethod) in the meta data as shown below:

 class PersistentObject {
 private:
 ObjectHeader * header;
 ...
 };

 class ObjectHeader {

 30

 private:
 MetaData * metaData;
 OID oid;
 int objectSize;
 ...
 };

 class MetaData {
 private:
 BIT lockType:2;
 BIT transactionID:16
 BIT priority:8;
 BIT addressingMethod:1
 ...
 };

In our implementation we also provide facilities for the users to change the addressing

method after a persistent object is created or to force an addressing method in a

transaction no matter what the default method is; therefore, the same persistent object can

be accessed differently according to application requirements. In the following sections

we provide some more information about the implementation of the two addressing

schemes.

 4.2.1.1 Indirect Addressing

Indirect addressing is a conventional method, it provides safeguard against various

failures. In our implementation, a copy of the persistent object is made in the transient

address space for the application to work on, and it is copied back to the persistent

address during commit time. In Open OODB any transient object can become persistent

by calling a common member function that is added by the Open OODB preprocessor.

During commit, the object header (header/ObjectHeader) is composed by SMOS and

added to the object data potion, they are then copied together as a whole to the main

store. In the object meta data the default value for addressingMethod marks indirect

addressing; therefore, when this object is later accessed, the addressingMethod field will

lead to indirect addressing again. As we mentioned earlier, the users can also skip

 31

checking addressingMethod and force a particular addressing method. In either cases, if

indirect addressing is to be used, we will copy objectSize bytes of shared memory content

from the persistent object address to a local address; the users should make sure that this

local address is a valid address for an transient object with the same type.

 4.2.1.2 Direct Addressing

The direct addressing approach is considered controversial and has not been reported in

any literature. The basic idea is to allow an application to directly operate on a persistent

object without making a copy. Clearly, this approach has the greatest performance

advantages because the data is accessed and updated at memory speed. However, for the

same reason, traditional recovery is impossible in this approach. As a result, the state of

the database cannot be guaranteed to be valid if the transaction aborts or failure occurs;

therefore, such direct addressing is only useful for specific applications such as those

managing high speed real-time data. In these real-time applications, data may not be able

to afford recovery because the time used for recovering may be too long compared to the

temporal constraint; therefore, recovered data may have become outdated and useless.

Instead of recovering the data, we can simply obtain the data from its source which has

the most updated information.

As described earlier, direct addressing can be forced; however such forced direct

addressing is only valid on an existing persistent object. To directly address new

persistent objects, we provide an overloaded new operator:

 void * operator new(size_t sz, OODB * oodb, char * name);

Handles of all the database facilities are passed with oodb/OODB to the implementation of

this overloaded new operator. The parameter name is a user defined name for the object, it

is mapped to an unique OID and can be used to identify the object at user level. Objects

created with this new operator resides directly in the main store. Because of this, any

 32

changes made to them are persistent and irreversible, therefore, direct addressing should

be used with great caution. Objects created with this overloaded new operator also have

their addressingMethod field marked for direct addressing. As a result, the next time these

objects are accessed, their persistent addresses are directly used for addressing unless a

indirect addressing is forced. Again the users have to make sure the persistent addresses

are cast to objects with correct types.

 4.2.2 Transaction Management

Because Open OODB directly uses transaction management that comes with Exodus, we

have to provide a new transaction manager after removing Exodus from Open OODB. To

provide more concurrent access which is very important for real-time applications, we

used object level locking, a finer locking granularity compared with page-level locking

in Open OODB/Exodus. Although it has been reported that page-level locking has better

performance(Carey, 1994), we realize that such argument was based on the fact that page

level locking has less communication overhead between servers and clients. In SMOS,

because of its special architecture, the communication has been eliminated (Chapter 3);

therefore, choosing object-level locking will not incur any performance degradation in

SMOS.

Our current implementation of locking uses a strict two-phase exclusive locking (2PL)

protocol. That is, locks can be obtained any time before a transaction commits but can

only be released during or after commit time. The lock is held in a 2 bit field (lockType) in

the meta data of the object being accessed. In the mean time, we also store transaction ID

and priority in the meta data; these information will be used to support preventing

priority inversion and detecting deadlocks as described below.

 4.2.2.1 Preventing Priority Inversion

 33

The problem with two-phase locking in a real-time transaction is the possibility of

priority inversion. A priority inversion occurs when a higher priority transaction is

requesting a conflicting lock that is held by a lower priority transaction. Because we use

exclusive locking, any lock held by a lower priority transaction will block a higher

priority transaction. There are basically two protocols for preventing such priority

inversion, Priority Abort and Priority Inheritance12. The priority abort method aborts the

blocking low priority transaction; whereas the priority inheritance method lets the

blocking low priority inheritance the priority of the blocked high priority transaction.

Because there are conflicting reports on which protocol performs better (Abbott, 1988;

Abbott, 1989; and Huang, 1991), we implemented both protocols in SMOS and provide

an option for the users to choose during application compile time. Our implementation of

priority abort protocol also raises an exception when aborting a higher priority

transaction; the application can use this exception to restart the transaction if needed.

 4.2.2.2 Detecting Deadlock

To address possible deadlocks in two-phase locking, we implemented a deadlock detector

in SMOS. Our decision to use a deadlock detection scheme instead of a deadlock

prevention scheme is based on the fact that we have a fine locking granularity which

lessens the interference among transactions when a limited number of objects are

accessed. The deadlock detector is implemented by storing a transaction wait-for graph

in the shared memory utility segment (shmUtilitySegment) and checking if there is a cycle

is formed in the graph (Figure Chapter 4 .4).

12 There are other locking based protocols, such as Priority Ceiling, that extends Priority Inheritance.

 34

Tc

Ta

Tb

Figure Chapter 4 .4 A Deadlock Transaction Wait-For Graph

In Figure Chapter 4 .4, transaction Ta is waiting for Tb, Tb is waiting for Tc, and Tc is

waiting for Ta, forming a waiting cycle and no one can proceed. Due to the same reason

as our index implementation, we choose to use a pure array based representation of the

wait-for graph.

Our initial implementation (Figure Chapter 4 .5) includes a chained bucket hash table and

a two dimension square array. The hash table is very similar to the one used in the index

structure, a bucket keeps the ID (the key) and priority of current active transactions, and

is represented as T(id, p) in Figure Chapter 4 .5. The square array is an adjacency matrix

representation of the wait-for graph, its subscripts correspond to the index of the hash

table. The array contains Boolean elements, a true value in element [i][j] indicates that the

transaction whose position is i in the hash table is waiting for the transaction whose

position is j to release a lock. The class specification of the graph is shown below:

 Class Bucket {
 private:
 int transactionID;
 int priority;
 int chainedBucketEntry;
 BOOL isDeadlockVictim;
 ...
 };

 class WaitForGraph {

 35

 private:
 Bucket index[DIMENSION];
 BOOL table[DIMENSION][DIMENSION];
 int transactionCount;
 int nextFreeChainningEntry;
 int deadlockCheckingInterval;
 int blockingCount;
 BOOL threading;
 ...
 };

Hash Table Adjacency Matrix

Ta (ida, pa)

Tc (idc, pc)

Tb (idb, pb)

INDEX(I)

Ia

Ib

Ic

T

T

T

T

T

T

Ia Ib Ic

Figure Chapter 4 .5 Implementation of Transaction Wait-for Graph

Figure Chapter 4 .5 demonstrates the representation of the wait-for graph in Figure

Chapter 4 .4. The checking for transaction wait-for cycles involves traverse the edges in

the graph, and can be implemented with a variant of depth-first search algorithm that was

discovered by Tarjan (Tarjan, 1972). Because a transaction can only wait for exactly one

other transaction, the above implementation of the wait-for graph can be optimized by

replacing the adjacency matrix with a linked list. In our implementation, we used a array-

based representation of the linked list and packed it into the hash table:

 Class Bucket {
 private:

 36

 int transactionID;
 int priority;
 int chainedBucketEntry;
 Bucket * transactionBeingWaited;
 BOOL isDeadlockVictim;
 ...
 };

 class WaitForGraph {
 private:
 Bucket index[DIMENSION];
 int transactionCount;
 int nextFreeChainningEntry;
 int deadLockCheckingInterval;
 int blockingCount;
 BOOL threading;
 ...
 };

In this implementation, the checking procedure simply travels along the linked list; a

deadlock is found if a transaction/bucket is visited twice.

