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ABSTRACT 
 
 

In a complex real-time environment, there is often a large amount of temporal data that 

needs to be promptly collected and made available for processing.  To support time 

constrained access to this data, real-time databases are needed in order to provide 

predictable transaction time. However, the time constraints can be very tight, requiring a 

very high database performance level that a conventional database system usually cannot 

provide.  

 

In this thesis, we present a solution for the need of high-performance databases through 

the design of a memory-resident object repository called SMOS (Shared Memory Object 

Store). SMOS features an unique client-only architecture in which the server processes 

and their communications with the clients are eliminated through System V shared 

memory support. By providing an object model that fully utilizes the type system of the 

database application programming language, we alternatively unified multiple address 

spaces into a single address space in SMOS and thus eliminated object moving and 

format translations. Further performance gain in SMOS was achieved by relaxing some 

of the transaction ACID properties that are unnecessary in a high speed real-time 

environment.  

 

SMOS has been implemented with Open OODB from Texas Instruments, Inc., it was 

initially developed on an Intel x86-based platform running Solaris 2.5 and has been 

ported to Sun SPARC running Solaris 2.5. The SMOS/Open OODB prototype has 

demonstrated superior system performance through various timing experiments. 
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Chapter 1  

INTRODUCTION 
 

 

 1.1 Motivation 
 

Many real-world computing systems are associated with time constraints. These time 

constraints require that the computations must complete before their deadlines, otherwise 

various degrees of damage may occur. Such systems are called real-time systems. Typical 

real-time systems are often seen in the military command and control, nuclear power 

plants, automatic manufacturing factories, and air traffic control systems. In these 

environments, real-time systems often have to deal with large volumes of temporal data 

that can be better managed by database systems. This introduces the need for real-time 

database systems (RTDB). 

 
A real-time database system combines the features from both real-time systems and 

database systems; it not only has to satisfy the time constraints required by a real-time 

system but also has to maintain the data consistency required by a database system. These 

requirements introduce the major difficulties in the design of a real-time database, 

because the two fundamental requirements are not compatible: real-time requires the 

transaction to be performed in a timely fashion with predictability; whereas a database 

often has to suspend transactions to provide data consistency, making transaction time 

unpredictable. In (Ramamritham, 1993) several other sources of unpredictability were 

identified in a conventional database system,  including transaction aborts and the 

resulting rollbacks or restarts, data and resource conflicts, dynamic paging,  and I/O. 

In the past, research on real-time databases have always been focused on how to make the 

transactions predictable, in particular it has focused on the concurrency control protocols 
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that are suitable for real-time databases. On the other hand, the degree of the 

predictability1 that a real-time database can provide is often ignored. As a result, the 

system performance level, though fundamental to system predictability, is often not 

considered as the most important issue, because it is usually assumed that the 

performance level is sufficient without special treatment. However, in industries, military 

and other practical environments, the transaction rates can be very high, the data volume 

per transaction can be very large, and the time constraints associated with the data can be 

very tight, a guaranteed high system performance level becomes essential for providing 

high degrees of predictability. 

 
One effective way to increase the system performance level is to keep the database in 

memory. However, a conventionally designed memory-resident database (MMDB) is still 

inadequate to satisfy those high demand environments, the best reported simple 

transaction time we found was 69 milliseconds (Lehman, 1992). Instead of using 

database systems, those environments are forced to rely on sophisticated ad hoc 

techniques to manage data, and the resulting systems unavoidably have significant 

drawbacks in system upgrade and maintenance compared with a software database 

approach. The need for a high-performance real-time database system is clear. 

 
Motivated by such need, in this thesis we explored possible ways to improve main 

memory database performance level.  We applied our ideas to the design and 

implementation of a memory-resident object repository called SMOS (Shared Memory 

Object Store), and integrated SMOS into Open OODB from Texas Instruments, Inc. for 

various performance tests. 

 

SMOS features an unique client-only architecture. Unlike the client-server architecture, 

the server process is eliminated in SMOS. As a result the communications between the 

server and the clients are also eliminated. SMOS also supports the notion of  real-time 

object and non-real-time object. For real-time objects, SMOS provides the highest 

possible performance level by trading off some of the conventional database functionality 

                                                           
1 The value of the bounded worst-case transaction time 
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and object features; when there are no real-time objects, the performance is not as good, 

but more database and object features are preserved. In the timing tests of SMOS/Open 

OODB, we observed2 a worst-case transaction time of 10 milliseconds for real-time 

objects with size under 1Mb. For none real-time objects, the worst-case transaction time 

increased to 17.8 milliseconds. 

  

 1.2 Background 
 

SMOS first is an object database; it provides persistent object storage for object-oriented 

programming languages such as C++. Because SMOS keeps persistent objects in 

memory, it is also a main memory database and thus can deliver very fast transactions. In 

addition, our efforts intend to provide guarantees for the worst-case transaction time, 

therefore SMOS is also oriented toward a real-time database. In the following sections we 

briefly describe the characteristics of these databases as well as related research in the 

University of Rhode Island. 

  

 1.2.1  Object-Oriented Databases 
 

An Object-Oriented Database Management System (OODBMS) stores, shares, and 

manages objects instead of tables of data as in Relational Database Management Systems 

(RDBMS). Objects in an OODBMS reassemble real-world objects in many ways; they all 

have states, behaviors, and identities, and the structure and behavior of similar objects 

can be defined in common classes. An OODBMS maintains all the basic functionality of 

a traditional database management system, such as persistency, concurrency, and 

recoverability, by transparently integrating database capabilities with an object-oriented 

programming language such as C++ or SmallTalk. Unlike a RDBMS which stores simple 

and often fixed length data in tables and thus has difficulties in representing complex 

relations, an OODBMS can easily support complex structures by naturally using objects, 

                                                           
2 The tests were performed on a Sun SPARC 10 workstation and its hardware configuration is listed in 

Table Chapter 5 .1 
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and thus can “maintain a direct correspondence between real-world and database objects 

so that objects do not lose their integrity, and identity and can easily be identified and 

operated upon” (Elmasri, 1994). In other words, if the real-world information can be 

better represented by objects, it can often be easier and faster to store and manage this 

information in the form of objects rather than translating between application objects and 

tables of record. More importantly, in OODBMS the same object  can be used 

transparently in many aspects of the system, including analysis, design, implementation, 

query, GUI, object store, etc. Therefore, developers who use object technologies desire 

OODBMS, because the combination of object-oriented analysis (OOA) and design 

(OOD), object-oriented programming language (OOP), and object-oriented database 

(OODB) offers the benefits of a synergistic development environment (Loomis, 1995). 

  

 1.2.2  Memory-Resident Databases 
 

The cost for semiconductor memory chips, especially the Single Inline Memory Module 

(SIMM3) has dropped dramatically in recent years. In the meantime, the memory density 

has also increased significantly. Nowadays, a personal computer can hold as much as 

several hundred megabytes of memory, whereas an industry customized computer can go 

up to several gigabytes and more. These advances in memory technology make it 

possible to keep the entire database in the main memory. However, a main memory 

database (MMDB) is quite different from a traditional database that can cache all its data 

in the memory. A database that caches all the data in main memory is not designed to 

take advantage of the data memory-resident features, because its data access method is 

still oriented toward disk-resident data. A study of index structures for main memory 

database systems (Lehman, 1986) demonstrated that B/B+ trees do not have overall good 

performance in MMDB when compared to their performance in disk-based databases, 

because although B/B+ trees have the ability to minimize disk accesses and to use disk 

space efficiently, they cannot use the CPU cycles and memory space as efficiently. On 

the other hand, because of the low latencies between the CPU instructions and memory 

                                                           
3 An industry standard for placing a grouping of memory chips on a pluggable board 
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accesses, MMDB is usually designed to take advantage of pointer following for its data 

access and representation, efficiently using the CPU cycles. An excellent overview of 

main memory databases can be found in (Garcia-Molina,  1992). 

 

 1.2.3  Real-Time Databases 
 

A computing system is considered real-time if  the correctness of the computation 

depends not only on the logical correctness of the results but also on the timing 

correctness of the computations. A real-time database (RTDB) provides data 

management services for applications that require logical consistency as well as temporal 

consistency for the data. To maintain temporal consistency a transaction is required to be 

completed by a certain deadline. Typical real-time database systems approach the 

guaranteed transaction time with various time-driven scheduling and resource allocation 

algorithms, they usually explicitly deal with time constraints by tailoring the traditional 

concurrency control and transaction management techniques (Ramamritham, 1993). 

However, these approaches do not always provide satisfactory solutions especially for 

guaranteeing hard transaction deadlines. As we mentioned earlier, this difficulty comes 

from the incompatibilities caused by maintaining both logical and temporal consistency, 

as well as system resources and hardware limitations. As a result, most real-time database 

systems only guarantee soft transaction deadlines.   

 

A comprehensive overview of real-time databases can be found in (Ramamritham, 1993). 

This paper describes the characteristics of data and transactions in real-time databases, 

the issues that relate to the processing of time-constrained transactions, and the possible 

approaches to resolving contention over data and processing resources. 

  

 1.2.4  RTSORAC 
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RTSORAC (Real-Time Semantic Objects Relationships And Constraints) is a database 

model developed by the real-time research group at the University of Rhode Island 

(Wolfe, 1993; Peckham, 1994 and Prichard, 1994). This model incorporates real-time 

database concepts into an object-oriented database model, supporting time constrained 

objects and transactions. Based on this RTSORAC model, a prototype of a real-time 

object-oriented database system has been proposed (Wolfe, 1994). This thesis project is 

part of the implementation efforts of this RTSORAC database prototype. 

  

 1.3 Objectives 
 

In this study, our primary research objective is to develop a persistent object storage 

manager that is suitable for object-oriented real-time applications requiring an extremely 

high-performance level. Our approach is step-wise and explores different balances 

between the database features and the system performance levels. Therefore, another 

important research objective is to investigate a flexible object management configuration 

that can be easily tuned to satisfy different application requirements. Our final research 

objective is to implement a prototype of our design and integrate it into an existing 

OODBMS with various timing tests to evaluate the design decisions. 

 

 1.4 Thesis Outline 
 

Chapter 2 describes work that is related to SMOS, including making objects persistent, 

persistence in main memory, and meeting transaction deadlines. Chapter 3 presents the 

requirements, analysis, and design of SMOS. Chapter 4 describes the implementation and 

integration of SMOS with Open OODB (the host OODBMS for SMOS). Chapter 5 

demonstrates the performance evaluations of SMOS in Open OODB. Chapter 6 

concludes the thesis with a summary and discussion of the contributions, limitations, and 

future work. 



 7

 

Chapter 2  

RELATED WORK 
 

 

In this chapter, we describe work that relates to the design and implementation of SMOS. 

We will first introduce the object model, because its construction is the first step of 

building an OODBMS. We will then describe how objects are mapped between transient 

and persistent address space, as the mapping methods determine many aspects and 

features of an object store. We will also describe how objects can become persistent in 

main memory, because memory-residency is the key feature of SMOS. At the end of this 

chapter, we will introduce deadlines that are associated with real-time transactions, as 

SMOS intends to serve as a real-time database engine. 

