
 1

INTEGRATION FOR REAL-TIME CORBA INTO AN EXISTING

DISTRIBUTED PLANNING APPLICATION

BY
YURUO CHEN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENT FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

 UNIVERSITY OF RHODE ISLAND

 1998

 2

MASTER OF SCIENCE THESIS

OF

Yuruo Chen

APPROVED:

Thesis Committee

Major Professor _________________________________

DEAN OF THE GRADUATE SCHOOL

 UNIVERSITY OF RHODE ISLAND

1998

 3

Abstract

 This thesis presents the migration of a large military planning application to support

the Object Management Group’s IIOP protocol for middleware interoperability. It includes

incorporation of the real-time CORBA system developed by the real-time lab at University

of Rhode Island (URI) to the application.

 This thesis also tested the military planning application running on top of Real-time

operating system. The test indicated that the model developed by real-time lab at URI is

easy to be incorporate into non-real-time system and it also correctly demonstrated the real-

time features of the URI’s RTCORBA system.

 4

 ACKNOWLEDGMENT

 I would like to thank my major professor Victor Fay-Wolfe. His inspiration and

wisdom are invaluable help to my work. I feel fortunate to have such a adviser, a truly

pioneer in real-time distributed system research.

 I would also like to thank gurus of real-time, Mike Squadrito and Dr. Lisa Cingiser

Dipippo. I think I speak for Qingli, Levon and Greg when I say it would have been much

longer, less enjoyable road to incorporate the real-time to JFLEX without their help.

 I want to also thank all my friends who believe in and support me during my study

here.

 Finally, most of all I would like to thank my parents for their support not only during

their stay here, but also for all my life. They are always been there for me, encouraging me

and helping me. I dedicate this thesis to them.

 5

Contents

1. Introduction 1

1.1 Problem Statement………………………………………………………1

1.2 Motivation ………………………………………………………………2

1.3 Objective ………………………………………………………………...3

1.4 Thesis Outline ……………………………………………………………3

2. Related Work and Background 5

2.1 Common Object Request Broker Architecture (CORBA) ……………...5

 2.1.1 CORBA Standard and its Implementation ……………………5

 2.1.2 Internet Inter-ORB Protocol (IIOP) …………………………...8

2.2 Real-time CORBA Model ……………………………………………...10

 2.2.1 Requirement of Real-time System ……………………………11

 2.2.2 Our Real-time CORBA Architecture …………………………12

2.3 Related Work ……………………………………………………………15

3. Model Description of Real-time JFLEX 17

3.1 Structure of JFLEX ……………………………………………………..17

3.2 Structure of Real-time JFLEX …………………………………………..19

 6

4. Implementation 23

4.1 Migration of JFLEX ……………………………………………………23

4.2 Real-time JFLEX Implementation ……………………………………..24

 4.2.1 Server Side Implementation …………………………………..24

 4.2.2 Client Side Implementation …………………………………..26

5. Evaluation 31

5.1 Testbed Construction ……………………………………………………31

5.2 Testing for IIOP for New JFLEX ………………………………………..32

5.3 Testing the Real-time JFLEX …………………………………………...32

 6. Conclusion 38

6.1 Contribution ……………………………………………………………..38

6.2 Limitation and Future Work ……………………………………………38

7. List of Reference 40

8. Bibliography 42

 7

List of Figures

1. Object Request Broker Architecture ………………………………………….6

2. Real-time CORBA ……………………………………………………………13

3. JFLEX Structure ………………………………………………………………18

 8

 9

Chapter 1

Introduction

This thesis presents the migration of one ORB implementation to another for JFLEX

planning software. It also modifies its implementation to support requirements of a real-

time distributed system.

1.1 Problem Statement

Joint Force Level Execution Aid (JFLEX) is a software application developed by Navy

Research Lab at San Diego. It provides a user-friendly method for monitoring the

progress of a plan’s execution. JFLEX depicts a plan being composed of responsible

organizations and subplans (sequences of actions). Each responsible organization is

assigned a subplan for execution. JFLEX distributes the status information for a plan to

each workstation running an authorized JFLEX client over a wide area TCP/IP network.

Each JFLEX station can change and update the status of plan activities. This allows

managers to rapidly get a feeling of how well a plan is succeeding. Obviously JFLEX is

a distributed application.

Distributed object computing is becoming a widely accepted programming

paradigm for applications that require seamless interoperability among heterogeneous

clients and servers. The Object Management Group (OMG), an organization of over 600

 10

distributed software vendors and users, has developed the Common Object Request

Broker Architecture (CORBA) as a standard software specification for such distributed

environments. The CORBA specification includes an Object Request Broker (ORB),

which is middleware that enables the seamless interaction between distributed client

objects and server objects; Object Services, which facilitate standard client/server

interaction with capabilities such as naming, event-based synchronization; and the

Interface Definition Language (IDL), that defines the object interfaces within the

CORBA environment.

There are many ORB implementations in the industrial world, such as NEO from

SUN, ORB PLUS from IBM, Object Broker from DEC, ORBIX from IONA, CORBUS

from BBN. In order to support distributed object computing independent of

implementations of the CORBA standard, the OMG specified a protocol, via which a

client of one ORB can invoke operations on an object in a different ORB. This protocol

is called General Inter-ORB Protocol (GIOP). The OMG defines a specialization of

GIOP that uses TCP/IP as transport layer. This specialization is called Internet Inter-

ORB Protocol (IIOP).

1.2 Motivation

JFLEX is a distributed application that was originally implemented on BBN’s CORBUS

system. It originally did not allow other CORBA systems to run JFLEX, either as server

or client. Since JFLEX stations will be distributed geographically and belong to different

organizations, it is very likely that they have different CORBA compliant ORB

 11

implementation on them. So we should make JFLEX support IIOP because of the

popular TCP/IP in current network.

JFLEX is a military planning application with real-time characteristics: The

situation, process, and condition of a plan or subplan could change at anytime. Any such

kind of change may influence the overall success of a plan. The plan must be updated

and monitored in real time in order to show the plan’s very current status correctly. The

original JFLEX project did not have a way to express and enforce time constraints.