We also provide two options for the users to set the checking policies during application

compile time. In the first option (Figure Chapter 4 .6a), checking is done at the beginning

of every blocking when there are more than one blocking(blockingCount). This approach

has the advantage of detecting a deadlock as soon as it is formed, but it can be inefficient

if the rate of blocking is very high or blockings occur very close in time to each, because

not every blocking forms a deadlock. However, if there is no blocking it will never check

for deadlock; therefore, it is the best choice if we know that limited blocking can occur.

In the second option (Figure Chapter 4 .6b), checking is done after more than one

blocking have occurred for a user defined period of time. This approach performs better

when the blocking rate is high and the checking interval is properly set. However, unlike

the first option, it cannot promptly detect a deadlock unless the interval is set very short.

Unfortunately, the shorter the interval the more it will behave like the first option. For the

above reasons, choosing the best approach is very difficult unless we have a better

understanding of the application behavior.

 37

Time

 waiting for TaTc

Ta waiting for Tb (deadlock)

Tb waiting for Tc

checking (found deadlock)
checking

a) Option 1

b) Option 2 Tb waiting for Tc

 waiting for TaTc

Ta waiting for Tb (deadlock)

Çt
Time

checking (found deadlock)

timing starts

Figure Chapter 4 .6 Deadlock Checking Options

Under either approach, when a cycle is found in the wait-for graph, our policy is to abort

the transaction that has the lowest priority. In our implementation, we provide two

methods to check for deadlock. In the first method, we start the checking procedure in a

new thread13. Upon detecting a cycle, the new thread sends a signal to the process whose

transaction has the lowest priority on the cycle14. When this deadlock victim process

catches the signal it aborts the transaction and throws an exception. The second method is

shared memory based, a blocked transaction will watch for the isDeadlockVictim field in its

wait-for graph entry and raises the same exception if this field is true. In this method, the

deadlock checking procedure is initiated from a transaction main thread. If a deadlock is

found, instead of sending a signal, the main thread tags the isDeadlockVictim field of the

13 We use POSIX1.c threads through out the implementation.
14 The thread knows where to send the signal because we uses process ID to represent transaction ID (Open

OODB only allows sequential transactions).

 38

deadlock victim entry in the wait-for graph. In either method, various decisions can be

made by the user if the exception is caught, including restart the aborted transaction

immediately, reschedule the transactions, or simply terminate the application process.

 4.2.3 Extended Persistency and Recovery

An object is persistent in SMOS main store as long as the kernel is running. However, if

the kernel panics, a physical device fails, or power recycles, the main store has to be

restored when the kernel re-starts up; otherwise, object persistency is only limited to the

lifetime of the kernel. To extend object persistency, we provide a backing store as we

described in Chapter 3. We implemented the backing store on fixed disk as an

asynchronous mirror of the main store. This backing store is maintained by a daemon

which is started by the same database management utility that installs the main store. The

daemon also attaches the shared memory utility segment and periodically checks for the

active transaction count (transactionCount in class WaitForGraph). If there is no active

transactions, the daemon starts copying the main store to a temporary holding area; if a

new transaction starts before it finishes15, it will discard this temporary copy, otherwise,

the temporary copy is renamed to the name of the backing store.

The major advantage of such an approach is that recovery never competes with

transactions for system resources. Because there is no log for the main store, a transaction

does not need to wait to finish writing its data on a disk based log file before it commits,

performance is greatly improved. However, this advantage sometimes is also a

disadvantage, because it creates two holes in the recovery. The fist one is when failure

occurs after a transaction commits but before all the data has been moved to the main

store. In this case a commit is not actually made. In another case, if we delay the commit

until after the data is moved to main store, the state of the database may be inconsistent if

failure occurs during moving the data. The second hole is when failure, which can cause

15 To be precise, that is when the transaction count becomes none zero in the next check.

 39

kernel restart, occurs after a successfully commit but before the backing store is updated.

In this case the update of the main store after the last mirroring is lost.

Because our target user of SMOS are real-time applications that are dealing with high

speed data with time constraint, a fully featured recovery is not necessary and can only

degrade the system performance. Despite of this, we still need to carefully document the

recovery feature of SMOS.

 4.2.4 A Process Diagram

To summarize this chapter, a process diagram is presented in Figure Chapter 4 .7 to

demonstrate how SMOS works within Open OODB.

Before SMOS can be used, the system has to be initialized. This initialization is done by

running a utility program with root UID. The root UID is required for locking the main

store and the other shared memory segments in the main memory (preventing paging) as

well as for setting protection mode to prevent unauthorized access16. The utility process

maps and locks the backing store, type table, and name table in the memory, in addition it

also creates a fresh utility segment17 which will be used for supporting various database

management. Before this utility process exits, it creates a daemon process that is

responsible for mirroring the main store to the backing store. An application can start to

use Open OODB/SMOS after the utility process is successfully returned. Because Open

OODB seamlessly extends C++, any application written in C++ can be easily modified to

use SMOS. To do so, as shown in Figure Chapter 4 .7, an application only needs to

instanciate the class OODB, and the rest happens behind the scene. The conditional

16 Further security is archived by using a password protection scheme on instanciating the OODB interface

class, the door to the main store. Finer-grained protection, such as at object level, is too costly, therefore,
we eliminated its implementation.

17 The utility segment current only contains transaction wait-for graph, but it can also keep other
information when additional utilities are added.

 40

thread, though branches out from the application process, it is set off automatically to

check for possible deadlocks as we described earlier.

 Legend:
mapping
spawning daemon
conditional threading
instanciating

class OODB

 shmMainSegment

 shmSchemaSegment

 shmNameSegment

shmUtilitySegment

Main Memory
Fixed Disk

 backing store

type table

 name table

...
Application

Process

Application
ProcessThread

SMOS Log
Daemon

SMOS Startup
Process

Time

Figure Chapter 4 .7 SMOS Process Diagram

 41

Chapter 5

THE PERFORMANCE EVALUATION

 5.1 Overview

In this chapter we describe the timing experiments and present the test results. For

comparison, we attempted all the tests on Open OODB/SMOS and Open OODB/Exodus

in parallel; the tests include raw performance measurement with concurrency control

disabled and scalability measurement under various controlled contentions.

The platform used for the tests is a Sun SPARC-based workstation running Solaris 2.5.

Table Chapter 5 .1 lists some of the hardware and kernel configurations.