  

 2.1 Object Model 
 

The object model of a OODBMS specifies the semantics that can be explicitly defined for 

the system. It determines the characteristics of objects, how objects can be related to each 

other, and how objects can be named and identified (Cattell, 1996). Recall that an 

OODBMS is closely coupled with one or more object-oriented programming languages, 

thus we can classify OODBMS object models into language-independent and language-

dependent models, according to their relationships with the coupled languages. In this 

section, we will compare these two categories of object models; this comparison provides 

the background of the object model independency requirement that will be described in 

Chapter 3. 
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 2.1.1  Language-Independent Object Models 
 

Language-independent models have the advantages of being able to specify a wide range 

of semantics. When targeting different applications, these models can have very different 

emphasis. For example, the RTSORAC Object Model specifically incorporates real-time 

constraints to support real-time persistent objects (Prichard, 1994). The ODMG-93 

Object Model is another example in which a set of object constructs are established as 

standard requirements for a ODMG-93 compliant OODBMS. Though the language-

independent object models have the advantage of flexibility, e.g., they can be very simple 

or very complex depending on the specific application requirements, they need to be 

bound with the coupled programming language. Sometimes, the bindings of  certain 

semantics can be a challenge to system design and implementation. For example, to 

provide object relationship integrity, the coupled programming language needs to bind 

inverse object attributes; however, to provide support for such binding in the OODBMS 

is not trivial, because the system has to transparently maintain the references between the 

relationships in synchronization with the transactions that manipulate them. 

  

 2.1.2  Language-Dependent Object Models 
 

Any object-oriented programming language (OOPL) has an implied object model that 

supports the concept of objects, operations, interfaces, types, subtyping, inheritance, etc. 

When an OODBMS chooses an OOPL with which to couple, it can also decide to use the 

language object model with or without modification for its database object model. Such a 

language-dependent object model approach makes it possible to provide only one 

execution environment, programming language, and type system through out the database 

system, eliminating impedance mismatch4 between the programming language and the 

database. In addition, because the database and the language use the same object model, 

there is no need to map the database object model into the language, eliminating 

                                                           
4 Impedance mismatch arises when the application programming language and the database language have 

very different object models; it refers to the problems related to translating objects in these two language 
environments. 
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language binding  that is required by a language-dependent object model. Although the 

semantics of such a language-dependent object model may not be as rich as a language-

independent object model that is specifically  designed for an OODBMS (e.g. ODMG-

93), the computationally complete programming language that is closely coupled with the 

system, such as C++,  can usually overcome the resulting shortcomings (Cattell, 1994). 

  

 2.2 Making Objects Persistent 
 

A persistent object is one that continues to exist after the process in which it is created 

has terminated. Because an object can have pointers or references to other objects, 

making objects persistent as well as retrieving persistent objects are rather complex 

procedures and require close attention from the object store. Depending on how 

mappings between transient objects and persistent objects are performed, there are 

basically two different ways to make objects persistent in a database. In the following 

sections, we take a closer look of these two mapping approaches. 

  

 2.2.1  Indirect Mapping 

 
In this approach, the mappings between transient and persistent objects are indirect 

(Figure Chapter 2 .1). A transient object in the local heap of an application process must 

be first transformed into a format that is suitable to store in the persistent addressing 

space (PAS),  it is then moved into the PAS where it becomes persistent. Though the 

actual format varies with different implementations, the object is simply a segment of 

some storage units (such as bytes, blocks, pages) with a length that is determined by the 

size of the object.  
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transient format persistent format

transformation
procedure

 

Figure Chapter 2 .1 Indirect Mappings between transient and persistent objects 

 

If objects of any type are allowed to become persistent, the transformations between an 

object’s transient and persistent representations can be very complicated. Because an 

object can have references/pointers to other objects, the memory addresses contained in 

the references/pointers are most likely invalid when the objects are fetched back from the 

persistent store to the memory; therefore, the transformation has to find a way to 

represent references/pointers without using memory addresses. In such an indirect 

mapping approach, an object identifier (OID) is typically used to represent a 

reference/pointer in a persistent object; and when dereferencing the pointer, the 

OODBMS performs a table lookup to find the persistent address of the target object using 

its OID. 

 
As the object transformation has to traverse references in the object, indirect mapping can 

be time-consuming when the object contains many references or pointers. However, 

indirect mapping also has its important advantages. Firstly, if the OODBMS needs to 

support cross-platform transfer of objects over networks, or support multiple application 

programming languages, a general object format is needed other than the in-memory 

transient representation. This general object format is often best represented using a 

persistent object format which utilizes fixed length contiguous storage units. Secondly, 

from the architecture point of view, the object store should serve as a module in the 

OODBMS if extensibility is a key requirement. Under object oriented design (OOD) 

principles, such object store modules should be coupled with the OODBMS only through 

an interface and should not care about the actual structure or layout within each 

individual object. This can be done by providing a persistent object format that is known 
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to the object store only as a sequence of uninterpreted storage units. Such a design has 

great flexibility; for example, it can easily adapt a new object store for a different system 

functionality emphasis. Because of this, we used the indirect mapping approach in 

SMOS. 

 
The idea of indirect mapping has been successfully applied in several OODBMS, 

including research prototypes such as E/Exodus (Carey, 1986), Open OODB (Well, 

1992), YOODA (Abecassis, 1994) etc., as well as commercial products such as 

MediaDB, O2 (Deux, 1991), etc. Further, the OO7 OODBMS benchmark has 

demonstrated that E/Exodus has a very competitive performance when compared with 

several commercial OODBMS products that are based on direct mapping technology 

(Carey, 1993). 

  

 2.2.2 Direct Mapping 
 

In the direct mapping approach for making object persistent, the mappings between 

transient and persistent objects are direct (Figure Chapter 2 .2). No transformations are 

needed. Objects are stored in their native language format such as C++ format. The only 

difference between transient and persistent objects is their pointer values. Instead of 

containing a memory address when it is in a transient object, the pointer will have a 

persist storage address when the transient object is mapped into the persist object store. 

Therefore, the direct mapping procedure simply converts a pointer’s addresses between 

the two address space before moving objects across the boundary, this procedure is also 

called pointer swizzling. An in-depth description of various pointer swizzling techniques 

can be found in (Moss, 1992). reminder 

pointer swizzling/
unswizzling

transient format persistent format  
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Figure Chapter 2 .2 Direct Mappings between transient and persistent objects 
Although the direct mapping approach seems more efficient at run-time, it complicates 

the system design and implementation and has limited extensibility compared with 

indirect mapping, because the storage manager has to be closely tied to many components 

of the OODBMS and can no longer exist as a standalone system module. 

  

 2.3 Persistency in the Memory 
 

Unlike secondary storage, main memory is usually volatile. As a result, to maintain data 

persistence in memory requires a running process that is capable of dynamic memory 

allocation. This process needs to control a pool of memory space, allocating and 

deallocating blocks of memory space upon request. Data stored in the allocated memory 

space becomes persistent as long as this process is running. Similarly, a database can 

achieve data persistency in memory with a client/server architecture in which the server 

process allocates memory space to store data for the clients.  A client-only architecture 

can also be used for data persistence in memory. Such architecture requires shared 

memory support from the operating systems, a standard feature5  in System V UNIX. 

Typically, shared memory is used for interprocess communications; data stored in shared 

memory is accessible by different processes and is persistent until the segment containing 

this data is explicitly deleted or the kernel stops running. Such a feature can be directly 

used for sharing persistent data in main memory without introducing a server process, 

and is fundamental to this thesis project. 

 

 2.4 Meeting Deadlines 
 

As we mentioned in Chapter 1, a database maybe required to manage time-constrained 

data. As a result, the transactions using this data have to meet certain deadlines, otherwise 

                                                           
5 Though shared memory is not standard in BSD UNIX, it is supported in many extended BSD UNIX 

systems. 
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this data is no longer considered consistent. A database that is capable of dealing with 

transaction deadlines is qualified as a real-time database (RTDB).  

 
We mentioned earlier that it is very difficult for a database to provide an absolute 

guarantee on meeting transaction deadlines because of the incompatibilities between 

logical and temporal consistency, as well as limitations in system resources. Most 

research in the real-time database community has focused on finding solutions for the 

incompatibilities between logical and temporal consistency (Abbott, 1988; Abbott, 1990; 

Buchmann, 1989; Chen, 1990; Huang,  1990; Huang, 1991; DiPippo, 1995; Sha,1991; 

etc.). These approaches usually first construct a real-time transaction model, and then 

devote most of their efforts to establishing suitable transaction scheduling and 

concurrency control protocols around the transaction model. A typical transaction model 

may include the following attributes: deadlines, value function, resource requirements, 

execution time, semantic information, etc. These attributes are used for transaction 

scheduling of the CPU, I/O, memory, and other resources. This scheduling typically 

involves priority assignment to the transactions. In addition, concurrency control is also 

considered differently, because traditional lock-based protocols are no longer acceptable 

due to possible priority inversion and deadlock. Strategies, such as Wait Promote (Sha, 

1990), High Priority (Abbott, 1988), Conditional Restart (Abbott, 1988), are proposed to 

prevent priority inversion for lock-based concurrency control protocols; and strategies,  

such as aborting a transaction that has already missed its deadline, has the longest 

deadline, or is least valuable (based on value function), are proposed to break deadlock. 
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Chapter 3  

THE REQUIREMENTS, ANALYSIS AND DESIGN 
 

 

 3.1 Overview 
 

The goal of this thesis research is to develop a persistent object store that is suitable for 

the demands of  real-time database applications. Our focus on SMOS is performance. 

Typically, the performance of a particular software application is determined by three 

factors; the features required, the design, and the implementation. The inclusion of more 

features, especially advanced features, often requires more run-time overheads as well as 

more efforts in the design and implementation. Given the same required features, the 

design can choose different system architectures with different emphasis, and these 

design decisions can have great impact on the performance; in addition, because design 

also determines system portability and expandability, it can affect future system 

performance. Implementation, on the other hand, affects performance through the kind of 

data structures and algorithms it uses, and unlike the design it is much easier to correct or 

improve. In this chapter, we first describe the requirements of  SMOS, and then present 

the design based on the requirements. 

 

 3.2 The Requirements 
 

Like any software system, SMOS has a set of functional requirements that describe the 

functional capabilities or features it has to provide (Table Chapter 3 .1). In addition, 

SMOS also has a set of system requirements that describe the system capabilities it must 
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have when satisfying the functional requirements (Table Chapter 3 .2). There 

requirements directly affect the design of SMOS. 

  

 3.2.1 The Functional Requirements 
 
 
 

Object Model Independence

Multi-Level Object Persistence

Guaranteed Persistent Object Access Time

Adjustable System Performance

Concurrent Persistent Object Access

 

 
Table Chapter 3 .1 SMOS Functional Requirements 

 

Object Model Independency 
 

As we mentioned in Chapter 2, an OODBMS can choose an object model that is either 

dependent or independent upon its binding language object model. To serve as an 

independent object storage manager, SMOS does not make any assumptions about the 

object model of the OODBMS. This gives SMOS the potential to provide persistent 

object storage service for a wide range of OODBMS. 

Multi-Level Object Persistence 

An object is persistent if its lifetime is extended beyond the execution of the creating 

program. To provide performance advantages, we put the main store of SMOS in main 

memory. However, main memory is normally volatile, the lifetime of a main memory 

persistent object is therefore limited by the up time of the OS kernel. To provide recovery 

from kernel crash or power failure, SMOS must be able to coordinate nonvolatile media 
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persistent object storage and retrieval, such as asynchronically mirroring main memory 

persistent objects on disk following certain policies. 