1.3 Objective

The main goal of this research is to make JFLEX support IIOP and real-time features.

The thesis goal involves the migration of an application from the CORBUS ORB to

IONA’s ORBIX ORB. Also it involves implementing URI’s model of Timed Distributed

Method Invocations (TDMI). It will show how well the real-time CORBA developed at

the real-time research lab at URI fits for a large real-time plan applications.

 1.4 Thesis Outline

Chapter 2 introduces the JFLEX project and contains a review of the CORBA standard,

the Internet inter-ORB protocol. It also provides background on the Real-time CORBA

system developed by the real-time lab at University of Rhode Island. Chapter 3 describes

the model of Real-time JFLEX. Chapter 4 describes the migration of JFLEX project, as

 12

well as providing examples demonstrating how to incorporate the real-time control into

the JFLEX software. Chapter 6 presents and analysis of the result of the performance

tests using simulated workload, comparing the result with or without the real-time

support. Chapter 7 explains the contributions and limitations of this thesis, and discusses

future work.

 13

Chapter 2

Related work and Background

This chapter provides background information on the CORBA standard, its components

and its implementation. We also describe how the Internet Inter-ORB protocol is

supported. The Real-time CORBA model developed at University of Rhode Island is

introduced at the end.

2.1 Common Object Request Broker Architecture (CORBA)

This section first presents the overall structure of the CORBA standard and gives a

simple introduction to each of its main components. It then provides the background on

the Internet Inter-ORB protocol.

2.1.1 CORBA Standard and its Implementation

The basic notion behind CORBA is to provide a uniform way for any object to receive

and respond to a request from any requester (client), either another object or even a

traditional nonobject-oriented program. Once such a request is made, the ORB makes

sure that the request is delivered to an appropriate receiving object, no matter where it is

and how it is implemented. To provide all these capabilities, the CORBA specification

[1] defines the architecture of interfaces that may be implemented in different ways by

different vendors. The architecture was specifically designed to separate the concerns of

 14

interfaces and implementations (Figure 1). The main components of the architecture may

be divided into three specific groups: client side, implementation (server) side, and the

ORB core. The client and server sides represent interfaces to the ORB via the IDL.

Figure1: Object Request Broker Technology

As mentioned previously, the purpose of the IDL is to allow the language

independent expression of interfaces, including the complete signatures (name,

parameters and their types, etc.) of methods or functions, and accessible attributes. An

interesting aspect of the IDL is the exception. Exception declarations define a struct-like

data structure with attributes that can be used to pass information about an exception

condition to a server requester. An exception is declared with its name, which is

accessible as a value when the exception is raised, allowing the client to determine

which exception has been received.

 15

The client-side architecture consists of three components:

• The Dynamic Invocation interface (Stub) - mechanism for specifying request at runtime;

• The IDL stub interface – small piece of machine-language code, which is generated

according to IDL interface definitions.

• The ORB service interface – a number of functions that may be accessed directly by

client code (e.g. retrieving a reference to an object)

One aspect of the client-side interface is shared by object implementations: the ORB

services. The other two components on the implementation side are:

• The IDL skeleton interface – is an up-call interface through which the ORB calls the

method skeleton of the implementation, on a request by a client;

• The Object Adapter – is the means by which server implementations access most of the

services provided by the ORB (e.g. generation and interpretation of object reference).

The CORBA specification is not explicit about what services an adapter must support,

but it is clear that the adapter is intended to isolate object implementations from the ORB

core as much as possible.

Objects in CORBA are created and destroyed dynamically in response to the

issuance of requests. Objects can also participate in any of the normal types of

relationships, with perhaps the most important being subtype/supertype relationships or

inheritance. Inheritance between object interfaces is specified syntactically by using the

IDL. The object model in CORBA is strongly typed. As in C++, types are used to

restrict and characterize operations. Unlike language such as Smalltalk, these types are

not first-order objects, and cannot be manipulated as objects.

 16

The major part of the CORBA standard is Object Services – some software designed

to provide a particular set of operations applicable to broad classes of objects. For

example, a given object service might store and retrieve objects, or it might manage

relationships among objects, etc. the Object Services are the key to expanding the

functionality and interoperability of objects beyond the simple request management

capabilities of the ORB.

However, for the OMG’s CORBA to be truly usable as an industry standard for wide

range of commercial applications, much more work needs to be done, and the OMG

formed different SIGs for that purpose. There are a number of implementations of

CORBA available now on the market, one of which is ORBIX from IONA

Technologies.

ORBIX represents the distillation of ten years in the area of distributed system.

Because the software was built from scratch, it conforms faithfully to the OMG’s

CORBA specification. It does not contain vestiges of an old product trying to comply

with the CORBA standard, and its architecture presents CORBA in a most natural way

to C++ developers. The product has been tried, tested and deployed by corporations

across the globe. It is used by leading software providers for the banking,

telecommunications, engineering and government sectors. With ORBIX, programmers

can develop distributed applications using object-oriented client-server technology, and

use object technology to compose new applications from existing components and

subsystems.

2.1.2 Internet Inter-ORB Protocol (IIOP)

 17

ORB interoperability specifies a comprehensive, flexible approach to supporting

networks of objects that are distributed across, and managed by, multiple, heterogeneous

CORBA-compliant ORBs. The approach to “interORBability” is universal, because its

elements can be combined in many ways to satisfy a very broad range of needs. The

elements of interoperability architecture are as follows: ORB interoperability

architecture, Inter-ORB bridge support and General and Internet inter-ORB protocols

(GIOPs and IIOPs).

In ORB interoperability architecture a domain is a distinct scope, within which

certain common characteristic are exhibited and common rules are observed: over which

a distribution transparency is preserved. This abstract architecture describes ORB

interoperability in terms of the translation required when an object request traverses

domain boundaries. Conceptually, a mapping or bridge mechanism resides between the

domains, transforming requests expressed in terms of one domain’s model into the

model of the destination domain.