Processor Speed 100 MHz

Memory Size 64 Mb

shminfo_shmmax 4194304

shminfo_shmseg 16

Table Chapter 5 .1 Test Platform Hardware Configurations

To eliminate fragmentation, fresh partitions are used when testing against

OpenOODB/Exodus, whereas reinitialized shared memory segments are used when

testing against OpenOODB/SMOS. The OS of the workstation was brought down in

 42

single user mode while performing the tests. We also stopped all other unnecessary

system daemons that may preempt our tests. In addition, all the tests are launched with

the same priority.

 5.2 Raw Performance Tests

 5.2.1 Test Metrics

In this experiment, our target test metric is the access speed of persistent object and the

transaction throughput (number of transactions per unit time). For comparison purposes,

we idealized the test conditions by introducing only one variable, the size of the object. In

addition, we disabled concurrent transactions by launching only one transaction at a time.

Our test suite includes 5 individual tests. The first test measures the time used in setting

up the communications between the application and the OpenOODB system; because it is

the time used to instanciate the OODB class which coordinates various policy managers,

the time snapshots were taken just before and after the instanciation of OODB class. The

second test measures time used by an empty transaction, this will provide information

about the overhead in setting up a transaction. The remaining 3 tests use the same test

code to measure the differences in persistent object access speed and transaction

throughput between OpenOODB/Exodus and OpenOODB/SMOS (direct and indirect

addressing); and as shown below, only one persistent object and two operations are

involved in a transaction:

begin transaction

fetch object
touch object

commit or abort transaction

Throughout the tests, each single test case was repeated 100 times to take the average.

The reliability of the tests is verified by some simple statistical analysis, such as standard

deviation and confidence interval (Appendix B).

 5.2.2 Results

 43

In the first test, the mean time used to instanciate the class OODB is 0.475251 seconds in

OpenOODB/Exodus and 0.015363 seconds in OpenOODB/SMOS (Appendix B.1).

Because no persistent addressing operations are involved, the significant performance

advantage comes from a single source, the elimination of the server and client

communication overhead.

In the second test, the mean time used in an empty committed transaction is 0.042918

seconds in OpenOODB/Exodus and 0.006079 seconds in OpenOODB/SMOS; for an

empty aborted transaction the time is cut down to 0.021429 seconds and 0.004132

seconds, respectively (Appendix B.2). Again, the performance advantage in

OpenOODB/SMOS was obtained only from the elimination of client and server

communication overhead.

The data from the next three tests is listed in Appendix B-3 and is plotted in Figure

Chapter 5 .1; the result demonstrates that the transaction time used by OpenOODB/SMOS

is close to one order of magnitude less than that of in OpenOODB/Exodus, and the direct

addressing scheme also performs better than the indirect addressing scheme. Based on the

data collected, we also calculated the transaction throughput (Table Chapter 3 .1). In these

tests, because persistent addressing operations are involved, the performance gain in

OpenOODB/SMOS is from a combination of elimination of communication overhead

and object store main memory residency. Because the tests only allow one persistent

addressing operation (object fetching) in each transaction, we can expect a larger

performance difference when there are more than one persistent objects are fetched in a

transaction.

 OpenOODB/Exodus OpenOODB/SMOS
(indirect addressing)

OpenOODB/SMOS
(direct addressing)

transactions/second 18-21 63-116 137-148

Table Chapter 5 .2 Comparison of Calculated Transaction Throughput

 44

0

0.01

0.02

0.03

0.04

0.05

0.06

1 5 10 50 10
0

20
0

40
0

60
0

80
0

10
00

20
00

40
00

60
00

80
00

10
00

0

Object Size (bytes)

T
ra

n
sa

ct
io

n
 T

im
e

(s
ec

o
n

d
s) OpenOODB/Exodus Commited Transaction

OpenOODB/Exodus Aborted Transaction

OpenOODB/SMOS Commited Transaction (indirect addressing)

OpenOODB/SMOS Aborted Transaction (indirect addressing)

OpenOODB/SMOS Committed Transaction (direct addressing)

OpenOODB/SMOS Aborted Transaction (direct addressing)

Figure Chapter 5 .1 Raw Performance Test Results

 5.3 Scalability Tests

 5.3.1 Test Metrics

To test how the addressing scheme may affect scalability under various contentions we

designed another test. In this test the scalability metric is measured by the rate of

transaction abort that is caused by deadlocks, a higher rate of transaction abort represents

a worse scalability. The contention of each of these tests is controlled by specifying the

number of concurrent transactions, the number of objects in the object store for which a

transaction can randomly access, and the time interval between two consecutive

persistent object accessed in a transaction. A higher contention environment is

represented by more concurrent transactions, more objects accessed in a transaction, and

longer transaction duration. Unfortunately, because OpenOODB/Exodus (v1.0) fails

when two or more transactions try to mount the storage group at the same time, we could

 45

not apply the same test to it for comparison. Therefore, this test only compares the direct

and indirect addressing scheme of OpenOODB/SMOS.

 5.3.2 Results

There are a total of 550 (5 x 10 x 11) test cases in the test. Each has a different

combination of the control factors we mentioned earlier: (1) the number of concurrent

transactions range from 2 to 10 with an increment of 2, (2) the number of objects for

random access in a transaction range from 5 to 50 with an increment of 5, and (3) the

time interval between two consecutive persistent object accesses ranges from 0 to 50

milliseconds with an increment of 5 milliseconds. The same test cases are applied to both

indirect addressing and direct addressing schemes for comparison, and the complete data

is listed in Appendix B.4. For easy interpretation, we projected the 3-D data in Appendix

B.4 separately on each of the control factors and plotted them in Figure Chapter 5 .2.

In each of the diagrams shown in Figure Chapter 5 .2, the rate of accumulated

transaction aborts covers the full variation range of the other two control factors. Overall,

we observed a 6% decrease in transaction abort rates in the direct addressing scheme

compared to the indirect addressing scheme. This increased scalability is due to the

shortened lock holding time under the direct addressing scheme, because improved

persistent object access speed can reduce transaction time as demonstrated in Section 5.2.

However, we also realized that the advantage of direct addressing was not fully expressed

in this test because of the limitation of our concurrency control protocol (under a strict

two-phase locking protocol, even though the lock on an object is no longer necessary

after it has be accessed, we can only release the lock after commit time; if waiting for the

release of this lock means a deadlock, no matter how fast this object is addressed, this

deadlock cannot be avoided if commit comes after the waiting).

 46

0%

10%

20%

30%

40%

50%

60%

70%

0 10 20 30 40 50

Number of Objects for Random Access

R
at

e
o

f
A

cc
u

m
u

la
te

d
 T

ra
n

sa
ct

io
n

 A
b

o
rt

Indirect Addressing
Direct Addressing

0%

10%

20%

30%

40%

50%

60%

2 3 4 5 6 7 8 9 10

Number of Concurrent Transactions

R
at

e
o

f
A

cc
u

m
u

la
te

d
 T

ra
n

sa
ct

io
n

 A
b

o
rt

Indirect Addressing
Direct Addressing

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0 10 20 30 40 50

Time Interval Between Two Consecutive Object Access (ms)

R
at

e
o

f
A

cc
u

m
u

la
te

d
 T

ra
n

sa
ct

io
n

 A
b

o
rt

Indirect Addressing
Direct Addressing

Figure Chapter 5 .2 Scalability Test Results

 47

Chapter 6

CONCLUSION

In this thesis research we have explored several ways to satisfy the performance

requirement of a high speed real-time database application. Our approaches have been

demonstrated in the design and implementation of a high-performance object store, some

of them are controversial and have not been found in any literature. In this chapter, we

will summarize what we have achieved in this thesis project, describe our research

contributions, and project our future work.