Guaranteed Persistent Object Access Time 

One of the major unpredictabilities of a disk-based database is data access time. This 

unpredictability is caused by blocking time uncertainties associated with disk I/O 

(Singhal, 1988). Because SMOS is supposed to provide object storage service for real-

time databases, it must be able to guarantee the access time of persistent objects. 

Adjustable System Performance 

As we mentioned earlier, the system performance is determined  partially by the features 

or function requirements. We can often improve performance by leaving out some of the 

functionalities. On the other hand, the same functionalities maybe mandatory in a 

different application or even the same application but different stages. SMOS should be 

able to adjust its performance and functionality balances according the application 

requirements. 

 

Concurrent Persistent Object Access 

Persistent objects are a shared resource. If this shared resource can be accessed 

concurrently, performance can be greatly improved. For this reason, SMOS must provide 

persistent object sharing among multiple transactions, users and applications. In order to 

ensure data integrity, SMOS must only allow controlled concurrent access to persistent 

objects. However, as we discussed in Chapter 2, concurrency control undermines 

performance; therefore SMOS should be able to provide flexible concurrency control to 

balance performance and data integrity according to the application requirements.  
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 3.2.2 The System Requirements 
 

Performance
Portability
Reusability
Extendibility
Flexibility

 

Table Chapter 3 .2 SMOS System Requirements 

 

 

Performance 

Because the goal of SMOS is to provide persistent object storage for demanding real-time 

applications, performance is the most important system requirement for SMOS. As a 

persistent object store, the performance of SMOS is measured on persistent object access 

time. Given the functional requirements in last section, persistent object access time in 

SMOS should approach transient object access time which is the speed of main memory. 

Such performance level is fundamental to satisfy real-time transactions with very tight 

deadlines ( e.g. in several milliseconds range). Essentially, the performance of SMOS 

should be guaranteed at a extremely high level in order to provide persistent object 

storage service for demanding real-time database management systems.. 

 

Portability, Reusability, Extendibility, and Flexibility 

Portability is very important when cross-platform is to be supported. SMOS is required to 

support various UNIX platforms, therefore, it should avoid using platform dependent 

function calls. SMOS should also have high reusability in order to make its service 

available for a wide range of OODBMS, this requires SMOS to be a well designed 
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module with interfaces can be easily adapted to various systems. Extendibility is another 

important system requirement, because an OODBMS may have specific storage 

requirement which SMOS does not initially have. Finally, SMOS should be able to easily 

turn on and off some of its features; such flexibility is essential to satisfy different 

performance and functionality requirements between different applications.  

  

 3.3 The Analysis 
 

Although the requirements described in last section all have influences on our design of 

the persistent object store, among them guaranteed high-performance has the greatest 

challenge and plays the most important role in our design decisions.  

 

To satisfy the performance requirement, we must keep the object store in main memory. 

Such approach not only improves performance but also eliminates disk I/O which in turn 

eliminates blocking time uncertainties. Conventionally,  a memory-resident store is either 

encapsulated within the private address space of a server process or allocated to the 

memory shared by one or more server processes (Figure Chapter 3 .1); the server process 

then communicates with application processes using IPC, RPC or other networking 

methods. Though these approaches have many advantages provided by the much matured 

client/server architecture, such as clearly defined functionalities and boundaries for easy 

maintenance and high reliability, the overhead imposed by the communications between 

the clients and the servers undermine the performance. Clearly, we can further improve 

performance if we are able to eliminate this communication overhead; and the only way 

to achieve this is to remove the server process. However, without any process with which 

to attach, the store must find a way to become persistent in memory and to be sharable by 

all the application processes. The System V or POSIX.1b Shared Memory facility 

actually makes this possible. The original purpose of shared memory is to provide fast 

interprocess communications; once created, a shared memory segment can be attached to 

one or more processes for their addressing; any changes made to the shared memory by a 

process become immediately available to others. Most importantly to us, the shared 
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memory is protected by the kernel; the content of a shared memory segment is preserved 

until it is explicitly deleted or the kernel is stopped. Therefore, if we can make the object 

store appear as one or more shared memory segments, the basic database framework is 

established. 

 

client

client

servermemory
segment

 

Figure Chapter 3 .1 A Conventional Memory Resident Database 

 

 

Another source of overhead commonly found in a conventional main memory database is 

the object format translation and object moving and copying. The translation is needed if 

a general object format is introduced in order to support networking, cross-platform, and 

multi-languages; whereas object moving and copying is for supporting multiple address 

space and recovery. Though these are important features to many applications, we realize 

that they are not necessary to some applications. For example, in a real-time environment, 

conventional recovery becomes useless if  the recovered data is outdated due to the 

temporal constraints. For this reason, if we can turn off these features when possible, we 

will gain further performance improvement. 

  

 3.4 The Design 
 

Based on the analysis in last section, we can make three major design decisions to 

improve the performance of the persistent object store (Table Chapter 3 .3). In the 

following sections, we first present our high level system architecture which reflects our 

major design decisions, and then describe our detailed object-oriented design using 

Booch notation. 
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Design Decisions Impacts 

Memory-Resident Improves access time, eliminates blocking uncertainty 

Client-Only/Serverless Eliminates communication overhead 

Address Space Unification  Eliminates object format translation and object moving 

 

Table Chapter 3 .3 SMOS Design Decisions 

  

 3.4.1 The Architecture Framework 
 

As shown in Figure Chapter 3 .2, the main store of SMOS resides in shared memory. As 

the content of the store is naturally persistent with the protection from the kennel, no 

hosting process is needed in order to prevent this memory area being reused by other 

processes. By utilizing shared memory facilities provided by the operating system, client 

processes can also gain direct access to the store concurrently without communicating 

with each other (we will describe how concurrency control is established without a server 

process in section 3.3.2). Based on the above features provided by shared memory, we 

eliminated the server process in the design which is otherwise essential in a database. 

 

Because the maximum lifetime of regular6 main memory content is limited to the kernel 

up time, we have a  daemon (Figure Chapter 3 .2) that provides asynchronous backup 

services for the main object store. Following certain policies, this daemon extends object 

lifetime by copying whole or part of the main store to a backing store on disk, whereas 

the policy can be configured so that it balances the extent of recovery and the system 

performance according to application requirement. 

 

                                                           
6 There are special memory chips/boards that have battery backup to against  power failure. 
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Backing
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Figure Chapter 3 .2 SMOS System Architecture Framework 

 

Conventionally, for safety and recovery, a client is not allowed to directly address the 

persistent address space; in other words, the persistent and transient address spaces are 

separate. In our design, after a client attaches the persistent address space to its local 

transient address space, it can optionally unify the two address space when addressing 

time critical objects. Because the client directly operates on the persistent object without 

copying the object out from and back to the store, the access time of any persistent object 

is bounded regardless the size of the object. However, we must realize that use of  such 

operations should be restricted because it can put the object in a inconsistent state if 

failure should happen during the transaction. 

  

 3.4.2 The Classes 
 

In this section, we will have a closer look at our design. In particular, we will decompose 

the system and use Booch OOD notation (Appendix I) to represent our detailed design 

decisions. 

 
The class diagram  in Figure Chapter 3 .3 demonstrates most of the SMOS system 

components. At the top level is the class AddressSpaceManager; it is a system interface 

class that serves as an entry to SMOS. The attribute shmASM/SharedMemoryManager7 in 

class AddressSpaceManager leads to SMOS low level. High level persistent object 

operations, such as createObject, modifyObject, getObject, writeObject, and deleteObject, 

                                                           
7 This notation represents that the attribute shmASM is an instance of class SharedMemoryManager or is a 

pointer to an instance of class SharedMemoryManager. 
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eventually use the interface functions in class SharedMemoryManager to get to the objects 

in shared memory. 
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Figure Chapter 3 .3 SMOS Major Class Diagram  

 

In class SharedMemoryManager, the attribute shmMainSegment/SharedHeap contains the 

actual shared memory segment that is used for persistent object storage as well as a 

memory allocator for object storage allocation/deallocation within this segment, the 

attribute shmSchemaSegment8 stores database schema such as persistent object type 

information, the attribute shmNameSegment mapps each user defined object name to the 

object’s unique identifier (OID), and the attribute shmUtilitySegment is used for supporting 

various storage and transaction management.  

 

The class PersistentObject is very special. Its attribute objectData stores the user object, and 

because it is a region of storage that occupies some contiguous bytes, it is independent of 
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the object model being used by the OODBMS. Although the class PersistentObject is not 

itself a system component class, the data carried in its attribute header/ObjectHeader 

provides important supports for storage and transaction management (detailed in Chapter 

4). 

                                                                                                                                                                             
8 A single attribute alone indicates that the attribute is of primitive type or is a pointer to a primitive type. 
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Chapter 4  

THE IMPLEMENTATION 
 

 

 

In this chapter we will describe the implementation of SMOS based on the design 

presented in Chapter 3. However, to make SMOS fully functional, we need to integrate 

SMOS into an existing OODBMS. In the following sections, we first introduce Open 

OODB, the hosting OODBMS for SMOS, and then describe the implementation of 

SMOS in Open OODB. 

 

  

 4.1 Open OODB 

 4.1.1 An Overview 
 

The Texas Instruments Open OODB Project was sponsored by the Advanced Research 

Projects Agency (ARPA) and was managed by the US Army Communications-

Electronics Command (CECOM). It was an effort to develop an architecture framework 

(Figure Chapter 4 .1) in which database functionalities can be easily tailored to meet 

application requirements. The fundamental characteristics of the Open OODB 

architecture is its high degree of modularity; important database functionalities, such as 

persistent storage management, transaction management, and query processing, are 

designed and implemented as independent system modules. In addition, the interfaces of 

these modules are also made available to the users, making it possible for application 

developers to add or remove modules for different applications. Because of such 
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openness, modularity and availability9, we have chosen Open OODB to serve as the 

testbed for SMOS in this thesis research.  

  

 4.1.2 Architecture 
 

Because extensibility is the focus of  the Open OODB Project; it requires that database 

functionalities can be tailored easily for different applications. Such requirement led to 

the Open OODB modular architecture (Figure Chapter 4 .1). 
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Application

API
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Distribution
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Change
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Query
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Meta Architecture Support (Sentries)
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Figure Chapter 4 .1 Open OODB Architecture 

 

Among the modules in Open OODB, some are essential and some are optional to a 

particular system configuration. The essential modules, called meta architecture support 

                                                           
9 The University of Rhode Island was one of the 20 test sites of Open OODB and has access to Open 

OODB full source code. 
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modules, provide common services needed by other modules and therefore must be 

present if any of the supported modules is present; these modules include Address Space 

Manager, Communication, Translation, and Data Dictionary. The optional modules, 

called extender modules, provide services that may or may not be needed in a particular 

application and therefore must be independent to each other; these modules include 

Persistence, Transaction, Distribution, Change, Indexing, Query, etc. With such modular 

partitioning of database functionalities, Open OODB can be configured in various ways 

depending on the application requirements. On one extreme end, if none of the optional 

functionalities are needed, both extender and support modules can be excluded, this 

makes Open OODB simply a regular C++; on the other extreme end, if all of the optional 

functionalities are needed, every module has to be included, this makes Open OODB a 

full featured and thus heavy weight OODBMS. In between the two end, many 

configurations are available.  

 

Because Open OODB is closely coupled with C++, the extender modules are actually 

language extensions. For example, the persistence module extends C++ to support 

persistent objects. The detection of the need for extension is a service provided by the 

meta architecture support modules. For each extender module, Open OODB provides a 

sentry in the meta architecture support modules to detect the corresponding extension 

event. Once detected, the event will be trapped and its handle will be passed to the 

extender module by the sentry. 