The GIOP and IIOP support protocol-level ORB interoperability in a general, low-

cost manner. GIOP specification consists of the following elements [2]:

• The Common Data Representation (CDR) definition. CDR is a transfer syntax mapping

OMG IDL data types into a bicanonical low-level representation for “on-the-wire”

transfer between ORBs and Inter-ORB bridges (agents).

• GIOP Message Formats. GIOP messages are exchanged between agents to facilitate

object requests, locate object implementations, and manage communication channels.

 18

• GIOP Transport Assumptions. The GIOP specification describes general assumptions

made concerning any network transport layer that may be used to transfer GIOP

messages. The specification also describes how connections may be managed, and

constraints on GIOP message ordering.

The IIOP specification adds the following element to the GIOP specification:

• Internet IOP Message Transport. The IIOP specification describes how agents open

TCP/IP connections and use them to transfer GIOP messages.

For IIOP, agents that are capable of accepting object requests or providing locations

for objects (i.e., servers) publish TCP/IP addresses in IORs (Interoperable Object

Reference). A TCP/IP address consists of an IP host address, typically represented by a

host name, and a TCP port number. Servers must listen for connection requests. A client

needing a service from server must initiate a connection with the address specified in the

IOR, with a connect request. The listening server may accept or reject the connection. In

general, servers should accept connection requests if possible, but ORBs are free to

establish any desired policy for connection acceptance (e.g., to enforce fairness or

optimize resource usage).

Once a connection is accepted, the client may send Request, LocateRequest, or

CacelRequest messages by writing to the TCP/IP socket it owns for the connection. The

server may send Reply, LocateReply and CloseConnection messages by writing to its

TCP/IP connection. After sending/receiving a CloseConnection message, both client

and server must close the TCP/IP connection.

2.2 Real-time CORBA Model

 19

2.2.1 Requirements of Real-time systems

In a real-time system, timing constraints must be met for the application to be correct.

This requirement typically comes from the system interacting with the physical

environment. The environment produces stimuli, which must be accepted by the real-

time system within timing constraints. The environment further requires control output,

which must be produced within timing constraints.

 One of the main misconceptions about real-time computing is that it is equivalent to

fast computing. Sometimes researchers challenge this myth by arguing that computing

speed is often measured in average case performance, whereas to guarantee timing

behavior, in many real-time systems worst case performance should be used. That is, in a

delicate application, such as nuclear reactor or avionics control, where timing constraints

must be met, worst case performance must be used when designing and analyzing the

system. Thus, although speed is often a necessary component of a real-time system, it is

often not sufficient. Instead, predictably meeting timing constraints is sufficient in real-

time system design.

Real-time systems require that timing constraints be expressed, enforced and their

violations handled. The unit of time-constrained execution is called a task. For example,

in a real-time database, time-constrained transactions are considered tasks. Timing

constraint expression can take the form of start times, deadlines, and periods for tasks.

Timing constraint enforcement requires predictable bounds on task behavior. The

handling of timing constraint violations depends on the task requirements: whether they

 20

are hard, firm or soft real-time. A task with a hard real-time constraint has disastrous

consequences if its constraint is violated. Many constraints in life-critical systems, such

as nuclear reactor control and military vehicle control, are hard real-time constraints. A

task with a firm real-time constraint has no value to the system if its constraint is

violated. Many financial applications have firm constraints with no value if a deadline is

missed. A task with soft real-time constraint has decreasing, but usually non-negative,

value to the system if its constraint is violated. For most applications, most tasks have

soft real-time constraints. Graphic display updates are one of many examples of tasks

with soft real-time constraints.

Most real-time systems specify a subset of following constraints:

• An earliest start time constraint specifies an absolute time before which the task may not

start. That is, the task must wait for the specified time before it may start.

• A latest start time constraint specifies an absolute time before which the task must start.

That is, if the task has not started by the specified time, an error has occurred. Latest

start times are useful to detect potential violations of planned schedules or eventual

deadline violations before they actually occur.

• A deadline specifies an absolute time before which the task must complete. Frequently,

timing constraints will appear as periodic execution constraints. A periodic constraint

specifies earliest start times and deadlines at regular time intervals for repeated instance

of a task.

2.2.2 Our Real-time CORBA Architecture

 21

The real-time CORBA model developed by URI’s real-time research group uses priority-

driven scheduling [3] for the real-time tasks and enforces the soft real-time constraints. I

will present theory background for the enforcement of real-time constraint in the

following paragraphs.

 Fig2. Real-time CORBA

We use real-time constraints to calculate the priority of tasks in the CORBA system.

Priority calculation is closely dependent on the scheduling policy chosen at the node. For

example, in this implementation of a RTCORBA system we chose Earliest Deadline

First (EDF) for the scheduling policy, so the activities with the shorter deadlines are

given higher Transient Priority values.

One way to provide distributed real-time scheduling is through the enforcement of

Global Priority. Global Priority can be represented as an ordinal quantity that is attached

to every method invocation and is interpreted in a homogeneous fashion by the

 22

scheduling and queuing for the devices, servers and services in the CORBA system. That

is, if method invocation A has a higher Global Priority value than method invocation B,

method invocation A should always be treated first.

Enforcement of Global Priority requires the use of real-time schedulers and priority-

based queues throughout the distributed system. A real-time scheduler typically strives

to execute the highest priority task first and a priority queue typically places the highest

task at its head. If these conditions are violated anywhere in the path of a real-time

method invocation, unbounded priority inversion [4] may occur and no guarantees can

be made about the real-time behavior of any of the components involved.

 In a distributed environment, there are two possible ways to manage scheduling:

centralized or distributed. In the centralized paradigm, a single entity on the distributed

system decides what is executed, where it is executed, and when it is executed. This

approach can produce a vast amount of wasted CPU time on the nodes due to network

lag of execution instructions. In the distributed model each node does its own

scheduling. We have implemented a distributed model in which each node’s operating

system makes the best decision possible at every moment, based on its currently running

tasks and their designated Transient Priorities-without any regard for the scheduling on

any other node in the system.