 6.1 Thesis Summary

In Chapter 3, we laid out a set of functional and system requirements (Table Chapter 3 .1

and Table Chapter 3 .2) for SMOS. Our design and implementation presented in Chapter 3

and 4 have demonstrated that these requirements have been fulfilled:

Functional Requirements

Object Model Independency: We managed to keep SMOS from being tied to any

particular object model. Other than providing persistent object storage service, SMOS

does not assume any other responsibilities that may introduce model dependency.

Multi-Level Object Persistency: We maintained two persistent levels in SMOS; the main

store is memory-resident in order to provide greater performance, the backing store is

disk-based and supports extended persistency beyond the main memory.

 48

Guaranteed Persistent Object Access Time: We were able to bound the time used to

store or retrieve a persistent object by utilizing the memory-resident nature as well as

hash-based algorithms; the former eliminates I/O blocking uncertainties and the later

delivers constant operation time.

Adjustable System Performance: We provided two addressing schemes which can be

chosen at run-time; because these two schemes have different functional and performance

emphasis, they can be used to dynamically adjust system performance. In addition, we

can also turn on and off concurrency control in SMOS for the same purpose.

Concurrent Persistent Object Access: We provided each persistent object a metadata in

which lock as well as other useful information are kept; such object level locking enables

controlled concurrent access to an object as well as increased number of concurrent

transactions.

System Requirements

Performance: We satisfied the performance requirement through the design of a client-

only architecture, the implementation of a direct addressing scheme, and the trade-off of

some of the traditional database features.

Portability, Reusability, Extendibility, and Flexibility: We avoided making any platform

dependent calls to support portability; we implemented SMOS in an object-oriented

fashion to support reusability and extendibility; and we provided flexible configurations

for addressing, concurrency control, and recovery.

The performance evaluation presented in Chapter 5 further demonstrated that we have

achieved the goal of this thesis project and that the measures used to achieve our goal are

indeed very effective. By replacing Exodus with SMOS in OpenOODB, we observed a

more than 30 times higher performance in setting up the communications between the

application and the OpenOODB system (Appendix B.1), and about an 8 times higher

transaction throughput with direct addressing in the worst case.

 49

 6.1 Research Contribution

Our main research contribution in this project is the actual implementation of a high-

performance main memory resident object store. This object store is in fully working

order and can be easily configured to satisfy different application requirements. Unlike

previous database systems which are almost universally based on a client-server

architecture, our object store features an unique client-only architecture; this enables us to

completely eliminate the communication overhead, one of the major sources of

performance barrier, between the server and client. Therefore, this unique client-only

architecture design is another research contribution in this thesis. In addition, we also

experimented with a new persistent object addressing scheme which allows applications

to operate directly on a persistent object. By trading off recoverability, this approach

unifies persistent address space with the program transient address space and thus

eliminates object moving between the database cache and persistent store, further

improving the performance level.

 6.2 Future Work

As revealed by our test, in a high contention environment, though a high-performance

addressing scheme can help to improve the scalability, transaction management seems

even more important. Because of the strict two-phase locking technique used in our

implementation, locks are often held longer than necessary; as a result the possibility of

deadlocks is relatively high. One possible improvement is to reduce the number of

persistent objects accessed by a single transaction. In our test, when only one persistent

object access is allowed in a transaction, no transaction abort was found in the same test

ranges (Figure Chapter 5 .2). However, because this approach requires additional

transactions to complete the same amount of persistent object access, performance can be

affected because of the overhead involved in setting up the transaction. Further, this

approach imposes restrictions at the application level and still cannot totally eliminate

 50

deadlocks. Therefore, the best solution is to find a concurrency control protocol which

can is deadlock-free. Parallel to this thesis research, the priority ceiling protocol is being

investigated by Michael Squadrito in the Real-Time Research Group at the University of

Rhode Island (Squadrito, 1996). This protocol has the advantage of eliminating deadlocks

and bounding the blocking time of high priority transactions to no more than one

transaction, and can be a candidate for our future concurrency control protocol.

The current design and implementation limits our object store to a standalone

environment. This limitation is because we intend to eliminate the network overhead.

However, a database application often needs to access an object store that resides on a

different workstation that is possibly running a different operating system. Supporting

such networked access and heterogeneous environments is a challenge because it may

impact our basic design structure. As a continued study, a research project has been

proposed in the Real-Time Research Group at the University of Rhode Island to

investigate possible solutions using Common Object Request Broker Architecture

(CORBA).

Our performance test suite did not include a pointer traverse timing test. It has been our

desire to implement an OO7 benchmark test in this thesis project, because doing so

would enable us to compare the performance of OpenOODB/SMOS with several

commercial OODBMS. Pointer traverse is tested extensively in OO7 by using object

relationships. However, because OpenOODB directly uses the same C++ object model

for its database object model, we could not implement OO7 without extending the object

model to support object relationships. We attempted such extension with limited time,

and found it is a rather complex task that is beyond the scope of this thesis project.

 51

 LIST OF REFERENCES

Elmasri, R. and Navathe, S. B. (1994) “Fundamentals of Database Systems”, Second Edition,

Benjamin/Cummings, 1994.

Loomis, M. E. S. (1995) “Object Databases: The Essentials”, Addison-Wesley, 1995.

 52

 Appendix A

BOOCH OOD NOTATIONS
18

class name
attributes

operations()

parameterized
class name

formal
arguments

instantiated
class name

actual
arguments

metaclass name

association

inheritance

has

using

instantiation

A abstract class

S static V

F friend

virtual

Class Icons

Class Relationships

Properties

18 A complete list can be found in [Booch 94].

 53

 Appendix B

 Appendix B.1 Class OODB Instanciation Timing Test Results*

Test
Cases

of
repeats

mean
(sec.)

min.
(sec.)

max.
(sec.)

st.dev.
(sec.)

95% conf.
(sec.)

interval
(sec.)

C_1_1 100 0.475251 0.472599 0.479016 0.000774 0.475243 0.475258
C_1_2 100 0.015363 0.015139 0.017152 0.000252 0.015361 0.015364

*
C_1_1: Test with OpenOODB/Exodus

 C_1_2: Test with OpenOODB/SMOS

 54

 Appendix B.2 Empty Transaction Timing Test Results*

Test
Cases

of
repeats

mean
(sec.)

min.
(sec.)

max.
(sec.)

st.dev.
(sec.)

95% conf.
(sec.)

interval
(sec.)

C_2_1_1 100 0.042918 0.042473 0.044806 0.000347 0.042916 0.042920
C_2_1_2 100 0.021429 0.021260 0.022129 0.000129 0.021428 0.021430
C_2_2_1 100 0.006079 0.005888 0.006981 0.000149 0.006078 0.006080
C_2_2_2 100 0.004132 0.004038 0.004832 0.000109 0.004131 0.004133

*
C_2_1_1: OpenOODB/Exodus Empty Transaction (Committed) Timing Test

 C_2_1_2: OpenOODB/Exodus Empty Transaction (Aborted) Timing Test

 C_2_2_1: OpenOODB/SMOS Empty Transaction (Committed) Timing Test

 C_2_2_2: OpenOODB/SMOS Empty Transaction (Aborted) Timing Test

 55

Appendix B.3 None Empty Transaction Timing Test Results*
Test

Cases
of

repeats
object
size

(bytes)

mean
(sec.)

min.
(sec.)

max.
(sec.)

st.dev.
(sec.)