 
The above modular design of Open OODB makes it possible for SMOS to replace the 

address space manager in Open OODB, a modified version of  EXODUS. In the next 

section, we will describe how SMOS is implemented and integrated into Open OODB. 
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 4.2 SMOS Implementation 

The major class hierarchy for Open OODB address space management (ASM) is shown 

in Figure Chapter 4 .2. The class OODB is the database interface class, and exactly one 

instance of this class can be instanciated in each application process10. Because instances 

of module classes are members of class OODB, an application can seamlessly access a 

database as soon as it instanciates the class OODB:  

 
 class OODB { 
 private: 
 ASM_Client   * asm_mgr; 
   Trans_Mgr   * trans_mgr; 
   Transaction   * current_trans; 
   LASM    * lasm_mgr; 
   TYPE_MGR   * type_mgr; 
   NAME_MGR   * name_mgr; 
   PERSIST_MGR  * persist_mgr; 
   XTRANSLATE_MGR  * xtranslate_mgr; 
 ... 
 } 

OODB

ASM_Client

Exodus

 

Figure Chapter 4 .2 Open OODB ASM Class Hierarchy 

 

                                                           
10 We consider this as a limitation in Open OODB, because an instance of class OODB is initialized with 

exactly one database, therefore it only allows an application to access one database at a time. 
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To make Open OODB work with SMOS, we replaced class Exodus with our class 

SharedMemoryManager (Figure Chapter 3 .3) and reimplemented class ASM_Client without 

changing its interfaces (the new class ASM_Client is actually a form of our class 

AddressSpaceManager). The four shared memory segments (shmMainSegment, 

shmSchemaSegment, shmNameSegment, and shmUtilitySegment) in class 

SharedMemoryManager are installed by a database management utility during database 

initialization and are attached to the application processes after instanciating the class 

OODB (remember that class SharedMemoryManager is now a member of class OODB). To 

demonstrate the details of this integration, in the following sections we will have a closer 

look of the implementation of persistent object addressing and transaction management 

with respect to Open OODB.  

  

 4.2.1 Persistent Object Addressing 
 

The shared memory segment shmMainSegment/SharedHeap in class SharedMemoryManager 

provides the persistent address space for SMOS. The underlying memory allocator is 

based on a binary buddy system scheme (Kruth, 1973), and its implementation was 

obtained from work done by John Black in the Real-Time Research Group at the 

University of Rhode Island.  

 

To access a persistent object, we first need to obtain its address in the main store using its 

unique object identifier (OID); the mapping between an OID and address is kept in an 

persistent index (objectLocationIndex/SharedHeap as shown in Figure Chapter 3 .3). The 

well-known main memory database index study in (Lehman, 1986) demonstrates that 

chained bucket hashing , though has relatively high storage costs, has the fastest 

execution time compared with array, AVL tree, B tree, T tree, extendible hashing, and 

linear hashing. In SMOS, because the size of the shared memory segment must be pre-

fixed11, this in turn requires a fixed size index table, therefore the high storage cost is 

unavoidable independent of the kind of index being used. In addition, the execution time 

                                                           
11 There is no support for dynamically changing shared memory size in System V. 
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(including insert, search, scan, and delete) of the hashing is constant independent of the 

size of the index; this is particularly important for SMOS, because SMOS intends to 

provide persistent object storage for real-time applications. Based on the above facts, we 

decided to implement the index with a chained bucket hashing. However, as we do not 

allow dynamic allocating space for collided entry, the regular chained bucket hashing is 

modified so that free entries in the index are used for collisions (Figure Chapter 4 .3). 

 

 

x

x’’

x’

collided insertion

collided insertion

 

 

Figure Chapter 4 .3 Index Structure (x’ and x’’ indicates chained entry) 

 

 

Based on the analysis in Chapter 3,  after we obtained the persistent object address, we 

can provide two choices for addressing, they are indirect addressing and direct 

addressing. The particular addressing method for an persistent object is determined by the 

users through the way they create this object, and this information is kept in an one bit 

field (addressingMethod) in the meta data as shown below: 

 

 class PersistentObject { 
 private: 
   ObjectHeader  * header; 
   ... 
 }; 
 
  
 class ObjectHeader { 
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 private: 
   MetaData *  metaData; 
   OID   oid; 
   int  objectSize; 
   ... 
 }; 
 
 class MetaData { 
 private: 
   BIT lockType:2; 
   BIT transactionID:16 
   BIT priority:8; 
   BIT addressingMethod:1 
   ... 
 }; 
 

In our implementation we also provide facilities for the users to change the addressing 

method after a persistent object is created or to force an addressing method in a 

transaction no matter what the default method is; therefore, the same persistent object can 

be accessed differently according to application requirements. In the following sections 

we provide some more information about the implementation of the two addressing 

schemes. 

 

 

  4.2.1.1 Indirect Addressing 
 

Indirect addressing is a conventional method, it provides safeguard against various 

failures. In our implementation, a copy of the persistent object is made in the transient 

address space for the application to work on, and it is copied back to the persistent 

address during commit time. In Open OODB any transient object can become persistent 

by calling a common member function that is added by the Open OODB preprocessor. 

During commit, the object header (header/ObjectHeader) is composed by SMOS and 

added to the object data potion, they are then copied together as a whole to the main 

store. In the object meta data the default value for addressingMethod marks indirect 

addressing; therefore, when this object is later accessed, the addressingMethod field will 

lead to indirect addressing again. As we mentioned earlier, the users can also skip 
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checking addressingMethod and force a particular addressing method. In either cases, if 

indirect addressing is to be used, we will copy objectSize bytes of shared memory content 

from the persistent object address to  a local address; the users should make sure that this 

local address is a valid address for an transient object with the same type. 

 

 

  4.2.1.2 Direct Addressing 

 

The direct addressing approach is considered controversial and has not been reported in 

any literature. The basic idea is to allow an application to directly operate on a persistent 

object without making a copy. Clearly, this approach has the greatest performance 

advantages because the data is accessed and updated at memory speed. However, for the 

same reason, traditional recovery is impossible in this approach. As a result, the state of 

the database cannot be guaranteed to be valid if the transaction aborts or failure occurs; 

therefore, such direct addressing is only useful for specific applications such as those 

managing high speed  real-time data. In these real-time applications, data may not be able 

to afford recovery because the time used for recovering may be too long compared to the 

temporal constraint; therefore, recovered data may have become outdated and useless. 

Instead of recovering the data, we can simply obtain the data from its source which has 

the most updated information. 

 

As described earlier, direct addressing can be forced; however such forced direct 

addressing is only valid on an existing persistent object. To directly address new 

persistent objects, we provide an overloaded new operator: 

 

 void * operator new(size_t sz, OODB * oodb, char * name); 

 

Handles of all the database facilities are passed with oodb/OODB to the implementation of 

this overloaded new operator. The parameter name is a user defined name for the object, it 

is mapped to an unique OID and can be used to identify the object at user level. Objects 

created with this new operator resides directly in the main store. Because of this, any 
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changes made to them are persistent and irreversible, therefore, direct addressing should 

be used with great caution. Objects created with this overloaded new operator also have 

their addressingMethod field marked for direct addressing. As a result, the next time these 

objects are accessed, their persistent addresses are directly used for addressing unless a 

indirect addressing is forced. Again the users have to make sure the persistent addresses 

are cast to objects with correct types. 

 

 4.2.2 Transaction Management 
 

Because Open OODB directly uses transaction management that comes with Exodus, we 

have to provide a new transaction manager after removing Exodus from Open OODB. To 

provide more concurrent access which is very important for real-time applications, we 

used object level locking, a finer locking granularity compared with  page-level locking 

in Open OODB/Exodus. Although it has been reported that page-level locking has better 

performance(Carey, 1994), we realize that such argument was based on the fact that page 

level locking has less communication overhead between servers and clients. In SMOS, 

because of its special architecture, the communication has been eliminated (Chapter 3); 

therefore, choosing object-level locking will not incur any performance degradation in 

SMOS. 

  
Our current implementation of locking uses a strict two-phase exclusive locking (2PL) 

protocol. That is, locks can be obtained any time before a transaction commits but can 

only be released during or after commit time. The lock is held in a 2 bit field (lockType) in 

the meta data of the object being accessed. In the mean time, we also store transaction ID 

and priority in the meta data; these information will be used to support preventing 

priority inversion and detecting deadlocks as described below.  

  

 4.2.2.1 Preventing Priority Inversion 
 



 33

The problem with two-phase locking in a real-time transaction is the possibility of 

priority inversion. A priority inversion occurs when a higher priority transaction is 

requesting a conflicting lock that is held by a lower priority transaction. Because we use 

exclusive locking, any lock held by a lower priority transaction will block a higher 

priority transaction. There are basically two protocols for preventing such priority 

inversion, Priority Abort and Priority Inheritance12. The priority abort method aborts the 

blocking low priority transaction; whereas the priority inheritance method lets the 

blocking low priority inheritance the priority of the blocked high priority transaction. 

Because there are conflicting reports on which protocol performs better (Abbott, 1988; 

Abbott, 1989; and Huang, 1991), we implemented both protocols in SMOS and provide 

an option for the users to choose during application compile time. Our implementation of 

priority abort protocol also raises an exception when aborting a higher priority 

transaction; the application can use this exception to restart the transaction if needed. 

 

  4.2.2.2 Detecting Deadlock 
 

To address possible deadlocks in two-phase locking, we implemented a deadlock detector 

in SMOS. Our decision to use a deadlock detection scheme instead of a deadlock 

prevention scheme is based on the fact that we have a fine locking granularity which 

lessens the interference among transactions when a limited number of objects are 

accessed. The deadlock detector is implemented by storing a transaction wait-for graph 

in the shared memory utility segment (shmUtilitySegment) and checking if there is a cycle 

is formed in the graph (Figure Chapter 4 .4). 

 

                                                           
12 There are other locking based protocols, such as Priority Ceiling, that extends Priority Inheritance. 
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Figure Chapter 4 .4 A Deadlock Transaction Wait-For Graph 

 

 

In Figure Chapter 4 .4, transaction Ta is waiting for Tb, Tb is waiting for Tc, and Tc is 

waiting for Ta, forming a waiting cycle and no one can proceed. Due to the same reason 

as our index implementation, we choose to use a pure array based representation of the 

wait-for graph.  