 In order to provide for full expression of timing constraints on method invocations,

our group has designed a model of Timed Distributed Invocations (TDMIs) in which all

timing information is packaged in a structure called a real-time Environment. In our

model, a CORBA client is started at a base priority that is established from static timing

and importance information available when the client is dispatched. The client runs at

 23

this base priority whenever it is not executing a TDMI. To configure a TDMI, the client

specifies its timing constraint parameters, its QoS parameter(s), and its scheduling

parameters (importance) in the real-time Environment. This environment is attached to

every method call and is used by the Global Priority Service, the ORB and the real-time

Concurrency Control Service to enforce the specified timing constraints [5].

Our real-time system uses the soft real-time constraints in a CORBA compliant

distributed computing environment. The real-time model developed by the Real-time

Lab in University of Rhode Island lets the user specify constraints such as importance

and deadline for some real-time activities. Then it computes the priority according to

these constraints and assigns the priority to the activities. The system may spawn a

thread for each real-time activity, where the threads may have different priority. The

Solaris operating system can schedule the threads according to their own priority.

After the method invocation acquires a Transient Priority, it must set its thread to an

appropriate priority in the server’s local operating system, corresponding to its Transient

Priority. This requires a mapping of the Transient Priority value into the range of the

real-time priorities of the server’s local operating system. The function that performs the

mapping must be written for each operating system individually because of the

variability in ranges of real-time priorities present on different system individually

because of the variability in ranges of real-time priorities present on different systems

(e.g. Solaris has 60 local priorities and LynxOS has 256). It is clear that mapping of a

large range of Transient Priority values into a smaller range of operating system

priorities can cause more than one Transient Priority to be assigned to a single local

priority value, which could cause priority inversion during execution.

 24

2.3 Related Work

The original JFLEX server was designed for interacting with MSQL (mini SQL)

database server. Qingli Jiang in our group has added a CORBA server between the

original JFLEX server and MSQL database server. This design allows JFLEX to reach

tables in the database without knowledge of what kind of DBMS it is using. For

example, Qingli will substitute part of MSQL database with RT Open OODB, a real-

time Object Oriented Database. This design will extend the life cycle of JFLEX easily

and we can easily incorporate the real-time enforcement into the CORBA server to

extend the real-time feature to the database.

 25

Chapter 3

Model Description of Real-time JFLEX

This chapter presents the model for real-time JFLEX. In order to develop an efficient

model to incorporate real-time into the JFLEX, which makes the maximum use of the

existing code, we first analyze the semantic content, usage patterns and the structure of

the system. Then, we evaluate the old structure with new requirements. Finally we

describe the model of real-time JFLEX. The first section of this chapter briefly

introduces the structure of the original JFLEX. The second section outlines how to

incorporate the real-time system into the JFLEX project and the design decisions made

for the real-time JFLEX system.

3.1 Structure of JFLEX

JFLEX has three main operation modules: client, outlineServer and MSQL server. The

client module allows a user to create a plan representation consisting of plan objectives,

subplans, responsible organizations, conditions, and states. The outlineServer

continuously receives plan-related information, processes that data, and relays the

updated picture to all the JFLEX stations on the network. MSQL server is used to store

all the plan related information and facilitate the extraction and update.

The original JFLEX server has two IDL files, outlineServer.idl and jflexOutline.idl.

A client will make request according to these two IDL files. The client sends a request to

 26

outlineServer through ORB layer. The outlineServer processes the request sent by client

and produces corresponding SQL statements, which in turn are passed to MSQL (mini

SQL) server through a C++ wrapper. MSQL server will do the corresponding operation

to the JFLEX database according to the SQL statement and pass the result to

outlineServer through the C++ wrapper. The outlineServer will then pass the result back

to client through the ORB.

Fig3. JFLEX structure

The internal structure of JFLEX server is a little more complicated. The JFLEX

database consists of many tables. For example it has State table, Plan Action table, Plan

Table etc. Each table is a C++ object. Methods of the table objects call the functions in

MSQL wrapper to operate on the JFLEX database. Those methods for each table object

JFLEX Client

JFLEX Server

 MSQL DB

 MSQL Wrapper

JFLEX DB

 27

may not limit their operation on that table, they may also operate on related tables. For

example, methods in Condition Table object will operate on Condition Table and State

Table. The constraint field in Condition Table is a State, which means that operations on

Condition Table will lead to operations on State Table. That is, the methods keep the

semantic constraint for the database, which will keep the data consistent among all tables

during update etc. Basically, each component of a plan such as Plan action, Plan State,

is a C++ object. These are the objects which client calls manipulate. When user wants to

modify any components of a plan, he will need to call corresponding method for that

object, which in turn calls the corresponding table object’s method.

3.2 Structure of Real-time JFLEX

The real-time CORBA model developed at URI isolates the implementation of

expression and enforcement of the real-time constraints from the implementation of the

real-time work contents. The Pserver and RT_Manager act as real-time agents. To

incorporate this model into JFLEX, we only need to modify the original system to

interact with those real-time agents.

In order to use the Real-time CORBA model developed at URI, we will have a

Pserver real-time daemon running at each node to schedule work at that node according

its own load. Since the real-time daemon uses its local clock to check if the deadline is

reached, A Global Time Service is required. This service ensures that all clocks in the

distributed system are synchronized to within a known skew of each other to provide

 28

consistent notion of time. Clients and servers must be able to call this service to get the

current global time.

The approach we used for clock synchronization is the Network Time Protocol

(NTP) [6]. The NTP specified in the Request For Comments (RFC)-1305 [7] can be used

to synchronize computer clocks in the global Internet. It provides comprehensive

mechanism to access national time and frequency dissemination services, organize the

time-synchronization subnet, and adjust the local clock in each participating subnet peer.