95 conf.
(sec.)

interval
(sec.)

C_3_1 100 1 0.046427 0.045999 0.050855 0.000655 0.046423 0.046431
C_3_1 100 5 0.046338 0.044894 0.047541 0.000311 0.046336 0.046340
C_3_1 100 10 0.046355 0.044928 0.047191 0.000262 0.046354 0.046357
C_3_1 100 50 0.047057 0.046135 0.048236 0.000323 0.047055 0.047059
C_3_1 100 100 0.046871 0.045915 0.048247 0.000453 0.046868 0.046873
C_3_1 100 200 0.046604 0.046120 0.047386 0.000302 0.046602 0.046606
C_3_1 100 400 0.046623 0.045383 0.047977 0.000374 0.046621 0.046626
C_3_1 100 600 0.046643 0.045595 0.047972 0.000322 0.046641 0.046645
C_3_1 100 800 0.046921 0.045746 0.048689 0.000477 0.046918 0.046924
C_3_1 100 1000 0.047088 0.046242 0.048102 0.000406 0.047085 0.047090
C_3_1 100 2000 0.047571 0.046775 0.048536 0.000352 0.047569 0.047573
C_3_1 100 4000 0.050219 0.049535 0.051714 0.000526 0.050216 0.050223
C_3_1 100 6000 0.051665 0.050318 0.054974 0.000924 0.051659 0.051671
C_3_1 100 8000 0.054282 0.052429 0.056354 0.000887 0.054276 0.054287
C_3_1 100 10000 0.055233 0.051267 0.059902 0.001159 0.055226 0.055240
C_3_2 100 1 0.023672 0.023184 0.051303 0.002807 0.023655 0.023690
C_3_2 100 5 0.023683 0.023203 0.045799 0.002254 0.023669 0.023697
C_3_2 100 10 0.023620 0.023216 0.046498 0.002315 0.023605 0.023634
C_3_2 100 50 0.023631 0.023214 0.046141 0.002278 0.023616 0.023645
C_3_2 100 100 0.023703 0.023214 0.046075 0.002311 0.023689 0.023718
C_3_2 100 200 0.023650 0.023227 0.046462 0.002309 0.023636 0.023665
C_3_2 100 400 0.023677 0.023263 0.046027 0.002263 0.023663 0.023692
C_3_2 100 600 0.023714 0.023265 0.046709 0.002328 0.023699 0.023728
C_3_2 100 800 0.023733 0.023275 0.046366 0.002292 0.023718 0.023747
C_3_2 100 1000 0.023737 0.023308 0.045807 0.002233 0.023723 0.023751
C_3_2 100 2000 0.024167 0.023718 0.047723 0.002387 0.024152 0.024182
C_3_2 100 4000 0.024572 0.024039 0.051805 0.002758 0.024555 0.024590
C_3_2 100 6000 0.024847 0.024257 0.049981 0.002558 0.024831 0.024864
C_3_2 100 8000 0.025067 0.024542 0.051786 0.002717 0.025049 0.025084
C_3_2 100 10000 0.025493 0.024927 0.053242 0.002822 0.025476 0.025511
C_4_1 100 1 0.008597 0.008143 0.010776 0.000378 0.008595 0.008599
C_4_1 100 5 0.008785 0.007592 0.009614 0.000251 0.008783 0.008786
C_4_1 100 10 0.009115 0.007830 0.009670 0.000211 0.009114 0.009117
C_4_1 100 50 0.009272 0.008136 0.009822 0.000210 0.009271 0.009273
C_4_1 100 100 0.009540 0.008517 0.010033 0.000217 0.009539 0.009541
C_4_1 100 200 0.009799 0.008556 0.010348 0.000218 0.009798 0.009801
C_4_1 100 400 0.010133 0.008875 0.010581 0.000226 0.010131 0.010134
C_4_1 100 600 0.010374 0.009366 0.010894 0.000213 0.010373 0.010375
C_4_1 100 800 0.010692 0.009403 0.011109 0.000232 0.010691 0.010693
C_4_1 100 1000 0.010997 0.009449 0.011467 0.000241 0.010995 0.010998
C_4_1 100 2000 0.011646 0.010353 0.013549 0.000451 0.011643 0.011649
C_4_1 100 4000 0.012673 0.010592 0.013486 0.000424 0.012671 0.012676
C_4_1 100 6000 0.014568 0.012309 0.015726 0.000624 0.014565 0.014572
C_4_1 100 8000 0.015872 0.014562 0.017344 0.000720 0.015868 0.015877
C_4_1 100 10000 0.015868 0.014206 0.017781 0.000878 0.015862 0.015873
C_4_2 100 1 0.005911 0.005562 0.011026 0.000570 0.005908 0.005915
C_4_2 100 5 0.006084 0.005760 0.007649 0.000259 0.006082 0.006086

 56

C_4_2 100 10 0.006357 0.006101 0.007858 0.000196 0.006356 0.006358
C_4_2 100 50 0.006519 0.006176 0.008087 0.000205 0.006518 0.006521
C_4_2 100 100 0.006738 0.006483 0.008354 0.000203 0.006737 0.006739
C_4_2 100 200 0.006963 0.006593 0.008660 0.000230 0.006962 0.006965
C_4_2 100 400 0.007218 0.006876 0.008771 0.000215 0.007217 0.007220
C_4_2 100 600 0.007418 0.007004 0.009039 0.000223 0.007416 0.007419
C_4_2 100 800 0.007698 0.007369 0.009521 0.000243 0.007697 0.007700
C_4_2 100 1000 0.007892 0.007580 0.009318 0.000197 0.007891 0.007893
C_4_2 100 2000 0.008274 0.008017 0.009957 0.000223 0.008272 0.008275
C_4_2 100 4000 0.008782 0.008479 0.010462 0.000229 0.008780 0.008783
C_4_2 100 6000 0.009228 0.008857 0.011319 0.000305 0.009226 0.009230
C_4_2 100 8000 0.009736 0.009268 0.011777 0.000307 0.009734 0.009738
C_4_2 100 10000 0.010102 0.009734 0.012627 0.000396 0.010099 0.010104
C_5_1 100 1 0.006751 0.006350 0.008994 0.000302 0.006749 0.006753
C_5_1 100 5 0.007187 0.006807 0.007798 0.000237 0.007186 0.007189
C_5_1 100 10 0.007212 0.006840 0.008114 0.000276 0.007210 0.007214
C_5_1 100 50 0.007345 0.007093 0.008073 0.000137 0.007344 0.007346
C_5_1 100 100 0.007569 0.007246 0.008130 0.000153 0.007568 0.007570
C_5_1 100 200 0.007772 0.007417 0.008143 0.000125 0.007771 0.007773
C_5_1 100 400 0.007961 0.007635 0.008517 0.000153 0.007960 0.007962
C_5_1 100 600 0.008181 0.007875 0.008764 0.000166 0.008180 0.008182
C_5_1 100 800 0.008363 0.008104 0.008791 0.000136 0.008363 0.008364
C_5_1 100 1000 0.008566 0.008275 0.009191 0.000142 0.008565 0.008567
C_5_1 100 2000 0.008826 0.008543 0.009173 0.000152 0.008825 0.008827
C_5_1 100 4000 0.009054 0.008682 0.009861 0.000145 0.009053 0.009055
C_5_1 100 6000 0.009294 0.008988 0.009727 0.000153 0.009293 0.009295
C_5_1 100 8000 0.009523 0.009221 0.010163 0.000155 0.009522 0.009524
C_5_1 100 10000 0.009716 0.009448 0.010376 0.000164 0.009715 0.009717
C_5_2 100 1 0.004539 0.004317 0.008910 0.000456 0.004536 0.004542
C_5_2 100 5 0.004702 0.004533 0.007357 0.000283 0.004701 0.004704
C_5_2 100 10 0.004902 0.004722 0.007062 0.000235 0.004901 0.004904
C_5_2 100 50 0.005084 0.004905 0.007389 0.000256 0.005082 0.005085
C_5_2 100 100 0.005301 0.005130 0.007656 0.000257 0.005300 0.005303
C_5_2 100 200 0.005479 0.005291 0.007639 0.000233 0.005478 0.005481
C_5_2 100 400 0.005683 0.005500 0.008136 0.000261 0.005681 0.005684
C_5_2 100 600 0.005891 0.005701 0.008085 0.000241 0.005889 0.005892
C_5_2 100 800 0.006087 0.005889 0.008194 0.000238 0.006086 0.006089
C_5_2 100 1000 0.006282 0.006097 0.008474 0.000240 0.006280 0.006283
C_5_2 100 2000 0.006479 0.006287 0.008732 0.000241 0.006478 0.006481
C_5_2 100 4000 0.006677 0.006467 0.009229 0.000274 0.006675 0.006679
C_5_2 100 6000 0.006884 0.006674 0.009116 0.000244 0.006882 0.006885
C_5_2 100 8000 0.007077 0.006876 0.009464 0.000256 0.007075 0.007078
C_5_2 100 10000 0.007287 0.007084 0.009786 0.000267 0.007285 0.007288