Our initial implementation (Figure Chapter 4 .5) includes a chained bucket hash table and 

a two dimension square array. The hash table is very similar to the one used in the index 

structure, a bucket keeps the ID (the key) and priority of current active transactions, and 

is represented as T(id, p) in Figure Chapter 4 .5. The square array is an adjacency matrix 

representation of the wait-for graph, its subscripts correspond to the index of the hash 

table. The array contains Boolean elements, a true value in element [i][j] indicates that the 

transaction whose position is i in the hash table is waiting for the transaction whose 

position is j to release a lock. The class specification of the graph is shown below: 

 

  
 Class Bucket { 
 private: 
          int transactionID; 
          int  priority; 
  int chainedBucketEntry; 
                           BOOL isDeadlockVictim; 
  ... 
 }; 
 
 
 class WaitForGraph { 
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 private: 
          Bucket   index[DIMENSION]; 
          BOOL  table[DIMENSION][DIMENSION]; 
          int   transactionCount; 
          int   nextFreeChainningEntry; 
          int   deadlockCheckingInterval; 
                           int    blockingCount; 
                           BOOL threading; 
  ... 
 }; 
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Figure Chapter 4 .5 Implementation of Transaction Wait-for Graph 

 

Figure Chapter 4 .5 demonstrates the representation of the wait-for graph in Figure 

Chapter 4 .4. The checking for transaction wait-for cycles involves traverse the edges in 

the graph, and can be implemented with a variant of depth-first search algorithm that was 

discovered by Tarjan (Tarjan, 1972). Because a transaction can only wait for exactly one 

other transaction, the above implementation of the wait-for graph can be optimized by 

replacing the adjacency matrix with a linked list. In our implementation, we used a array-

based representation of the linked list and packed it into the hash table: 

 

 Class Bucket { 
 private: 
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         int  transactionID; 
         int   priority; 
         int   chainedBucketEntry; 
         Bucket  *  transactionBeingWaited; 
 BOOL  isDeadlockVictim; 
  ... 
 }; 
 
 class WaitForGraph { 
 private: 
         Bucket   index[DIMENSION]; 
 int    transactionCount; 
         int    nextFreeChainningEntry; 
         int    deadLockCheckingInterval; 
              int     blockingCount; 
              BOOL  threading; 
  ... 
 }; 
 

In this implementation, the checking procedure simply travels along the linked list; a 

deadlock is found if a transaction/bucket is visited twice. 

 

We also provide two options for the users to set the checking policies during application 

compile time. In the first option (Figure Chapter 4 .6a), checking is done at the beginning 

of every blocking when there are more than one blocking(blockingCount). This approach 

has the advantage of detecting a deadlock as soon as it is formed, but it can be inefficient 

if the rate of blocking is very high or blockings occur very close in time to each, because 

not every blocking forms a deadlock. However, if there is no blocking it will never check 

for deadlock; therefore, it is the best choice if we know that limited blocking can occur. 

In the second option (Figure Chapter 4 .6b), checking is done after more than one 

blocking have occurred for a user defined period of time. This approach performs better 

when the blocking rate is high and the checking interval is properly set. However, unlike 

the first option, it cannot promptly detect a deadlock unless the interval is set very short. 

Unfortunately, the shorter the interval the more it will behave like the first option. For the 

above reasons, choosing the best approach is very difficult unless we have a better 

understanding of the application behavior.  
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Figure Chapter 4 .6 Deadlock Checking Options 

 

Under either approach, when a cycle is found in the wait-for graph, our policy is to abort 

the transaction that has the lowest priority. In our implementation, we provide two 

methods to check for deadlock. In the first method, we start the checking procedure in a 

new thread13.  Upon detecting a cycle, the new thread sends a signal to the process whose 

transaction has the lowest priority on the cycle14. When this deadlock victim process 

catches the signal it aborts the transaction and throws an exception. The second method is 

shared memory based, a blocked transaction will watch for the isDeadlockVictim field in its 

wait-for graph entry and raises the same exception if this field is true. In this method, the 

deadlock checking procedure is initiated from a transaction main thread. If a deadlock is 

found, instead of sending a signal, the main thread tags the isDeadlockVictim field of the 

                                                           
13 We use POSIX1.c threads through out the implementation. 
14 The thread knows where to send the signal because we uses process ID to represent transaction ID (Open 

OODB only allows sequential transactions). 
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deadlock victim entry in the wait-for graph. In either method, various decisions can be 

made by the user if the exception is caught, including restart the aborted transaction 

immediately, reschedule the transactions,  or simply terminate the application process. 

 

 

  4.2.3 Extended Persistency and Recovery 
 

An object is persistent in SMOS main store as long as the kernel is running. However, if 

the kernel panics, a physical device fails, or power recycles, the main store has to be 

restored when the kernel re-starts up; otherwise, object persistency is only limited to the 

lifetime of the kernel. To extend object persistency, we provide a backing store as we 

described in Chapter 3. We implemented the backing store on fixed disk as an 

asynchronous mirror of the main store. This backing store is maintained by a daemon 

which is started by the same database management utility that installs the main store. The 

daemon also attaches the shared memory utility segment and periodically checks for the 

active transaction count (transactionCount in class WaitForGraph). If there is no active 

transactions, the daemon starts copying the main store to a temporary holding area; if a 

new transaction starts before it finishes15, it will discard this temporary copy, otherwise, 

the temporary copy is renamed to the name of the backing store. 

 

The major advantage of such an approach is that recovery never competes with 

transactions for system resources. Because there is no log for the main store, a transaction 

does not need to wait to finish writing its data on a disk based log file before it commits, 

performance is greatly improved. However, this advantage sometimes is also a 

disadvantage, because it creates two holes in the recovery. The fist one is when failure 

occurs after a transaction commits but before all the data has been moved to the main 

store. In this case a commit is not actually made. In another case, if we delay the commit 

until after the data is moved to main store, the state of the database may be inconsistent if 

failure occurs during moving the data. The second hole is when failure, which can cause 

                                                           
15 To be precise, that is when the transaction count becomes none zero in the next check. 
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kernel restart, occurs after a successfully commit but before the backing store is updated. 

In this case the update of the main store after the last mirroring is lost. 

 

Because our target user of SMOS are real-time applications that are dealing with high 

speed data with time constraint, a fully featured recovery is not necessary and can only 

degrade the system performance. Despite of this, we still need to carefully document the 

recovery feature of SMOS. 

 

 

 4.2.4 A Process Diagram 
 

To summarize this chapter, a process diagram is presented in Figure Chapter 4 .7 to 

demonstrate how SMOS works within Open OODB.  

 

Before SMOS can be used, the system has to be initialized. This initialization is done by 

running a utility program with root UID. The root UID is required for locking the main 

store and the other shared memory segments in the main memory (preventing paging) as 

well as  for setting protection mode to prevent unauthorized access16. The utility process 

maps and locks the backing store, type table, and name table in the memory, in addition it 

also creates a fresh utility segment17 which will be used for supporting various database 

management. Before this utility process exits, it creates a daemon process that is 

responsible for mirroring the main store to the backing store. An application can start to 

use Open OODB/SMOS after the utility process is successfully returned. Because Open 

OODB seamlessly extends C++, any application written in C++ can be easily modified to 

use SMOS. To do so, as shown in Figure Chapter 4 .7, an application only needs to 

instanciate the class OODB, and the rest happens behind the scene. The conditional 

                                                           
16 Further security is archived by using a password protection scheme on instanciating the OODB interface 

class, the door to the main store. Finer-grained protection, such as at object level, is too costly, therefore, 
we eliminated its implementation. 

17 The utility segment current only contains transaction wait-for graph, but it can also keep other 
information when additional utilities are added. 
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thread, though branches out from the application process, it is set off automatically to 

check for possible deadlocks as we described earlier. 
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Figure Chapter 4 .7 SMOS Process Diagram
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Chapter 5  

THE PERFORMANCE EVALUATION 
 

 

 5.1 Overview 
 

In this chapter we describe the timing experiments and present the test results. For 

comparison, we attempted all the tests on Open OODB/SMOS and Open OODB/Exodus 

in parallel; the tests include raw performance measurement with concurrency control 

disabled and scalability measurement under various controlled contentions. 

 

The platform used for the tests is a Sun SPARC-based workstation running Solaris 2.5. 

Table Chapter 5 .1 lists some of the hardware and kernel configurations. 

 

Processor Speed 100 MHz 

Memory Size 64 Mb 
 

shminfo_shmmax 4194304 

shminfo_shmseg 16 

  

Table Chapter 5 .1 Test Platform Hardware Configurations 

To eliminate fragmentation, fresh partitions are used when testing against 

OpenOODB/Exodus, whereas reinitialized shared memory segments are used when 

testing against OpenOODB/SMOS. The OS of the workstation was brought down in 
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single user mode while performing the tests. We also stopped all other unnecessary 

system daemons that may preempt our tests. In addition, all the tests are launched with 

the same priority. 

 

 5.2 Raw Performance Tests 
  
 5.2.1 Test Metrics 
 
In this experiment, our target test metric is the access speed of persistent object and the 

transaction throughput (number of transactions per unit time). For comparison purposes, 

we idealized the test conditions by introducing only one variable, the size of the object. In 

addition, we disabled concurrent transactions by launching only one transaction at a time. 

Our test suite includes 5 individual tests. The first test measures the time used in setting 

up the communications between the application and the OpenOODB system; because it is 

the time used to instanciate the OODB class which coordinates various policy managers, 

the time snapshots were taken just before and after the instanciation of OODB class. The 

second test measures time used by an empty transaction, this will provide information 

about the overhead in setting up a transaction. The remaining 3 tests use the same test 

code to measure the differences in persistent object access speed and transaction 

throughput between OpenOODB/Exodus and OpenOODB/SMOS (direct and indirect 

addressing); and as shown below, only one persistent object and two operations are 

involved in a transaction: 

 
begin transaction 

fetch object 
touch object 

commit or abort transaction 
 

Throughout the tests, each single test case was repeated 100 times to take the average. 

The reliability of the tests is verified by some simple statistical analysis, such as standard 

deviation and confidence interval (Appendix B).  

 5.2.2 Results 
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In the first test, the mean time used to instanciate the class OODB is 0.475251 seconds in 

OpenOODB/Exodus and 0.015363 seconds in OpenOODB/SMOS (Appendix B.1). 

Because no persistent addressing operations are involved, the significant performance 

advantage comes from a single source,  the elimination of the server and client 

communication overhead.  

 

In the second test, the mean time used in an empty committed transaction is 0.042918 

seconds in OpenOODB/Exodus and 0.006079 seconds in OpenOODB/SMOS; for an 

empty aborted transaction the time is cut down to 0.021429 seconds and 0.004132 

seconds, respectively (Appendix B.2). Again, the performance advantage in 

OpenOODB/SMOS was obtained only from the elimination of client and server 

communication overhead.  

 

The data from the next three tests is listed in Appendix B-3 and is plotted in Figure 

Chapter 5 .1; the result demonstrates that the transaction time used by OpenOODB/SMOS 

is close to one order of magnitude less than that of in OpenOODB/Exodus, and the direct 

addressing scheme also performs better than the indirect addressing scheme. Based on the 

data collected, we also calculated the transaction throughput (Table Chapter 3 .1). In these 

tests, because persistent addressing operations are involved, the performance gain in 

OpenOODB/SMOS is from a combination of elimination of communication overhead 

and object store main memory residency. Because the tests only allow one persistent 

addressing operation (object fetching) in each transaction, we can expect a larger 

performance difference when there are more than one persistent objects are fetched in a 

transaction. 

 
 

 OpenOODB/Exodus OpenOODB/SMOS 
(indirect addressing) 

OpenOODB/SMOS 
(direct addressing) 

transactions/second 18-21 63-116 137-148 

Table Chapter 5 .2 Comparison of Calculated Transaction Throughput 
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Figure Chapter 5 .1 Raw Performance Test Results 

 

 5.3 Scalability Tests 
 
 5.3.1 Test Metrics 
 
To test how the addressing scheme may affect scalability under various contentions we 

designed another test. In this test the scalability metric is measured by the rate of 

transaction abort that is caused by deadlocks, a higher rate of transaction abort represents 

a worse scalability. The contention of each of these tests is controlled by specifying the 

number of concurrent transactions, the number of objects in the object store for which a 

transaction can randomly access,  and the time interval between two consecutive 

persistent object accessed in a transaction. A higher contention environment is 

represented by more concurrent transactions, more objects accessed in a transaction, and 

longer transaction duration. Unfortunately, because OpenOODB/Exodus (v1.0)  fails 

when two or more transactions try to mount the storage group at the same time, we could 
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not apply the same test to it for comparison. Therefore, this test only compares the direct 

and indirect addressing scheme of OpenOODB/SMOS. 