In most places of today’s Internet, NTP provides accuracy of 1-50 ms, depending on the

characteristics of the synchronization source and network paths. [8]

 As mentioned in the last chapter, when we use the TDMI model for the real-time

distributed system, we will spawn a thread for each method invocation. A RT_Manager

object is created at both client and server side to pass the real-time information to the

real-time daemon. It also acts as broker between the new created thread and real-time

daemon. [9] The modifications to JFLEX client involve incorporation of the TDMI

model from scratch. However, for the server side, we know that the request goes through

a server object to table objects. We had to decide in which object we wanted the real-

time constraint enforced. A single request usually affects only one server object, but

might affect several table objects. Because the real-time constraint is for a single request,

we want each request to spawn only one thread so we can enforce the real-time

constraint just once. That is the reason we want to incorporate the TDMI model into the

server object implementation. We will discuss the model in more detail at client side and

server side separately.

 29

At the client side, each time a real-time request is made, the client specifies the

deadline and importance to object, RT_Manager_Client. The RT_Manager_Client object

passes this information to the real-time daemon as real-time constraints. It also spawns a

new thread, suspends the main thread, and also set the alarm clock for the new thread.

The new thread makes corresponding request to the server with the real-time information

stored in RT_Environment. If the request does not miss the deadline, the new thread will

finish its work and join with the main thread. But if the request missed the deadline, the

alarm sends a signal to the new thread. The new thread will detach from the main thread

and the main thread will tell the user the deadline is missed now.

At the server side, each time a request is received, server retrieves the real-time

information from the RT_Environment. Then the RT_Manager at server side sets the

alarm according the real-time information passed from the client. It also has to

recalculate the new priority according to the real-time information. If the deadline is

missed, alarm will send a main thread signal, then main thread will throw real-time

exception.

For the requests, that miss their deadline, we also have to decide how to handle the

real-time exception both at client side and server side. At client side, it is the user who

decides what to do when a request misses its deadline. A client can automatically send a

update request or specify a new deadline etc. In our design, we will just report the miss

of the deadline, and give the user the flexibility to decide how to recover from the real-

time exception.

At server side, since real-time exception might be raised at any specific moment, the

method that consists of series of function calls might finish only some of the function

 30

calls. If interrupted in this series of database operations, corrupt data might be stored in

the database. For instance, if interrupted in middle of plan object update, such as link list

of Plan State object, it will leave plan objects inconsistent with the database.

It is decision of the system designer whether to keep the corrupt data in the database.

Since in JFLEX project the database transaction is allowed to commit before all its

changes are written to the database, the logical recovery algorithm will be

UNDO/REDO. To undo the effect of certain write_item operations that have been

applied to the database, a log for operations need to be kept to keep track of the history

of database operations.

We choose to make the object methods call atomic. That means even when the timer

sends a signal to the main thread to indicate miss of a deadline, the sever will continue

the update and raise the real-time exception after it finishes this atomic operation. The

advantage of making this operation atomic is that we do not have to record the log of the

database operations. In other words, we do not have to keep track which part of database

operations is completed before the real-time exception is raised, which minimizes the

original code modification. Since we know during which method the real-time exception

is raised, it will be easy for us undo all the work done by the method by reverse every

operation in the method. For example, if the operation is insertion, we will do deletion, if

the operation is deletion, we can do insertion. The more complicated situation is update.

In order to undo update we have to record what the original state of the database.

 31

Chapter 4

Implementation

This chapter presents the implementation of the real-time JFLEX. The first section

describes the migration JFLEX to support IIOP. The second section presents how real-

time CORBA system was incorporated into the JFLEX project.

4.1 Migration of JFLEX

The original JFLEX project used CORBUS as ORB implementation. Our goal was to

migrate it to use ORBIX as the ORB implementation. The purpose of migration is to

reuse the code as much as possible and retain all the original functionality of the JFLEX.

In our case, we needed to do some modification to make it support IIOP. In the system

design phase, we first analyze the semantic content, usage patterns and the structure of

the system.

 At server side, we kept the IDL files almost unchanged. However, JFLEX uses

ORBIX’s TIE method to link the IDL interface with C++ class for the interface

implementation. The TIE approach gives a complete separation of the class hierarchies

for the IDL C++ classes (as generated from the IDL interfaces by the IDL compiler) and

the class hierarchies of the C++ classes which are used to implement the IDL interfaces.

 32

We needed to find the syntax difference between CORBUS and ORBIX in those C++

classes and change to the corresponding format. For example, they have different ways

to report system errors. In order to support IIOP, a server Interoperable Object Reference

(IOR) was retrieved when the server object was invoked. Then server changed the object

reference into a string and wrote the string into file. The file was located on the partition

mounted on client to facilitate client reading the file. At last, the server program has to

link with the new skeleton.

 At the client side, since the IDL files almost unchanged, the code did not have to be

changed. The only thing to change is instead using ORBIX daemon to find the server,

we use the IOR to find the server object. The client read from the file mounted from

server and got the string. It then converted the string to IOR and used this object

reference to refer server object. Also the client program has to link with the new stub.

4.2 Real-time JFLEX implementation

At both the client and the server sides, the Pserver needed to be started as a real-time

daemon. RT_Manager objects are needed both at client side and server side to

manipulate the real-time information and handle the interaction between Pserver and the

client. I will elaborate on both sides of implementation in this section.

4.2.1 Server Side Implementation

 33

At server side, the server needs the real-time information passed from client to schedule

the TDMI. This required a modification of the IDL files to support passing real-time

information for the real-time methods and support real-time exception. For example, the

declaration of the method to create new state is:

JflexState NewState(in string name, in string desc);

We added the RT_Environment parameter to make the method signature:

JflexState NewStateRT(in string name, in string desc, in RT_Environment rt_env) raises(RT_Exception);

The server side implementation for NewStateRT() as follows:

JflexState_ptr OutlineServer_i:: NewStateRT(const char * name, const char* desc,

 const RT_Environment& rt_env, CORBA::Environment &IT_env) throw(CORBA::SystemException,

RT_Exception)

{

 RT_Manager_Server rt_mgr(rt_env);

 try{

 rt_mgr.START_RT();

 rt_mgr.Start_Atomic_CORBA_Call();

 :