*
C_3_1: OpenOODB/Exodus Transaction (Committed) Timing Test

 C_3_2: OpenOODB/Exodus Transaction (Aborted) Timing Test

 C_4_1: OpenOODB/SMOS Indirect Addressing Transaction (Committed) Timing Test

 C_4_2: OpenOODB/SMOS Indirect Addressing Transaction (Aborted) Timing Test

 C_5_1: OpenOODB/SMOS direct Addressing Transaction (Committed) Timing Test

 C_5_2: OpenOODB/SMOS direct Addressing Transaction (Abort) Timing Test

 57

Appendix B.4 OpenOODB/SMOS Contention Test Results*

of # of time # of aborts # of # of time # of aborts
objects txn interval I D objects txn interval I D

5 2 0 0 0 5 8 45 0 1
5 2 5 0 0 5 8 50 0 1
5 2 10 0 0 5 10 0 0 0
5 2 15 0 0 5 10 5 0 0
5 2 20 0 0 5 10 10 0 1
5 2 25 0 0 5 10 15 3 2
5 2 30 0 0 5 10 20 1 1
5 2 35 0 0 5 10 25 1 0
5 2 40 0 0 5 10 30 0 0
5 2 45 0 0 5 10 35 2 1
5 2 50 0 0 5 10 40 2 0
5 4 0 0 0 5 10 45 1 1
5 4 5 0 0 5 10 50 0 1
5 4 10 0 0 10 2 0 0 0
5 4 15 0 0 10 2 5 1 0
5 4 20 0 0 10 2 10 0 0
5 4 25 0 0 10 2 15 0 0
5 4 30 0 0 10 2 20 0 0
5 4 35 0 0 10 2 25 0 0
5 4 40 0 0 10 2 30 0 0
5 4 45 0 0 10 2 35 0 1
5 4 50 0 0 10 2 40 0 0
5 6 0 0 0 10 2 45 1 0
5 6 5 0 0 10 2 50 0 0
5 6 10 0 0 10 4 0 0 0
5 6 15 0 0 10 4 5 0 0
5 6 20 0 0 10 4 10 1 0
5 6 25 0 0 10 4 15 1 0
5 6 30 0 0 10 4 20 0 1
5 6 35 0 0 10 4 25 1 0
5 6 40 0 0 10 4 30 1 1
5 6 45 0 0 10 4 35 0 0
5 6 50 0 0 10 4 40 1 0
5 8 0 0 0 10 4 45 1 1
5 8 5 3 0 10 4 50 1 1
5 8 10 1 0 10 6 0 0 0
5 8 15 0 0 10 6 5 0 0
5 8 20 0 0 10 6 10 0 0
5 8 25 2 1 10 6 15 1 0
5 8 30 1 0 10 6 20 0 2
5 8 35 2 1 10 6 25 0 1
5 8 40 0 1 10 6 30 1 1

 58

10 6 35 0 1 15 6 10 0 1
10 6 40 1 2 15 6 15 0 2
10 6 45 1 1 15 6 20 0 0
10 6 50 1 1 15 6 25 1 1
10 8 0 1 0 15 6 30 0 0
10 8 5 2 1 15 6 35 1 0
10 8 10 2 0 15 6 40 2 1
10 8 15 1 1 15 6 45 0 1
10 8 20 3 0 15 6 50 1 0
10 8 25 1 1 15 8 0 0 0
10 8 30 4 1 15 8 5 2 0
10 8 35 1 4 15 8 10 3 2
10 8 40 1 2 15 8 15 4 2
10 8 45 2 3 15 8 20 1 2
10 8 50 2 2 15 8 25 3 2
10 10 0 1 0 15 8 30 5 2
10 10 5 2 1 15 8 35 2 4
10 10 10 3 4 15 8 40 4 4
10 10 15 4 3 15 8 45 5 4
10 10 20 1 4 15 8 50 2 3
10 10 25 4 4 15 10 0 0 0
10 10 30 6 6 15 10 5 4 3
10 10 35 3 5 15 10 10 4 2
10 10 40 2 2 15 10 15 4 4
10 10 45 5 2 15 10 20 4 4
10 10 50 2 5 15 10 25 3 5
15 2 0 0 0 15 10 30 3 2
15 2 5 0 0 15 10 35 4 0
15 2 10 0 0 15 10 40 4 3
15 2 15 1 0 15 10 45 4 4
15 2 20 0 0 15 10 50 3 5
15 2 25 0 1 20 2 0 0 0
15 2 30 0 1 20 2 5 1 1
15 2 35 0 0 20 2 10 0 1
15 2 40 1 0 20 2 15 0 0
15 2 45 0 0 20 2 20 0 1
15 2 50 1 0 20 2 25 1 1
15 4 0 0 0 20 2 30 1 1
15 4 5 1 0 20 2 35 1 0
15 4 10 1 0 20 2 40 1 0
15 4 15 1 0 20 2 45 1 0
15 4 20 1 0 20 2 50 1 1
15 4 25 0 0 20 4 0 0 0
15 4 30 0 0 20 4 5 2 1
15 4 35 0 0 20 4 10 3 2
15 4 40 1 1 20 4 15 1 2
15 4 45 1 0 20 4 20 1 2
15 4 50 1 0 20 4 25 2 2
15 6 0 0 0 20 4 30 2 2
15 6 5 0 0 20 4 35 3 1