 

 5.3.2 Results 
 

There are a total of 550 (5 x 10 x 11) test cases in the test. Each has a different 

combination of the control factors we mentioned earlier: (1) the number of concurrent 

transactions range from 2 to 10 with an increment of 2, (2) the number of objects for 

random access in a transaction range from 5 to 50 with an increment of 5, and (3) the 

time interval between two consecutive persistent object accesses ranges from 0 to 50 

milliseconds with an increment of 5 milliseconds. The same test cases are applied to both 

indirect addressing and direct addressing schemes for comparison, and the complete data 

is listed in Appendix B.4. For easy interpretation, we projected the 3-D data in Appendix 

B.4 separately on each of the control factors and plotted them in Figure Chapter 5 .2.  

 

In each of the diagrams shown in  Figure Chapter 5 .2, the rate of accumulated 

transaction aborts covers the full variation range of the other two control factors. Overall, 

we observed a 6% decrease in transaction abort rates in the direct addressing scheme 

compared to the indirect addressing scheme. This increased scalability is due to the 

shortened lock holding time under the direct addressing scheme, because improved 

persistent object access speed can reduce transaction time as demonstrated in Section 5.2. 

However, we also realized that the advantage of direct addressing was not fully expressed 

in this test because of the limitation of our concurrency control protocol (under a strict 

two-phase locking protocol, even though the lock on an object is no longer necessary 

after it has be accessed, we can only release the lock after commit time; if waiting for the 

release of this lock means a deadlock, no matter how fast this object is addressed, this 

deadlock cannot be avoided if commit comes after the waiting). 
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Figure Chapter 5 .2 Scalability Test Results 
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Chapter 6  

CONCLUSION 
 

 

In this thesis research we have explored several ways to satisfy the performance 

requirement of a high speed real-time database application. Our approaches have been 

demonstrated in the design and implementation of a high-performance object store, some 

of them are controversial and have not been found in any literature. In this chapter, we 

will summarize what we have achieved in this thesis project, describe our research 

contributions,  and project our future work. 

 

 6.1 Thesis Summary 
 

In Chapter 3, we laid out a set of functional and system requirements (Table Chapter 3 .1 

and Table Chapter 3 .2) for SMOS. Our design and implementation presented in Chapter 3 

and 4 have demonstrated that these requirements have been fulfilled: 

 
Functional Requirements 

Object Model Independency: We managed to keep SMOS from being tied to any 

particular object model. Other than providing persistent object storage service, SMOS 

does not assume any other responsibilities that may introduce model dependency. 

Multi-Level Object Persistency: We maintained two persistent levels in SMOS; the main 

store is memory-resident in order to provide greater performance, the backing store is 

disk-based and supports extended persistency beyond the main memory. 
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Guaranteed Persistent Object Access Time: We were able to bound the time used to 

store or retrieve a persistent object by utilizing the memory-resident nature as well as 

hash-based algorithms; the former eliminates I/O blocking uncertainties and the later 

delivers constant operation time. 

Adjustable System Performance: We provided two addressing schemes which can be 

chosen at run-time; because these two schemes have different functional and performance 

emphasis, they can be used to dynamically adjust system performance. In addition, we 

can also turn on and off  concurrency control in SMOS for the same purpose. 

Concurrent Persistent Object Access: We provided each persistent object a metadata in 

which lock as well as other useful information are kept; such object level locking enables 

controlled concurrent access to an object as well as increased number of concurrent 

transactions.  

 

System Requirements 

Performance: We satisfied the performance requirement through the design of a client-

only architecture, the implementation of a direct addressing scheme, and the trade-off of 

some of the traditional database features. 

Portability, Reusability, Extendibility, and Flexibility: We avoided making any platform 

dependent calls to support portability; we implemented SMOS in an object-oriented 

fashion to support reusability and extendibility; and we provided flexible configurations 

for addressing, concurrency control, and recovery.  

 

The performance evaluation presented in Chapter 5 further demonstrated that we have 

achieved the goal of this thesis project and that the measures used to achieve our goal are 

indeed very effective. By replacing Exodus with SMOS in OpenOODB, we observed a 

more than 30 times higher performance in setting up the communications between the 

application and the OpenOODB system (Appendix B.1), and about an 8 times higher 

transaction throughput with direct addressing in the worst case. 
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 6.1 Research Contribution 
 

Our main research contribution in this project is the actual implementation of a high-

performance main memory resident object store. This object store is in fully  working 

order and can be easily configured to satisfy different application requirements. Unlike 

previous database systems which are almost universally based on a client-server 

architecture, our object store features an unique client-only architecture; this enables us to 

completely eliminate the communication overhead, one of the major sources of 

performance barrier, between the server and client. Therefore, this unique client-only 

architecture design is another research contribution in this thesis. In addition, we also 

experimented with a new persistent object addressing scheme which allows applications 

to operate directly on a persistent object. By trading off recoverability, this approach 

unifies persistent address space with the program transient address space and thus 

eliminates object moving between the database cache and persistent store, further 

improving the performance level. 

  

 6.2 Future Work 
 

As revealed by our test, in a high contention environment, though a high-performance 

addressing scheme can help to improve the scalability, transaction management seems 

even more important. Because of the strict two-phase locking technique used in our 

implementation, locks are often held longer than necessary; as a result the possibility of 

deadlocks is relatively high. One possible improvement is to reduce the number of 

persistent objects accessed by a single transaction. In our test, when only one persistent 

object access is allowed in a transaction, no transaction abort was found in the same test 

ranges (Figure Chapter 5 .2). However, because this approach requires additional 

transactions to complete the same amount of persistent object access, performance can be 

affected because of the overhead involved in setting up the transaction. Further, this 

approach imposes restrictions at the application level and still cannot totally eliminate 
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deadlocks. Therefore, the best solution is to find a concurrency control protocol which 

can is deadlock-free. Parallel to this thesis research, the priority ceiling protocol is being 

investigated by Michael Squadrito in the Real-Time Research Group at the University of 

Rhode Island (Squadrito, 1996). This protocol has the advantage of eliminating deadlocks 

and bounding the blocking time of high priority transactions to no more than one 

transaction, and can be a candidate for our future concurrency control protocol. 

 

The current design and implementation limits our object store to a standalone 

environment. This limitation is because we intend to eliminate the network overhead. 

However, a database application often needs to access an object store that resides on a 

different workstation that is possibly running a different operating system. Supporting 

such networked access and heterogeneous environments is a challenge because it may 

impact our basic design structure. As a continued study, a research project has been 

proposed in the Real-Time Research Group at the University of Rhode Island to 

investigate possible solutions using Common Object Request Broker Architecture 

(CORBA). 

 

Our performance test suite did not include a pointer traverse timing test. It has been our 

desire to implement an OO7 benchmark test in this thesis project, because doing so 

would enable us to compare the performance of OpenOODB/SMOS with several 

commercial OODBMS. Pointer traverse is tested extensively in OO7 by using object 

relationships. However, because OpenOODB directly uses the same C++ object model 

for its database object model, we could not implement OO7 without extending the object 

model to support object relationships. We attempted such extension with limited time, 

and found it is a rather complex task that is beyond the scope of this thesis project. 
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  Appendix A 

BOOCH OOD NOTATIONS
18

 

 

class name
attributes

operations()

parameterized
class name

formal
arguments

instantiated
class name

actual
arguments

metaclass name

association

inheritance

has

using

instantiation

A abstract class

S static V

F friend

virtual

Class Icons

Class Relationships

Properties

 

                                                           
18 A complete list can be found in [Booch 94]. 
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 Appendix B 

 Appendix B.1 Class OODB Instanciation Timing Test Results* 
 

Test  
Cases 

# of  
repeats 

mean 
(sec.) 

min. 
(sec.) 

max. 
(sec.) 

st.dev. 
(sec.) 

95% conf. 
(sec.) 

interval 
(sec.) 

C_1_1 100 0.475251 0.472599 0.479016 0.000774 0.475243 0.475258 
C_1_2 100 0.015363 0.015139 0.017152 0.000252 0.015361 0.015364 

  

*
C_1_1: Test with OpenOODB/Exodus 

 

 C_1_2: Test with OpenOODB/SMOS  
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 Appendix B.2 Empty Transaction Timing Test Results* 
 

Test  
Cases 

# of  
repeats 

mean 
(sec.) 

min. 
(sec.) 

max. 
(sec.) 

st.dev. 
(sec.) 

95% conf. 
(sec.) 

interval 
(sec.) 

C_2_1_1 100 0.042918 0.042473 0.044806 0.000347 0.042916 0.042920 
C_2_1_2 100 0.021429 0.021260 0.022129 0.000129 0.021428 0.021430 
C_2_2_1 100 0.006079 0.005888 0.006981 0.000149 0.006078 0.006080 
C_2_2_2 100 0.004132 0.004038 0.004832 0.000109 0.004131 0.004133 

 
*
C_2_1_1: OpenOODB/Exodus Empty Transaction (Committed) Timing Test 

 

 C_2_1_2: OpenOODB/Exodus Empty Transaction (Aborted) Timing Test  

 C_2_2_1: OpenOODB/SMOS Empty Transaction (Committed) Timing Test  

 C_2_2_2: OpenOODB/SMOS Empty Transaction (Aborted) Timing Test  
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Appendix B.3 None Empty Transaction Timing Test Results* 
Test 

Cases 
# of 

repeats 
object 
size 

(bytes) 

mean 
(sec.) 

min. 
(sec.) 

max. 
(sec.) 

st.dev. 
(sec.) 

95 conf. 
(sec.) 

interval 
(sec.) 