 //code for create new JflexState and update the database

 :

 rt_mgr.End_Atomic_CORBA_Call();

 rt_mgr.END_RT();

 return statePtr; //return the new JflexState created

 }

 catch(const RT_Exception &rtex){

 cerr<<"at JflexState_i::NewStateRT "<<rtex.reason<<endl;

 34

 cerr.flush();

 rt_mgr.STOP();

 return NULL;

 }

 :

}

A RT_Manager_server object is constructed using the RT_Environment from the client

as an argument. The bulk of the work is done inside the START_RT() method and is

transparent to the JFLEX server. This method determines the network delay, calls the

functions to register with the real-time daemon, calculates the Transient Priority for the

server thread, sets the thread to a new priority, and arms the timer according to the new

deadline. Methods Start_Atomic_CORBA_Call() and End_Atomic_CORBA_Call() tell

the server that if a real-time exception is raised between these two function calls, delay

throwing of the exception until all the work between these two function calls is done.

All the operations to the database are between these two function calls. This way, we

make the transaction on the database atomic. If the server has not missed its deadline

during the service, then END_RT() disarms the clock, performs some clean up and

results are sent back to the client. If the timer expires (i.e., the deadline is missed), a

CORBA exception of type RT_Exception is raised in the server. The server thread

catches this exception, and performs any necessary cleanup and recovery operations.

4.2.2 Client Side Implementation

 35

At the Client side, we need a global object RT_Manager_Client to handle the real

time information. The RT_Environment data structure stores the timing constraint

parameters, Quality of Service, importance and transient priority etc. We specify time

constraints and importance through RT_Mangaer_Client.

 The methods of the RT_Manager_Client are responsible for assembling the

RT_Environment that will be attached to the TDMI for use by the ORB, the object

services and server implementation. After RT_Manager_Client sets up the real-time

environment, it will spawn a thread for each method call invocation. An example of

client code for a thread is like following:

#include RT_Manager_client.h

RT_Manager rt_mgr;

Struct newState_para

{

 OutlineServer_ptr osptr;

 Char* name;

 Char* description;

 JflexState_ptr jsptr;

}

void* newState_thread (void* arg)

{

 newState_para nstate_para=*((newState_para*)arg);

 rt_mgr.START_RT();

 try{

 36

 RT_Environment rtenv=rt_mgr.Get_RT_Env();

 (nstate_para.osptr)->NewStateRT(nstqate_para.name, nstate_para.description, rtenv);

 rt_mgr.END_RT();

 }

 catch(const RT_Exception &rtex)

 {

 //handling the real-time exception

 }

 :

}

 As we mentioned earlier in our real-time model, the client spawns a new thread each

time a request to the server is made. The newState_para contains all of the information

needed for the new thread. The function newState_thread defines the work that the new

thread will do. Inside that function, the START_RT() will register the new thread with a

real-time daemon on its local node to calculate and assign a global priority called

Transient Priority to the TDMI. Also a timer with the proper signal handling will be

armed according to the deadline. The END_RT() method disarms the alarm, and

communicate with the real-time daemon to change the Transient Priority of TDMI to its

base priority. If the client misses its deadline, a CORBA exception of type

RT_Exception will be thrown from a signal handler to the calling thread. That thread can

catch the exception and will execute the STOP() method to deregister with the real-time

daemon and release the resources.

 An example for client main program is like following:

int main()

{

//RT init call

 37

RT_Manager_Init();

:

try{

//set the importance as 2

rt_mgr.Set_Importance(2);

//set constraints and scheduling parameters

//deadline=NOW+2 seconds

rt_mgr.Set_Time_Constraint_Now(By, REL,2,0);

rt_mgr.Start_RT_Invocation(newState_thread, (void*)&nstate);

//start TDMI: 1) calculate Transient Priority

// 2) call RT Daemon and register as an active client

// 3) map Transient Priority to this node’s Priority

// set and change this thread to the new prioriy

// 4) arm the timer

rt_mgr.End_RT_Invocation();

//finish TDMI 1) call RT Daemon and deregister as a client

 2) disarm the timer

 3) restore this thread to its original priority

}

catch (const RT_Exception &rtex)

{

:

}

:

}

 38

In this example, we set a relative deadline of 2 seconds in the

Set_Time_Constraint_Now() method. The bulk of the work is done inside the

Start_RT_Invocation() function and is transient to the client. Start_RT_Invocation() calls

the functions to register with the real-time daemon, calculate the Transient Priority for

the client, set the client to a new priority and arms the timer according to the client’s

deadline.

 After the above sequence is complete, the client makes the CORBA call to the table.

The RT_Environment that is sent with the call contains the timing information computed

by the RT_Manager_Client. At this point the request is scheduled on the server as

described before. If the client has not missed its deadline during the CORBA call, then

End_RT_Invocation() disarms the clock and performs some clean up. If the timer

expires (i.e., the deadline is missed), a CORBA exception of type RT_Exception is

raised in the client. The client catches this exception and performs any necessary

recovery operations and cleanup.

 39

Chapter 5

Evaluation

After the implementation was completed, several tests were done to show that the

new JFLEX support IIOP protocol and perform at real time with the expected results.

Then a suite of random requests with different deadlines was executed to evaluate the

performance the new JFLEX project. We also measured the overhead introduced by the

real-time function calls, and performed a series of tests to determine how well the real-

time JFLEX met deadline.

5.1 Testbed Construction

A set of tests was done to retrieve plan information to prove the correctness of

JFLEX supporting IIOP. The tests were generated from the following parameters:

importance, deadline of the TDMI and different request such as creating/deleting the

JFLEX state. For showing the correctness of the new JFLEX project, each request was

verified by using client to retrieve information after the request and by retrieving

information directly from the MSQL database through database command. Each test was

performed on our RTCORBA on Solaris, with expression and enforcement of timing

constraints.

 40

 The analysis of the real-time performance was based on the comparing the

time needed to finish more important requests under different loads between original

JFLEX and real-time JFLEX. In this thesis, the results of each test were averaged and

analyzed over 10 trials producing in error of at most 1% in most cases.