 59

20 4 40 3 2 25 4 20 1 2
20 4 45 2 2 25 4 25 1 1
20 4 50 3 1 25 4 30 3 2
20 6 0 0 0 25 4 35 2 1
20 6 5 3 4 25 4 40 2 2
20 6 10 3 5 25 4 45 3 2
20 6 15 3 3 25 4 50 2 2
20 6 20 5 4 25 6 0 0 0
20 6 25 5 3 25 6 5 3 5
20 6 30 4 4 25 6 10 2 1
20 6 35 4 4 25 6 15 3 2
20 6 40 3 4 25 6 20 5 2
20 6 45 5 4 25 6 25 3 4
20 6 50 5 4 25 6 30 3 2
20 8 0 2 0 25 6 35 3 4
20 8 5 6 4 25 6 40 5 5
20 8 10 4 5 25 6 45 4 4
20 8 15 6 4 25 6 50 3 3
20 8 20 4 4 25 8 0 0 0
20 8 25 5 4 25 8 5 5 5
20 8 30 4 3 25 8 10 6 5
20 8 35 4 4 25 8 15 4 6
20 8 40 4 6 25 8 20 5 5
20 8 45 4 4 25 8 25 4 5
20 8 50 5 2 25 8 30 7 6
20 10 0 0 0 25 8 35 6 6
20 10 5 6 6 25 8 40 5 6
20 10 10 6 6 25 8 45 6 5
20 10 15 6 5 25 8 50 7 6
20 10 20 6 6 25 10 0 1 0
20 10 25 5 8 25 10 5 7 5
20 10 30 7 7 25 10 10 8 6
20 10 35 7 5 25 10 15 7 8
20 10 40 5 6 25 10 20 7 7
20 10 45 5 7 25 10 25 6 7
20 10 50 7 4 25 10 30 8 8
25 2 0 0 0 25 10 35 8 6
25 2 5 0 0 25 10 40 7 5
25 2 10 0 0 25 10 45 7 7
25 2 15 0 0 25 10 50 6 6
25 2 20 0 0 30 2 0 0 0
25 2 25 0 0 30 2 5 0 0
25 2 30 1 0 30 2 10 0 0
25 2 35 0 1 30 2 15 0 0
25 2 40 0 0 30 2 20 0 0
25 2 45 0 1 30 2 25 0 0
25 2 50 0 1 30 2 30 0 0
25 4 0 0 0 30 2 35 0 0
25 4 5 2 2 30 2 40 0 0
25 4 10 2 2 30 2 45 0 0
25 4 15 1 2 30 2 50 0 0

 60

30 4 0 0 0 35 2 35 0 0
30 4 5 0 0 35 2 40 0 0
30 4 10 0 0 35 2 45 0 0
30 4 15 0 0 35 2 50 0 0
30 4 20 0 0 35 4 0 0 0
30 4 25 0 0 35 4 5 0 2
30 4 30 0 0 35 4 10 2 0
30 4 35 0 0 35 4 15 1 2
30 4 40 0 0 35 4 20 2 1
30 4 45 0 0 35 4 25 2 2
30 4 50 0 0 35 4 30 0 1
30 6 0 0 0 35 4 35 2 2
30 6 5 0 0 35 4 40 1 1
30 6 10 0 0 35 4 45 2 2
30 6 15 1 0 35 4 50 1 1
30 6 20 0 0 35 6 0 1 0
30 6 25 1 1 35 6 5 3 2
30 6 30 0 0 35 6 10 3 2
30 6 35 0 0 35 6 15 2 3
30 6 40 0 0 35 6 20 2 1
30 6 45 1 0 35 6 25 3 4
30 6 50 0 0 35 6 30 3 3
30 8 0 0 0 35 6 35 3 2
30 8 5 2 1 35 6 40 2 2
30 8 10 3 4 35 6 45 1 3
30 8 15 4 3 35 6 50 2 3
30 8 20 3 3 35 8 0 0 0
30 8 25 3 2 35 8 5 6 2
30 8 30 6 2 35 8 10 5 4
30 8 35 3 3 35 8 15 4 6
30 8 40 3 3 35 8 20 3 5
30 8 45 3 5 35 8 25 5 5
30 8 50 4 2 35 8 30 4 4
30 10 0 0 0 35 8 35 5 4
30 10 5 4 5 35 8 40 5 4
30 10 10 5 6 35 8 45 6 6
30 10 15 5 7 35 8 50 3 3
30 10 20 3 4 35 10 0 0 0
30 10 25 5 6 35 10 5 6 8
30 10 30 6 6 35 10 10 6 5
30 10 35 5 6 35 10 15 7 6
30 10 40 4 5 35 10 20 6 5
30 10 45 5 5 35 10 25 7 6
30 10 50 7 6 35 10 30 6 6
35 2 0 0 0 35 10 35 7 7
35 2 5 0 0 35 10 40 6 6
35 2 10 0 0 35 10 45 7 7
35 2 15 0 0 35 10 50 7 5
35 2 20 0 0 40 2 0 0 0
35 2 25 0 0 40 2 5 0 1
35 2 30 0 0 40 2 10 0 0

 61

40 2 15 1 0 40 10 50 8 8
40 2 20 0 0 45 2 0 0 0
40 2 25 0 1 45 2 5 0 0
40 2 30 0 1 45 2 10 1 1
40 2 35 1 1 45 2 15 1 0
40 2 40 1 0 45 2 20 1 0
40 2 45 1 1 45 2 25 1 0
40 2 50 0 1 45 2 30 1 1
40 4 0 0 0 45 2 35 1 0
40 4 5 2 2 45 2 40 1 0
40 4 10 2 2 45 2 45 0 0
40 4 15 1 3 45 2 50 0 1
40 4 20 2 2 45 4 0 0 0
40 4 25 1 1 45 4 5 3 0
40 4 30 2 2 45 4 10 3 2
40 4 35 2 2 45 4 15 1 2
40 4 40 2 2 45 4 20 2 2
40 4 45 1 3 45 4 25 2 2
40 4 50 3 2 45 4 30 2 2
40 6 0 4 0 45 4 35 3 2
40 6 5 4 4 45 4 40 3 2
40 6 10 2 5 45 4 45 2 3
40 6 15 4 4 45 4 50 3 2
40 6 20 4 4 45 6 0 0 0
40 6 25 5 4 45 6 5 5 3
40 6 30 5 4 45 6 10 4 4
40 6 35 4 5 45 6 15 4 5
40 6 40 5 5 45 6 20 4 3
40 6 45 5 5 45 6 25 5 5
40 6 50 4 5 45 6 30 5 4
40 8 0 0 0 45 6 35 4 4
40 8 5 7 7 45 6 40 4 4
40 8 10 5 7 45 6 45 4 4
40 8 15 6 6 45 6 50 4 4
40 8 20 6 7 45 8 0 6 0
40 8 25 7 6 45 8 5 6 6
40 8 30 7 6 45 8 10 6 6
40 8 35 7 6 45 8 15 7 5
40 8 40 7 6 45 8 20 7 6
40 8 45 6 7 45 8 25 5 5
40 8 50 7 7 45 8 30 5 5
40 10 0 1 0 45 8 35 6 7
40 10 5 9 9 45 8 40 7 7
40 10 10 9 9 45 8 45 6 5
40 10 15 9 7 45 8 50 6 4
40 10 20 9 9 45 10 0 3 0
40 10 25 9 9 45 10 5 9 8
40 10 30 9 9 45 10 10 9 9
40 10 35 9 8 45 10 15 9 8
40 10 40 8 8 45 10 20 7 7
40 10 45 8 9 45 10 25 9 9