C_3_1 100 1 0.046427 0.045999 0.050855 0.000655 0.046423 0.046431 
C_3_1 100 5 0.046338 0.044894 0.047541 0.000311 0.046336 0.046340 
C_3_1 100 10 0.046355 0.044928 0.047191 0.000262 0.046354 0.046357 
C_3_1 100 50 0.047057 0.046135 0.048236 0.000323 0.047055 0.047059 
C_3_1 100 100 0.046871 0.045915 0.048247 0.000453 0.046868 0.046873 
C_3_1 100 200 0.046604 0.046120 0.047386 0.000302 0.046602 0.046606 
C_3_1 100 400 0.046623 0.045383 0.047977 0.000374 0.046621 0.046626 
C_3_1 100 600 0.046643 0.045595 0.047972 0.000322 0.046641 0.046645 
C_3_1 100 800 0.046921 0.045746 0.048689 0.000477 0.046918 0.046924 
C_3_1 100 1000 0.047088 0.046242 0.048102 0.000406 0.047085 0.047090 
C_3_1 100 2000 0.047571 0.046775 0.048536 0.000352 0.047569 0.047573 
C_3_1 100 4000 0.050219 0.049535 0.051714 0.000526 0.050216 0.050223 
C_3_1 100 6000 0.051665 0.050318 0.054974 0.000924 0.051659 0.051671 
C_3_1 100 8000 0.054282 0.052429 0.056354 0.000887 0.054276 0.054287 
C_3_1 100 10000 0.055233 0.051267 0.059902 0.001159 0.055226 0.055240 
C_3_2 100 1 0.023672 0.023184 0.051303 0.002807 0.023655 0.023690 
C_3_2 100 5 0.023683 0.023203 0.045799 0.002254 0.023669 0.023697 
C_3_2 100 10 0.023620 0.023216 0.046498 0.002315 0.023605 0.023634 
C_3_2 100 50 0.023631 0.023214 0.046141 0.002278 0.023616 0.023645 
C_3_2 100 100 0.023703 0.023214 0.046075 0.002311 0.023689 0.023718 
C_3_2 100 200 0.023650 0.023227 0.046462 0.002309 0.023636 0.023665 
C_3_2 100 400 0.023677 0.023263 0.046027 0.002263 0.023663 0.023692 
C_3_2 100 600 0.023714 0.023265 0.046709 0.002328 0.023699 0.023728 
C_3_2 100 800 0.023733 0.023275 0.046366 0.002292 0.023718 0.023747 
C_3_2 100 1000 0.023737 0.023308 0.045807 0.002233 0.023723 0.023751 
C_3_2 100 2000 0.024167 0.023718 0.047723 0.002387 0.024152 0.024182 
C_3_2 100 4000 0.024572 0.024039 0.051805 0.002758 0.024555 0.024590 
C_3_2 100 6000 0.024847 0.024257 0.049981 0.002558 0.024831 0.024864 
C_3_2 100 8000 0.025067 0.024542 0.051786 0.002717 0.025049 0.025084 
C_3_2 100 10000 0.025493 0.024927 0.053242 0.002822 0.025476 0.025511 
C_4_1 100 1 0.008597 0.008143 0.010776 0.000378 0.008595 0.008599 
C_4_1 100 5 0.008785 0.007592 0.009614 0.000251 0.008783 0.008786 
C_4_1 100 10 0.009115 0.007830 0.009670 0.000211 0.009114 0.009117 
C_4_1 100 50 0.009272 0.008136 0.009822 0.000210 0.009271 0.009273 
C_4_1 100 100 0.009540 0.008517 0.010033 0.000217 0.009539 0.009541 
C_4_1 100 200 0.009799 0.008556 0.010348 0.000218 0.009798 0.009801 
C_4_1 100 400 0.010133 0.008875 0.010581 0.000226 0.010131 0.010134 
C_4_1 100 600 0.010374 0.009366 0.010894 0.000213 0.010373 0.010375 
C_4_1 100 800 0.010692 0.009403 0.011109 0.000232 0.010691 0.010693 
C_4_1 100 1000 0.010997 0.009449 0.011467 0.000241 0.010995 0.010998 
C_4_1 100 2000 0.011646 0.010353 0.013549 0.000451 0.011643 0.011649 
C_4_1 100 4000 0.012673 0.010592 0.013486 0.000424 0.012671 0.012676 
C_4_1 100 6000 0.014568 0.012309 0.015726 0.000624 0.014565 0.014572 
C_4_1 100 8000 0.015872 0.014562 0.017344 0.000720 0.015868 0.015877 
C_4_1 100 10000 0.015868 0.014206 0.017781 0.000878 0.015862 0.015873 
C_4_2 100 1 0.005911 0.005562 0.011026 0.000570 0.005908 0.005915 
C_4_2 100 5 0.006084 0.005760 0.007649 0.000259 0.006082 0.006086 
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C_4_2 100 10 0.006357 0.006101 0.007858 0.000196 0.006356 0.006358 
C_4_2 100 50 0.006519 0.006176 0.008087 0.000205 0.006518 0.006521 
C_4_2 100 100 0.006738 0.006483 0.008354 0.000203 0.006737 0.006739 
C_4_2 100 200 0.006963 0.006593 0.008660 0.000230 0.006962 0.006965 
C_4_2 100 400 0.007218 0.006876 0.008771 0.000215 0.007217 0.007220 
C_4_2 100 600 0.007418 0.007004 0.009039 0.000223 0.007416 0.007419 
C_4_2 100 800 0.007698 0.007369 0.009521 0.000243 0.007697 0.007700 
C_4_2 100 1000 0.007892 0.007580 0.009318 0.000197 0.007891 0.007893 
C_4_2 100 2000 0.008274 0.008017 0.009957 0.000223 0.008272 0.008275 
C_4_2 100 4000 0.008782 0.008479 0.010462 0.000229 0.008780 0.008783 
C_4_2 100 6000 0.009228 0.008857 0.011319 0.000305 0.009226 0.009230 
C_4_2 100 8000 0.009736 0.009268 0.011777 0.000307 0.009734 0.009738 
C_4_2 100 10000 0.010102 0.009734 0.012627 0.000396 0.010099 0.010104 
C_5_1 100 1 0.006751 0.006350 0.008994 0.000302 0.006749 0.006753 
C_5_1 100 5 0.007187 0.006807 0.007798 0.000237 0.007186 0.007189 
C_5_1 100 10 0.007212 0.006840 0.008114 0.000276 0.007210 0.007214 
C_5_1 100 50 0.007345 0.007093 0.008073 0.000137 0.007344 0.007346 
C_5_1 100 100 0.007569 0.007246 0.008130 0.000153 0.007568 0.007570 
C_5_1 100 200 0.007772 0.007417 0.008143 0.000125 0.007771 0.007773 
C_5_1 100 400 0.007961 0.007635 0.008517 0.000153 0.007960 0.007962 
C_5_1 100 600 0.008181 0.007875 0.008764 0.000166 0.008180 0.008182 
C_5_1 100 800 0.008363 0.008104 0.008791 0.000136 0.008363 0.008364 
C_5_1 100 1000 0.008566 0.008275 0.009191 0.000142 0.008565 0.008567 
C_5_1 100 2000 0.008826 0.008543 0.009173 0.000152 0.008825 0.008827 
C_5_1 100 4000 0.009054 0.008682 0.009861 0.000145 0.009053 0.009055 
C_5_1 100 6000 0.009294 0.008988 0.009727 0.000153 0.009293 0.009295 
C_5_1 100 8000 0.009523 0.009221 0.010163 0.000155 0.009522 0.009524 
C_5_1 100 10000 0.009716 0.009448 0.010376 0.000164 0.009715 0.009717 
C_5_2 100 1 0.004539 0.004317 0.008910 0.000456 0.004536 0.004542 
C_5_2 100 5 0.004702 0.004533 0.007357 0.000283 0.004701 0.004704 
C_5_2 100 10 0.004902 0.004722 0.007062 0.000235 0.004901 0.004904 
C_5_2 100 50 0.005084 0.004905 0.007389 0.000256 0.005082 0.005085 
C_5_2 100 100 0.005301 0.005130 0.007656 0.000257 0.005300 0.005303 
C_5_2 100 200 0.005479 0.005291 0.007639 0.000233 0.005478 0.005481 
C_5_2 100 400 0.005683 0.005500 0.008136 0.000261 0.005681 0.005684 
C_5_2 100 600 0.005891 0.005701 0.008085 0.000241 0.005889 0.005892 
C_5_2 100 800 0.006087 0.005889 0.008194 0.000238 0.006086 0.006089 
C_5_2 100 1000 0.006282 0.006097 0.008474 0.000240 0.006280 0.006283 
C_5_2 100 2000 0.006479 0.006287 0.008732 0.000241 0.006478 0.006481 
C_5_2 100 4000 0.006677 0.006467 0.009229 0.000274 0.006675 0.006679 
C_5_2 100 6000 0.006884 0.006674 0.009116 0.000244 0.006882 0.006885 
C_5_2 100 8000 0.007077 0.006876 0.009464 0.000256 0.007075 0.007078 
C_5_2 100 10000 0.007287 0.007084 0.009786 0.000267 0.007285 0.007288 

*
C_3_1: OpenOODB/Exodus Transaction (Committed) Timing Test  

 C_3_2: OpenOODB/Exodus Transaction (Aborted) Timing Test   

 C_4_1: OpenOODB/SMOS Indirect Addressing Transaction (Committed) Timing Test 

 C_4_2: OpenOODB/SMOS Indirect Addressing Transaction (Aborted) Timing Test 

 C_5_1: OpenOODB/SMOS direct Addressing Transaction (Committed) Timing Test 

 C_5_2: OpenOODB/SMOS direct Addressing Transaction (Abort) Timing Test 
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Appendix B.4 OpenOODB/SMOS Contention Test Results* 
 