 All testing was performed on two Sun Sparc workstations (IPX and Sparc

Station 5) on our department LAN with a fixed number of CORBA clients and a server

on each computer. Global Time service NTP server is running on Sun Sparc Station 5,

NTP client is running on Sun Sparc IPX. Network delay was measured under different

loads using the test C program, and was found to be approximately 0.30 second (s)

except the first request usually is 0.72s because of the need of finding routing

information for the first time.

5.2 Testing IIOP for new JFLEX

The support of IIOP for the new JFLEX was tested by starting a server at one node,

and having the server write the IOR to a file that is on the partition mounted to the other

node. The client at the other node used that file to find the server and send its request for

JFLEX plan information. After the client received the plan information, it retrieved the

information from the database through database operation at server side. These tests

indicated that the client was able to bind to, and access, the server via IIOP.

5.3 Testing the Real-time JFLEX

 41

The real-time feature of the new JFLEX was tested by periodically starting up a

client on one node (on a Sparc IPX station) that sent a request to a server on the other

node (on a Sparc Station 5). The purpose of this testing was to determine correctness and

the overhead produced by the real-time features. Recall that in incorporating the TDMI

support into JFLEX, an extra parameter (struct RT_Environment) was added to all

method invocations to be executed in real-time. Thus, an extra data copying, moving,

dereferencing and transmission was done by the Stubs/Skeletons/ORB. And signal

handling, threads create and Priority scheduling also adds to system overhead.

Correctness. The correctness of the implementation was tested by running a set of

clients with short (0-5 second), medium (5-10 seconds) and long (10-14 seconds)

deadline on various requests (add, delete, change JFLEX state). The clients and server

threads were forced to miss their deadlines at different phases of their execution as at the

very beginning, in the middle, and at the end of database operations. As mentioned

earlier, CORBA exceptions of type RT_Exception were raised and processed

successfully by both client and server thread, showing that the deadlines were actually

missed in all cases. And we checked the database contents each time the deadlines were

missed. There was no corrupt data. And all the requested operations were fulfilled

successfully.

Performance. We start several clients on a Sun Sparc IPX station with different

deadline and importance. Two sets of tests were done for the same importance with

 42

different deadlines and the same deadline with different importances. The results always

show that the more important or shorter deadline, the earlier the tasks were finished.

For non-real-time JFLEX, we started five clients running in the background with a

UNIX script. Each request was to delete certain state in the database. Five clients

finished the request in random order, we could not make certain requests finished earlier.

For real-time JFLEX, we did two set tests. The first set is starting four clients with same

deadline but different importance. The deadline is given 6 seconds, so each request could

be finished without miss deadline and we can get the time for processing the request.

Table 5-1 shows that the more important the request, the earlier the request will be

finished. The second set of test is starting four clients with same importance but different

deadlines. The table 5-2 shows that the shorter the deadline, the earlier the request was

finished.

Overhead and Latency. The Server implementation was tested on a Sun Sparc

Station 5. A client implementation was on a Sun Sparc IPX station. Clients with real-

time features and without real-time features were tested with different requests. Time

difference was estimated as time delay caused by processing additional real-time

function calls.

For non-real-time JFLEX, we recorded the time for processing the requests (add,

delete state and change GeographicArea of a state). For real-time JFLEX, we found it

gave different request processing time for different importance, which might have

happened because system processes and daemons competed with request for CPU time

etc. Since we do not know what priority operating system assigned to the user process, I

 43

did the requests using importance 0,1 and 2 and used their average as processing time for

real-time JFLEX. We tested 7 times for each requests and averaged the time as the

processing time. The processing time might vary as high as 30 percent for the same

request, which we believe resulted from the workload of the server at the specific

moment. Average overhead was computed and compared between RT and Non-RT

JFLEX in Table 5-3. Note that we always discarded the data from first request, since it is

usually quite larger than other data probably because the object was first loaded into

cache or memory.

Although the overhead seems quite large compared to the original processing time,

notice for high importance such as 2, the overhead was compensated by request putting

its work ahead of some system processes through the priority scheduling.

Meeting Deadline. To measure the effectiveness of real-time CORBA at meeting

JFLEX deadline, we started the four clients with a UNIX script. The clients have

requests with different deadlines or different importance. We checked which clients

missed their deadline. And we also tested these clients with same request for non-real-

time JFLEX. From Table 5-4, we can see for non-real-time JFLEX, the two clients with

higher importance missed their deadlines. But for real-time JFLEX, only one client with

a lesser important request missed its deadline. This proves the advantage that real-time

JFLEX has over non-real-time JFLEX. That is, although more deadlines might be

missed due to the overhead of the real-time mechanisms, the most important deadlines

are more likely to be met with real-time JFLEX.

 44

Importance Deadline
(s)

Start Time
(s)

Start Time
(ms)

End Time
(s)

End Time
(ms)

0 6 897768975 910591 897768979 556065
1 6 897768975 899804 897768979 525502
2 6 897768975 889287 897768979 492916
3 6 897768975 921964 897768977 909373

 Table 5-1 Start and End time for a set of requests with same deadline

Importance Deadline
(s)

Start Time
(s)

Start Time
(ms)

End Time
(s)

End Time
(ms)

1 2 897762033 984914 897762035 938783
1 3 897762033 952631 897762036 83432
1 4 897762033 973953 897762037 677277
1 5 897762033 962079 897762037 710380

 Table 5-2 Start and End time for a set of requests with same importance

 Importance Addition Time
(s)

Deletion Time
(s)

Change Time
(s)

NonRT N/A 1.55 1.59 1.65
RT 0 3.27 5.42 4.30
RT 1 2.19 3.74 3.69
RT 2 1.78 1.64 1.64
RT Average 2.41 3.6 3.21
Overhead
Average

 0.86 2.01 1.56

 Table 5-3 Average Overhead for different requests

 45

Starting
Time

Ending
Time

R

eq
ue

st

N
um

be
r

Im
po

rt
an

ce

D
ea

dl
in

e
(S

)