 62

45 10 30 8 9 50 6 15 2 2
45 10 35 8 8 50 6 20 3 4
45 10 40 7 7 50 6 25 5 3
45 10 45 8 9 50 6 30 4 3
45 10 50 9 7 50 6 35 3 4
50 2 0 0 0 50 6 40 4 5
50 2 5 0 1 50 6 45 3 4
50 2 10 0 0 50 6 50 4 3
50 2 15 0 0 50 8 0 0 0
50 2 20 1 0 50 8 5 6 6
50 2 25 0 1 50 8 10 7 5
50 2 30 0 1 50 8 15 5 5
50 2 35 0 0 50 8 20 6 5
50 2 40 0 1 50 8 25 6 7
50 2 45 0 0 50 8 30 7 6
50 2 50 0 0 50 8 35 5 5
50 4 0 0 0 50 8 40 7 6
50 4 5 1 2 50 8 45 7 5
50 4 10 2 2 50 8 50 5 6
50 4 15 1 1 50 10 0 1 0
50 4 20 1 1 50 10 5 6 8
50 4 25 1 0 50 10 10 9 7
50 4 30 1 1 50 10 15 7 8
50 4 35 1 0 50 10 20 8 6
50 4 40 1 0 50 10 25 7 8
50 4 45 2 2 50 10 30 8 8
50 4 50 1 3 50 10 35 7 6
50 6 0 0 0 50 10 40 6 7
50 6 5 4 5 50 10 45 8 7
50 6 10 3 4 50 10 50 7 8

* # of objects: the total number of objects that are available for transactions to access
 # of txn: the number of concurrent transactions (these transactions start at exactly the same time)
 # of aborts: the number of transaction aborts; I denotes indirect addressing scheme; D
 denotes direct addressing scheme
 time interval: the time interval between two consecutive persistent objects access in a transaction
 I: indirect addressing
 D: direct addressing

 63

 BIBLIOGRAPHY

Abbott, R., Garcia-Molina, H. (1988) “Scheduling Real-Time Transactions: A Performance Evaluation”,

 Proceedings of the 14th Very Large Data Base Conference, August, 1988.

Abbott, R., Garcia-Molina, H. (1988) “Scheduling Real-Time Transactions with disk resident data”,

Proceedings of the 14th Very Large Data Base Conference, August 1988.

Abbott, R., Garcia-Molina, H. (1990) “Scheduling I/O Requests with Deadlines: A Performance

Evaluation”, Proceedings of the 11th Real-Time Systems Symposium, December 1990.

Buchmann, A. P., McCarthy, D. C., Hsu., M., Dayal, U. (1989) “Time-Critical Database Scheduling: A

Framework for Integrating Real-Time Scheduling and Concurrency Controls”, Proceedings of the

5th International Conference on Data Engineering, February 1989.

Booch, G. (1994) “Object-Oriented Analysis and Design with Applications”, Second Edition, Addison-

Wesley, 1994.

Carey, M., DeWitt, D., Richardson, J. and Shekita, E. (1989) “Storage Management for Objects in

EXODUS”, in Object-Oriented Concepts, Databases, and Applications, Addison-Wesley, 1989.

Carey, M., DeWitt, D, Naughton, J. (1993) “The OO7 Benchmark”, Proceedings of the ACM SIGMOD

International Conference on Management of Data, Washington, DC, May 1993.

Carey., M. J., Franklin., M. J., and Zaharioudakis., M. (1994) “Fine-grained sharing in a page server

OODBMS”, In Proceedings of the ACM SIGMOD International Conference on Management of

Data, May 1994.

Cattell, R. G. G. (1994) “Object Data Management: Object-Oriented and Extended Relational Database

Systems”, Addison-Wesley, 1994.

Cattell, R. G. G. (1996) “The Object Database Standard: ODMG-93”, Release 1.2, 1996.

Chen, S and Lin. K. (1990) “Dynamic Priority Ceilings: A Concurrency Control Protocol for Real-Time

Systems”, Real-Time Systems, 2(4), December 1990.

 64

Deux, O. (1991) “The O2 System”, Communications of the ACM, Volume. 34, Number 10, October. 1991.

DiPippo, L. C. (1995) “Object-Based Semantic Real-Time Concurrency Control”, Ph.D. Dissertation,

University of Rhode Island, May 1995.

Huang. J., Stankovic. J., Towsley. D., and Ramamritham. K. (1990) “Real-Time Transaction Processing:

Design, Implementation and Performance Evaluation”, Technical Report 90-43, University of

Massachusetts, May 1990.

Huang, Jiandong, Stankovic, J., Ramamritham, K., and Towslwy, D. (1992) “On Using Priority Inheritance

in Real-Time Database”, Proceedings of the 12th Real-Time Systems Symposium, December

1991.

Moss, J. (1992) “Working with Persistent Objects: To Swizzle or Not to Swizzle”, IEEE Transactions of

Software Engineering, 18(8):657-673, August 1992.

Peckham, J, Wolfe, V. F., Prichard, J., and DiPippo, L. C. (1994) “RTSORAC: Design of a Real-Time

Object -Oriented Database System”, Technical Report 94-231, Department of Computer Science,

University of Rhode Island, 1994.

Prichard, J., DiPippo, L. C., Peckham, J., and Wolfe, V. F. (1994) “RTSORAC: A Real-Time Object-

Oriented Database Model”, in Proceedings of the International Conference on Database and

Expert Systems Applications, September, 1994.

Ramamritham, K. (1993) “Real-Time Databases”, International Journal of Distributed and Paralled

Databases, 1(2), 1993.

Sha, L., Rajkumar, R., Lechoczky, J. P. (1990) “Priority Inheritance Protocols: An Approach to Real-

Time Synchronization”, IEEE Transaction on Computer Systems, 39(9), 1990.

Sha, L., Rajkumar, R., Son, S., and Chang, C. (1991) “A Real-Time Locking Protocol”, IEEE Transactions

on Computer Systems, Volume 40, Page 793, July 1991.

Singhal, M. (1988) “Issues and Approaches to Design of Real-Time Database Systems”, ACM SIGMOD

 Record, 17(1), March 1988.

 65

Squadrito, M., DiPippo, L. C., and Wolfe, V. F. (1996) “The Affected Set Priority Ceiling Protocol For

Real-time Object-Oriented Databases”, Technical Report 96-250, The Department of Computer

Science and Statistics, University of Rhode Island, 1996.

Stankovic, J., Zhao, W. (1988) “On Real-Time Transactions”, ACM SIGMOD Record, Volume 17, Page

4-18, March 1988.

Tarjan, R. E. (1972) “Depth-First Search and Linear Graph Algorithms”, Society for Industrial and Applied

Mathematics Journal on Computing, Volume 1, 146-160, June, 1972.

Wells, David L., Blakeley, Jose A., and Thompson, Craig W. (1992) “The Open Object-Oriented Database:

Obtaining Database Functionality by Extension”, Special Issue on Object-Oriented Systems and

Applications, IEEE Computer Volume. 25 Number 10. October., 1992.

Wolfe, V. F., Cingiser, L., Peckham, J. and Prichard. J. (1993) “A Model for Real-Time Object-Oriented

Databases”, Technical Report 93-216, Department of Computer Science, University of Rhode

Island, 1993.

Wolfe, V. F., DiPippo, L. C., Prichard, J. J., Peckham, J. and Fortier, P. J. (1994) “The Design of Real-

Time Extension to the Open Object-Oriented Database System”, Technical Report 94-236,

University of Rhode Island, 1994.