# of # of time # of aborts  # of # of time # of aborts 
objects txn interval I D  objects txn interval I D 

5 2 0 0 0  5 8 45 0 1 
5 2 5 0 0  5 8 50 0 1 
5 2 10 0 0  5 10 0 0 0 
5 2 15 0 0  5 10 5 0 0 
5 2 20 0 0  5 10 10 0 1 
5 2 25 0 0  5 10 15 3 2 
5 2 30 0 0  5 10 20 1 1 
5 2 35 0 0  5 10 25 1 0 
5 2 40 0 0  5 10 30 0 0 
5 2 45 0 0  5 10 35 2 1 
5 2 50 0 0  5 10 40 2 0 
5 4 0 0 0  5 10 45 1 1 
5 4 5 0 0  5 10 50 0 1 
5 4 10 0 0  10 2 0 0 0 
5 4 15 0 0  10 2 5 1 0 
5 4 20 0 0  10 2 10 0 0 
5 4 25 0 0  10 2 15 0 0 
5 4 30 0 0  10 2 20 0 0 
5 4 35 0 0  10 2 25 0 0 
5 4 40 0 0  10 2 30 0 0 
5 4 45 0 0  10 2 35 0 1 
5 4 50 0 0  10 2 40 0 0 
5 6 0 0 0  10 2 45 1 0 
5 6 5 0 0  10 2 50 0 0 
5 6 10 0 0  10 4 0 0 0 
5 6 15 0 0  10 4 5 0 0 
5 6 20 0 0  10 4 10 1 0 
5 6 25 0 0  10 4 15 1 0 
5 6 30 0 0  10 4 20 0 1 
5 6 35 0 0  10 4 25 1 0 
5 6 40 0 0  10 4 30 1 1 
5 6 45 0 0  10 4 35 0 0 
5 6 50 0 0  10 4 40 1 0 
5 8 0 0 0  10 4 45 1 1 
5 8 5 3 0  10 4 50 1 1 
5 8 10 1 0  10 6 0 0 0 
5 8 15 0 0  10 6 5 0 0 
5 8 20 0 0  10 6 10 0 0 
5 8 25 2 1  10 6 15 1 0 
5 8 30 1 0  10 6 20 0 2 
5 8 35 2 1  10 6 25 0 1 
5 8 40 0 1  10 6 30 1 1 
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10 6 35 0 1  15 6 10 0 1 
10 6 40 1 2  15 6 15 0 2 
10 6 45 1 1  15 6 20 0 0 
10 6 50 1 1  15 6 25 1 1 
10 8 0 1 0  15 6 30 0 0 
10 8 5 2 1  15 6 35 1 0 
10 8 10 2 0  15 6 40 2 1 
10 8 15 1 1  15 6 45 0 1 
10 8 20 3 0  15 6 50 1 0 
10 8 25 1 1  15 8 0 0 0 
10 8 30 4 1  15 8 5 2 0 
10 8 35 1 4  15 8 10 3 2 
10 8 40 1 2  15 8 15 4 2 
10 8 45 2 3  15 8 20 1 2 
10 8 50 2 2  15 8 25 3 2 
10 10 0 1 0  15 8 30 5 2 
10 10 5 2 1  15 8 35 2 4 
10 10 10 3 4  15 8 40 4 4 
10 10 15 4 3  15 8 45 5 4 
10 10 20 1 4  15 8 50 2 3 
10 10 25 4 4  15 10 0 0 0 
10 10 30 6 6  15 10 5 4 3 
10 10 35 3 5  15 10 10 4 2 
10 10 40 2 2  15 10 15 4 4 
10 10 45 5 2  15 10 20 4 4 
10 10 50 2 5  15 10 25 3 5 
15 2 0 0 0  15 10 30 3 2 
15 2 5 0 0  15 10 35 4 0 
15 2 10 0 0  15 10 40 4 3 
15 2 15 1 0  15 10 45 4 4 
15 2 20 0 0  15 10 50 3 5 
15 2 25 0 1  20 2 0 0 0 
15 2 30 0 1  20 2 5 1 1 
15 2 35 0 0  20 2 10 0 1 
15 2 40 1 0  20 2 15 0 0 
15 2 45 0 0  20 2 20 0 1 
15 2 50 1 0  20 2 25 1 1 
15 4 0 0 0  20 2 30 1 1 
15 4 5 1 0  20 2 35 1 0 
15 4 10 1 0  20 2 40 1 0 
15 4 15 1 0  20 2 45 1 0 
15 4 20 1 0  20 2 50 1 1 
15 4 25 0 0  20 4 0 0 0 
15 4 30 0 0  20 4 5 2 1 
15 4 35 0 0  20 4 10 3 2 
15 4 40 1 1  20 4 15 1 2 
15 4 45 1 0  20 4 20 1 2 
15 4 50 1 0  20 4 25 2 2 
15 6 0 0 0  20 4 30 2 2 
15 6 5 0 0  20 4 35 3 1 
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20 4 40 3 2  25 4 20 1 2 
20 4 45 2 2  25 4 25 1 1 
20 4 50 3 1  25 4 30 3 2 
20 6 0 0 0  25 4 35 2 1 
20 6 5 3 4  25 4 40 2 2 
20 6 10 3 5  25 4 45 3 2 
20 6 15 3 3  25 4 50 2 2 
20 6 20 5 4  25 6 0 0 0 
20 6 25 5 3  25 6 5 3 5 
20 6 30 4 4  25 6 10 2 1 
20 6 35 4 4  25 6 15 3 2 
20 6 40 3 4  25 6 20 5 2 
20 6 45 5 4  25 6 25 3 4 
20 6 50 5 4  25 6 30 3 2 
20 8 0 2 0  25 6 35 3 4 
20 8 5 6 4  25 6 40 5 5 
20 8 10 4 5  25 6 45 4 4 
20 8 15 6 4  25 6 50 3 3 
20 8 20 4 4  25 8 0 0 0 
20 8 25 5 4  25 8 5 5 5 
20 8 30 4 3  25 8 10 6 5 
20 8 35 4 4  25 8 15 4 6 
20 8 40 4 6  25 8 20 5 5 
20 8 45 4 4  25 8 25 4 5 
20 8 50 5 2  25 8 30 7 6 
20 10 0 0 0  25 8 35 6 6 
20 10 5 6 6  25 8 40 5 6 
20 10 10 6 6  25 8 45 6 5 
20 10 15 6 5  25 8 50 7 6 
20 10 20 6 6  25 10 0 1 0 
20 10 25 5 8  25 10 5 7 5 
20 10 30 7 7  25 10 10 8 6 
20 10 35 7 5  25 10 15 7 8 
20 10 40 5 6  25 10 20 7 7 
20 10 45 5 7  25 10 25 6 7 
20 10 50 7 4  25 10 30 8 8 
25 2 0 0 0  25 10 35 8 6 
25 2 5 0 0  25 10 40 7 5 
25 2 10 0 0  25 10 45 7 7 
25 2 15 0 0  25 10 50 6 6 
25 2 20 0 0  30 2 0 0 0 
25 2 25 0 0  30 2 5 0 0 
25 2 30 1 0  30 2 10 0 0 
25 2 35 0 1  30 2 15 0 0 
25 2 40 0 0  30 2 20 0 0 
25 2 45 0 1  30 2 25 0 0 
25 2 50 0 1  30 2 30 0 0 
25 4 0 0 0  30 2 35 0 0 
25 4 5 2 2  30 2 40 0 0 
25 4 10 2 2  30 2 45 0 0 
25 4 15 1 2  30 2 50 0 0 
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30 4 0 0 0  35 2 35 0 0 
30 4 5 0 0  35 2 40 0 0 
30 4 10 0 0  35 2 45 0 0 
30 4 15 0 0  35 2 50 0 0 
30 4 20 0 0  35 4 0 0 0 
30 4 25 0 0  35 4 5 0 2 
30 4 30 0 0  35 4 10 2 0 
30 4 35 0 0  35 4 15 1 2 
30 4 40 0 0  35 4 20 2 1 
30 4 45 0 0  35 4 25 2 2 
30 4 50 0 0  35 4 30 0 1 
30 6 0 0 0  35 4 35 2 2 
30 6 5 0 0  35 4 40 1 1 
30 6 10 0 0  35 4 45 2 2 
30 6 15 1 0  35 4 50 1 1 
30 6 20 0 0  35 6 0 1 0 
30 6 25 1 1  35 6 5 3 2 
30 6 30 0 0  35 6 10 3 2 
30 6 35 0 0  35 6 15 2 3 
30 6 40 0 0  35 6 20 2 1 
30 6 45 1 0  35 6 25 3 4 
30 6 50 0 0  35 6 30 3 3 
30 8 0 0 0  35 6 35 3 2 
30 8 5 2 1  35 6 40 2 2 
30 8 10 3 4  35 6 45 1 3 
30 8 15 4 3  35 6 50 2 3 
30 8 20 3 3  35 8 0 0 0 
30 8 25 3 2  35 8 5 6 2 
30 8 30 6 2  35 8 10 5 4 
30 8 35 3 3  35 8 15 4 6 
30 8 40 3 3  35 8 20 3 5 
30 8 45 3 5  35 8 25 5 5 
30 8 50 4 2  35 8 30 4 4 
30 10 0 0 0  35 8 35 5 4 
30 10 5 4 5  35 8 40 5 4 
30 10 10 5 6  35 8 45 6 6 
30 10 15 5 7  35 8 50 3 3 
30 10 20 3 4  35 10 0 0 0 
30 10 25 5 6  35 10 5 6 8 
30 10 30 6 6  35 10 10 6 5 
30 10 35 5 6  35 10 15 7 6 
30 10 40 4 5  35 10 20 6 5 
30 10 45 5 5  35 10 25 7 6 
30 10 50 7 6  35 10 30 6 6 
35 2 0 0 0  35 10 35 7 7 
35 2 5 0 0  35 10 40 6 6 
35 2 10 0 0  35 10 45 7 7 
35 2 15 0 0  35 10 50 7 5 
35 2 20 0 0  40 2 0 0 0 
35 2 25 0 0  40 2 5 0 1 
35 2 30 0 0  40 2 10 0 0 
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40 2 15 1 0  40 10 50 8 8 
40 2 20 0 0  45 2 0 0 0 
40 2 25 0 1  45 2 5 0 0 
40 2 30 0 1  45 2 10 1 1 
40 2 35 1 1  45 2 15 1 0 
40 2 40 1 0  45 2 20 1 0 
40 2 45 1 1  45 2 25 1 0 
40 2 50 0 1  45 2 30 1 1 
40 4 0 0 0  45 2 35 1 0 
40 4 5 2 2  45 2 40 1 0 
40 4 10 2 2  45 2 45 0 0 
40 4 15 1 3  45 2 50 0 1 
40 4 20 2 2  45 4 0 0 0 
40 4 25 1 1  45 4 5 3 0 
40 4 30 2 2  45 4 10 3 2 
40 4 35 2 2  45 4 15 1 2 
40 4 40 2 2  45 4 20 2 2 
40 4 45 1 3  45 4 25 2 2 
40 4 50 3 2  45 4 30 2 2 
40 6 0 4 0  45 4 35 3 2 
40 6 5 4 4  45 4 40 3 2 
40 6 10 2 5  45 4 45 2 3 
40 6 15 4 4  45 4 50 3 2 
40 6 20 4 4  45 6 0 0 0 
40 6 25 5 4  45 6 5 5 3 
40 6 30 5 4  45 6 10 4 4 
40 6 35 4 5  45 6 15 4 5 
40 6 40 5 5  45 6 20 4 3 
40 6 45 5 5  45 6 25 5 5 
40 6 50 4 5  45 6 30 5 4 
40 8 0 0 0  45 6 35 4 4 
40 8 5 7 7  45 6 40 4 4 
40 8 10 5 7  45 6 45 4 4 
40 8 15 6 6  45 6 50 4 4 
40 8 20 6 7  45 8 0 6 0 
40 8 25 7 6  45 8 5 6 6 
40 8 30 7 6  45 8 10 6 6 
40 8 35 7 6  45 8 15 7 5 
40 8 40 7 6  45 8 20 7 6 
40 8 45 6 7  45 8 25 5 5 
40 8 50 7 7  45 8 30 5 5 
40 10 0 1 0  45 8 35 6 7 
40 10 5 9 9  45 8 40 7 7 
40 10 10 9 9  45 8 45 6 5 
40 10 15 9 7  45 8 50 6 4 
40 10 20 9 9  45 10 0 3 0 
40 10 25 9 9  45 10 5 9 8 
40 10 30 9 9  45 10 10 9 9 
40 10 35 9 8  45 10 15 9 8 
40 10 40 8 8  45 10 20 7 7 
40 10 45 8 9  45 10 25 9 9 
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45 10 30 8 9  50 6 15 2 2 
45 10 35 8 8  50 6 20 3 4 
45 10 40 7 7  50 6 25 5 3 
45 10 45 8 9  50 6 30 4 3 
45 10 50 9 7  50 6 35 3 4 
50 2 0 0 0  50 6 40 4 5 
50 2 5 0 1  50 6 45 3 4 
50 2 10 0 0  50 6 50 4 3 
50 2 15 0 0  50 8 0 0 0 
50 2 20 1 0  50 8 5 6 6 
50 2 25 0 1  50 8 10 7 5 
50 2 30 0 1  50 8 15 5 5 
50 2 35 0 0  50 8 20 6 5 
50 2 40 0 1  50 8 25 6 7 
50 2 45 0 0  50 8 30 7 6 
50 2 50 0 0  50 8 35 5 5 
50 4 0 0 0  50 8 40 7 6 
50 4 5 1 2  50 8 45 7 5 
50 4 10 2 2  50 8 50 5 6 
50 4 15 1 1  50 10 0 1 0 
50 4 20 1 1  50 10 5 6 8 
50 4 25 1 0  50 10 10 9 7 
50 4 30 1 1  50 10 15 7 8 
50 4 35 1 0  50 10 20 8 6 
50 4 40 1 0  50 10 25 7 8 
50 4 45 2 2  50 10 30 8 8 
50 4 50 1 3  50 10 35 7 6 
50 6 0 0 0  50 10 40 6 7 
50 6 5 4 5  50 10 45 8 7 
50 6 10 3 4  50 10 50 7 8 

 
* # of objects: the total number of objects that are available for transactions to access 
 # of txn: the number of concurrent transactions (these transactions start at exactly the same time) 
 # of aborts: the number of transaction aborts; I denotes indirect addressing scheme; D   
   denotes direct addressing scheme   
 time interval: the time interval between two consecutive persistent objects access in a transaction 
 I:  indirect addressing 
 D:  direct addressing
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