(S) (ms) (s) (ms)

Pr
oc

es
s

T
im

e(
s)

M
is

s
D

ea
dl

in
e

1 1 6 898650460 123635 898650463 313711 3.190 No

2 1 4 898650460 122284 898650461 741606 1.619 No

3 2 3 898650460 223238 898650466 468509 6.245 Yes

N
on

-r
ea

l-
T

im
e

re
qu

es
t

4 3 2 898650460 173931 898650464 884655 4.711 Yes

1 1 6 898651493 864337 898651498 313711 4.897 No

2 1 4 898651501 432512 N/A N/A N/A Yes

3 2 3 898651500 167601 898651500 712006 0.644 No

R
ea

l-
tim

e
re

qu
es

t

4 3 2 898651493 808511 898651495 555715 1.748 No

 Table 5-4. Performance compare for RT JFLEX versus non-RT JFLEX

 46

Chapter 6

Conclusion

6.1 Contribution

This thesis has applied real-time and IIOP technology to a large legacy software

application. The basis for the work was the real-time CORBA model developed by real-

time research group at URI (University of Rhode Island). It focuses on the migration of

ORB implementation, expression and enforcement of real-time constraints for JFLEX.

The result of thesis shows migration of the application from one ORB to another can

reuse large amount of original code, due to CORBA compliance and object-oriented

programming style. The result of thesis also shows the real-time model developed by the

real-time group at URI is suitable and reliable for real-time application. At the same

time, this thesis makes the JFLEX application more suitable in the practical world.

Further it provides a methodology as to how to add real-time features into a distributed

application without changing too much code, which is very important since most of

development of software is built one feature after another.

6.2 Limitation and Future work

One drawback to the current RT JFLEX is that the JFLEX server is not multi-threaded,

which prevents concurrent execution on server, thus increases waiting time for requests.

 47

Another drawback is that we finish the request even if the real-time exception is raised

which can leave outdated information in the database.

 There is still significant work to be done to meet the practical use standards in the

Real-time JFLEX. This includes switching the server main program to multithread

program. For this we need to modify the current program to put an in-request pre

marshal filter pointer [10] at beginning of the server main program to let server spawn a

thread to handle each request. Once the server program becomes multithreaded, we need

to implement concurrency control. And we can also substitute the MSQL with other

more advanced DBMS such as ORACLE [11], which support transactions, to make data

recovery easier for real-time exception.

 The success of the migration the ORB implementation and the incorporation of real-

time support for JFLEX, proves the good isolation capability of CORBA, and provides a

practical methodology to add real-time feature to a distributed application.

 48

List of References

[1] The Object Management Group, “CORBA service: Common Object Service

Specification”, Revised Edition March 31, 1995.

[2] The Object Management Group, “The Common Object Request Broker:

Architecture and Specification”, Revision 2.0 July 1995.

[3] Liu, J., “Real-time System ”, Prince Hall Press, May 1998.

[4] Rajkumar, Ragunathan, “Synchronization in Real-time Systems: A Priority

Inheritance Approach”, Kluwer Academic Publishers, Boston, MA 1991.

[5] Victor Fay-Wolfe, Lisa Cingiser DiPippo, Roman Ginis, “Expressing and

Enforcing timing Constraints in Orbix”, ORBIX Award submission, April 1997.

[6] Mills, D.L., “Internet time synchronization: the Network Time Protocol”, IEEE

Trans. Communications COM-39, pp1482-1493, October 10, 1991.

[7] Mills, D.L., “Network Time Protocol (version 3) specification, implementation

and analysis”, Report Request For Comments (RFC)-1305, University of

Delaware, March 1992. Currently available at HTTP site:

http://www.eecis.udel.edu/~mills/bib.html.

[8] Mills, D.L., “On the accuracy and stability of clocks synchronized by the Network

Time Protocol in the Internet system”, ACM Computer Communication Review

20, pp.65-70, January 1990.

[9] Igor N. Zykh, “Real-time Event Service”,Master thesis May 1997

[10] IONA Technologies PLC, ORBIX Program Guide, March 1997.

 49

[11] Rachel Becker, Matthew Bennett, Winnie In-Kuan Cheang, “Oracle Unleashed”,

1996 by Sams Publishing

 50

Bibliography

Coplien, J., "Advanced C++ Programming Style and Idioms", Addison-Wesley

Publishing Company, Reading, MA, 1992,

Coulouris, G., Dollimore, J., "Distributed Systems. Concepts and Design", Second

Edition. Addison-Wesley Publishing Company, Reading, MA. 1994

Donohoe, P., Shapiro, R., Weiderman, N., "Hartstone Benchmark User’s Guide. Version

1.0", Carnegie Mellon University, Software Engineering Institute, March 1990.

Gallmeister, B., "POSIX .4. Programming for the real world", O’Reilly & Associates.

Inc. , Sebastopol, CA. 1995.

Guttman, M. & Matthews, J., "The Object Technology Revolution", John Wiley & Sons,

Inc. New York, NY, 1995.

IEEE Standard for Information Technology, "Portable Operating System Interface

(POSIX). Part1: System Application Program Interface. Amendment 1: Realtime

Extension", Institute of Electrical and Electronics Engineers (IEEE), Inc. New York,

NY, 1994.

Levine, J., Mason, T., Brown, D., "Lex&Yacc", O’Reilly & Associates. Inc., Sebastopol,

CA. 1992

Lippman, S., "C++ Primer", Addison Wesley, Reading, MA, 1993

Mullender, S., "Distributed Systems", Second Edition, reprinted in 1994, Addison-

Wesley Publishing Company. Reading, MA.

 51

Silberschartz, A., Peterson, J., Galvin, P., "Operating System Concepts", Addison-

Wesley Publishing Company, Reading, MA. 1992

Stroustrup, B., "The Design and Evaluation of C++". Addison-Wesley Publishing

Company, Reading, MA, 1994

Tanenbaum, A., "Distributed Operating Systems", Prentice Hall, Englewood Cliffs, NJ.

1995.

